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Abstract

In the past, multi-rigid-body systems have been formulated by Lagrangian and Hamiltonian dynamics, the Newton-
Euler method and Kane’s dynamic equations. Availability of large computers and versatile software systems
enables us to formulate larger systems and analyze them computationally. In such circumstances, the probability
of human error grows with the size of the system. The purpose of this work is to provide state space formulations
that allow verification of computational results and be able to transport Lyapunov stability results across the these
dynamics disciplines. The formulations are presented with matrices for all transformations and projections.

This work also investigates the constraint forces and their computation or elimination by different methods. A
one-link constrained rigid body is considered first. The results are summarily extended to a three-link system. Six
three-link rigid body sub modules are interconnected to describe, control and simulate many different maneuvers
and activities of humans.

The actuators have alpha and gamma inputs, and pull but cannot push. The control strategy is based on Evarts’
“attention set,”, and is applied to the movement of one arm in a computational experiment.
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1. Introduction

Understanding the complexity of natural human and animal movements can only be unraveled by construction of
large and anatomically accurate models that imitate the movement (Andriacchi, & Alexander, 2000; Gruber, Rud-
er, Denoth, & Schneider, 1998; Humphrey & Hemami, 2010; Ihlen, Skjaeret, & Vereijken, 2012; Lebiedowska,
Wente, & Dufour, 2009). An important part of such a development is the construction of computational models
that include all skeletal bones as single rigid bodies (Charles & Hogan, 2010; Onyshko & Winter, 1980; Rankin &
Neptune, 2012). Computational and animation tools (Onyshko & Winter, 1980; Pandy & Berme, 1988; Popovich,
Goswami, & Herr, 2005; Zheng & Hemami, 1986) are playing a more prominent role in modeling and understand-
ing systems where direct experimental measurements are not possible or feasible. An important example is the
control machinery of the central nervous system (CNS) involved in movement (Huston & passerello, 1971; Iqbal
& Pai, 2000; Iqbal & Roy, 2009; Thelen, Anderson, & Delp, 2003; Wittenburg, 1989).

This paper is a preliminary step to develop a larger and more comprehensive skeletal model for studying hu-
man movement (Smith, 1973). The model must be able to imitate human movement (Blajer, & Czaplicki, 2001;
Khosravi-Sichani, 1985; Khosravi-Sichani & Hemami, 1992; Khosravi-Sichani & Hemami, 1987), make and
break contact (Blajer, 1997) with the environment and objects in the environment, and allow for inclusion of a
large number actuators that imitate the geometry, physiology and structure of human musculature.

State space formulations are perhaps the only way to construct large skeletal models that yield to computer pro-
gramming of rotational and translational motions (Popovich, Goswami, & Herr, 2005; Winter & Stark, 2012).
Variable structure and sliding mode systems (Utkin, Guldner, & Shi, 1999; Lee & Utkin, 2007; Feng & Utkin,
1996) have traditionally used Lagrangian (LA) dynamics. Kane’s method (K) is useful in the derivation of the
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equations of motion and computations of the constraint forces (Fluit, Andesen, Kolk, Verdonschot, & Koop-man,
2014; O Reilly, 2008, 2010). A three-link rigid-body system, in Newton-Euler (NE) state space formulation, is
used in sliding mode control and Lyapunov studies (Wu, 1996). In this regard, the application of state space (Bay,
1999) formulations of the rotational motion of one rigid body, anchored at its center of gravity (COG) (Minetti,
Cisotti, & Mian, 2011), is a convenient way to compare the NE, LA, Hamilton (H) and K methods (Humphrey,
Hemami, Barin, & Krishnamurthy, 2010; Jalics, Hemami, Clymer, & Groff, 1997; Schiehlen, 2006; Schwertassek
& Roberson, 1986; Tomovic, Popovic, & Stein, 1991) for multi-body applications (Yoshioka, Nagano, Hay, &
Fukashiro, 1986). The transformations between the different state spaces are one way to check the validity of the
equations and results.

Based on the state space formulations of NE, we introduce a six-sub module, 18-link three-dimensional skeletal
model. Each sub module is made of a three-link system. The six sub modules represent the two lower extremities
(Pope, Crowninshield, Miller, & Johnson, 1976; Ren, Jones, & Howard, 2006), the torso (Minetti, Cisotti, & Mian,
2011; Winter & Stark, 1988), the two arm-lower arm-hand limbs (Charles & Hogan, 2010; Rankin & Neptune,
2012; Reich & Daunicht, 2000; Williams, Schmidt, Disselhorse-Klug, 2005). and the head and neck three segment.
This 18-link module can also be used to model each hand and each foot. The hand module has a three-link palm to
which five three-link fingers are attached. Therefore, a 90-link human skeletal model becomes available.

For ease of presentation, we consider point connections and holonomic constraints at all joints. All three-link sub
modules have three translation and nine rotation degrees of freedom. Each sub module has its own internal muscle-
like actuators that span joints and may span a segment or a sub module (Ajay & Pandy, 2007; Buchner, Hines, &
Hemami, 1988; Winter & Stark, 2012).

The different sub modules are coupled by cross-module forces of connection and muscle-like actuators (Rankin &
Neptune, 2012). The system has 72 degrees of freedom and five internal cross-joint forces. Two ground contact
forces support the system. The degrees of freedom can be reduced, by projection, to 54 degrees of rotational
freedom plus three degrees of translational freedom.

The control strategy here is based on Evarts’ “attention set,” (Evarts, Shinoda, & Wise, 1984; Evarts, 1979) i.e.,
the system is separated into two disjoint subsystems: the subsystem involved in the maneuver and the rest of the
system staying motionless and in support of the active subsystem (Kuo & Zajac, 1993; Winter, Prince, Powell, &
Zabjik, 1996). Both are controlled by co-activation (Williams, Schmidt, Disselhorst-Klug, & Rau, 2006; Blajer,
1997; Blajer & Schiehlen, 1992).

In Section Two, a single body is formulated in four different state spaces. Constraint forces are addressed in section
Three. Multi rigid body systems and three-body sub modules are presented in Section Four. The six-sub module
system and a particular actuation system are presented in Section Five. Computational experiments are briefly
presented in Section Six. Discussions and conclusions follow in Section Seven.

2. Single Rigid Body

The state space formulation of the single rigid body is an important step in developing multi-rigid-body dynamics
that do not use tensors (Pellionisz & Llinas, 1979, 1980) and are amenable to dimensional augmentation and
dimensionality reduction by projection. All required matrices are synthesized from 3 × 3 matrices. The states are
the three Euler or Bryant angles Θ and the angular velocity Ω (as expressed in BCS) for the NE method, They are
Θ and Θ̇ in K and LA formulations, Θ and the angular momenta P in H method.

For systems with a natural skeleton, the NE formulation of the dynamics is easier to implement. For combinations
of natural and man-made systems, such as an athlete with skates or bicycles in the air, Kane’s method seems more
appropriate. For deform-able and flexible bodies, the L and H methods may be more suitable. For understanding
the energy conversion machinery of a single muscle, all four methodologies may be necessary.

Transformations between these state space formulations are desirable for the development of computational soft-
ware development and use. All are compact and computer-adapted formulations that facilitate human interaction
with computers (Marshall, Jensen, & Wood, 1985; Mansouri & Reinbolt, 2012). The LA and H methods provide
energy functions that come handy in defining Lyapunov functions (Antsaklis & Michel, 1997; Winter, Prince,
Powell, & Zabjik, 1996) and stability (Honarvar & Nakashima, 2012).

2.1 Newton-Euler Formulation

The NE method (Hemami, 2002) makes use of three matrices: A, B and C. Matrix A describes the transformation
of vectors from the body coordinate system (BCS) to the inertial coordinate system (ICS). Matrix B relates Θ̇ and

47



www.ccsenet.org/mer Mechanical Engineering Research Vol. 6, No. 1; 2016

Ω. Matrix C describes the constraints of interaction with, connection to and contact with other objects and with the
environment. For examples of NE formulations, see (Amirouche, 1992; Hemami & Wyman, 2012) and Appendix
A.

2.2 Kane’s Formulation

The objective is to derive Kane’s equations (Kane & Levinson, 1985; O Reilly, 2008) for a rigid body, connected
to the origin of the inertial coordinate system (ICS) at its center of gravity. Let the three-vector T be the general-
ized torques acting on the system as defined by Kane. The key to the transformation is to relate the generalized
holonomic torque vector T appearing in Kane’s equations to the torque vector N applied to the BCS axes of the
rigid body. The power p delivered by T is the inner product

p = T
′
Θ̇ (1)

The same power in the NE method is given by
p = N

′
Ω (2)

From the above two equations and the equality:

Θ̇ = B(Θ)Ω, (3)

it follows that
N
′
B−1 = T

′
(4)

Let us define the transpose of B as Bt, the inverse B as Bi and the inverse of the transpose of B as Bit. Therefore,

T = BitN

Thus, by multiplying the NE equations by Bit, one obtains Kane’s equations. Conversely, by multiplying Kane’s
equations by Bt, one obtains NE equations.

There is one computational difficulty with matrix B. It is singular at

Θ2 = π/2

this problem can be computationally addressed by using a finite large number for the inverse of the cosine function
at the critical value or change the coordinate system in that vicinity.

2.3 Lagrange’s Formulation

The derivation of the Lagrange’e equations of motion (McCuskey, 1959; O Reilly, 2008) is carried out in (Hemami,
2002) starting with the Lagrangian (Lam, 1998; Wittenburg, 1989). We provide an alternative derivation here which
is more general and may also be easily applicable to multi body systems. The equation for Θ̇ is differentiated with
respect to time.

Θ̈ = −B(Ḃi)Θ̇ + B(Ω̇) (5)

By multiplying both side of Eq. 5 by Bit J(Bi), and recalling

f (Ω) = −Ω̆JΩ,

one obtains the Lagrangian equations:

Bit JBiΘ̈ = −Bit JḂiΘ̇ + Bit f BiΘ̇ + (Bit)N (6)

The above development points to an indirect method of deriving the Lagrangian angular acceleration variables: ((Θ̈)
from available NE (or K) state space equations. One adds the angular accelerations as outputs to the state space
formulation. These outputs are functions of the states and inputs, i.e., the structure is that of a Mealy machine
as opposed to Moore machines where the output is a function of the state alone. The system has a feed through
component (Bay, 1999).
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2.4 Hamilton Formulation

In the Hamiltonian formulation, the state variables are defined as Θ and P, where

P = ∂L/∂Θ̇ (7)

It follows that
H = 0.5Pt JLP.

and
Ṗ = (∂(PtB)/∂Θ)(J−1)BtP (8)

The latter equation appears to be compact and simple, but it involves derivation of the tensor ∂B/∂Θ or the simpler
form ∂PT B/∂Θ.

The relation between P and Ω is
P = Bit JΩ (9)

3. Forces of Constraint

Briefly, forces of constraint either appear in the equations of motion (Pope, Crowninshield, Miller, & Johnson,
1976; Hemami & Wyman, 1979; Popovich, Goswami, & Herr, 2005) or are not part of the equations of motion
(Kane & Levinson, 1985). According to Kane’s method, additional degrees of freedom are added such that the
forces are computable.

When the forces appear in the dynamics, two methods exist to derive the forces. The physical constraints may
be differentiated and combined with the system equations. The latter system can be simultaneously solved for the
accelerations and the forces (Smith, 1973) Alternatively, the accelerations can be eliminated and the forces derived
as functions of the state of the system and the inputs (Hemami & Wyman, 1979).

For the single rigid body system above, the procedure is as follows: According to Kane’s method, one adds three
translation degrees of freedom X to the hinge. Let X and Θ be the six generalized coordinates. Let Γ be the vector
force of constraint at the center of gravity (COG). Let T be the sum of all torques acting on the body - some being
independent couples and some, due to external forces, represented here by their resultant force acting at COG: Fi

Let

F∗r = [F∗1, F
∗
2, F

∗
3].

This means

F∗r = (JΩ̇ + Ω̆JΩ)Bi.

Similarly let
Fr = [F1, F2, F3].

Kane’s equations of motion, for rotation, are
F∗r + Fr = 0.

For the translation, we have
F∗t = −mẌ.

and

Ft = Ri + Γ.

Now, the constraints are imposed, i.e.,
Ẍ = 0.

From which it follows that Γ is equal to the negative of all applied forces.
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4. Multi-segment Rigid Body Systems

With the above development, the Lagrangian equations of motion for a multi rigid body system can be derived.
However, use of tensors for derivation and partial derivations may be necessary as the dimensions increase.

An alternative is to use K or NE dynamics in state space form, and add Θ̈ as Mealy outputs of the latter as stated
earlier. There is an inertial coordinate system (ICS) and every rigid body has its own body coordinate system
(BCS). All six sub modules have identical dynamics. The three inertial axes are front, left and vertically upwards
(a right hand coordinate system with roll, pitch and yaw.)

The state space of every rigid body consists ofΘ andΩ. The 12- dimensional equations of the sub module are given
in Appendix A (Hemami & Wyman, 2012; Hemami & Zheng, 2012). This system is supplied with muscle-like
actuators that are centrally commanded (Ajay & Pandy, 2007; Buchner, Hines, & Hemami, 1988; Winter & Stark,
2012; Hogan, 1984; Hemami, Barin, & Pai, 2006; Pai, 2010; Saraf, Ramesh, Lennon, & Roberts, 2006). Standard
controller design methods (Hemami & Stokes, 1983; Jalics, Hemami, & Clymer, 1997) and the inverse system
(Blajer, & Czaplicki, 2001) with the classical feedback structures (Smith, 1958; Zames, 1981) are applicable here.
Co-activation amounts to position and velocity feedback (Hemami, Barin, & Pai, 2006). Lyapunov stability can
be used to show that the system is stable in the regions of interest. We further assume the CNS produces the
trajectories.

4.1 The Sub modules Dynamics

A skeletal model of a human or animal could be constructed from connecting a large number of rigid bodies
(Amirouche, 1992; Wittenburg, 1989)

While the large system could be constructed with individual rigid bodies, a better compromise would be to con-
struct three rigid body sub modules first. The larger system would then be constructed from a number of such sub
modules. The movements of the sub modules may be conceived, programmed and/or implemented by parts of the
CNS. Therefore, the physical model of the skeleton may be in certain ways closer to the natural structures of the
CNS.

There are three different sub module types in this system. The simplest one is that of the upper extremities and
the neck and head. These three modules each have two internal forces of connection (constraint) and one external
force. The two lower extremities have two internal and two external forces as shown in Figure 1.

B

C

D

Γ3

Γ2

Γ1

Γ4

A

l 1

l

l 3

2

Figure 1. The three-link sub-module with two internal and two external forces. The lengths of the three segments
are, respectively, l1, l2 and l3.
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4.2 The Torso Sub Module

The torso sub module, as shown in Figure 2, has five external forces and two internal forces. Initially, the BCS
of the three links coincide with the ICS. The sequence of angles is roll, pitch, and yaw. The rotational space is
considered first, and it is assumed that the torque vector N, expressed in the BCS operates on the system.

Γ_12

Γ_13

Γ_14

Γ_15

Γ_16
S12

R13

S13

R12
S11

S13R

R11R

S13L

R11L

Figure 2. The three-link torso sub module with two internal and five external forces

The other two simpler sub modules (Hemami & Wyman, 2012; Hemami & Zheng, 2012) can be inferred from the
torso sub module.

The 36-dimensional states of positions and angular and translational velocities are

Z = [X′1,Θ
′
1, X

′
2,Θ

′
2,Θ

′
3, X

′
3]′ (10)

The velocity vector V is

V = [V ′1,Ω
′
1,V

′
2,Ω

′
2,V

′
3,Ω

′
3]′ (11)

A projection operator P eliminates the internal forces and maintains the five external forces.

4.3 Inter Sub Module Dynamics

The six sub module system is illustrated in Figure 3:
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Figure 3. The six-sub module biped with five internal and two external support forces.

• Module 1 is the torso, composed of three segments.

• Module 2 is the right leg.

• Module 3 is the left leg

• Module 4 is the right hand.

• Module 5 is the left hand

• Module 6 is the three-segment neck and head.

The external forces are Γ02 and Γ03 at the support points with the ground. The external forces on the torso are Γ12
and Γ13 for the left foot, Γ14 and Γ15 between the torso and the hands, and finally Γ16 between the torso and the neck
Two alternative models of the dynamics are considered. In the first model, the system remains of dimension 72, and
the formulation allows the joint forces and the forces of support to be available in the dynamics and continuously
observable (Figure 4).
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N

gravity

α,β

State

N

Γ

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

Figure 4. The block diagram of the six-sub module system

The alternative is to eliminate the five joint forces and reduce the dimension to 57. Only the two support forces
remain in the equations. For the 57-dimensional case, the torso sub module is of dimension 12 and the remaining
five sub modules each are of dimension nine. Both support forces go to zero when the system is in the air. The
system can also stand on one leg. For simplicity, we only consider the 57-dimensional case in this paper. Because
the neck, the hip and the shoulder joints all have three degrees of freedom, 15 holonomic constraints allow a
projection, similar to the one defined in the Appendix A, to be developed as sketched below.

The equations for the six sub modules are symbolically written:

JiV̇i = hi

where

H = [h1, h2, h3, h4, h5, h6]′ (12)

Initially all segments are vertical and all are aligned with the inertial coordinate system (ICS). The three segments
in every module are numbered, respectively, 1, 2 and 3, starting from the bottom. Every module has its own system
of inputs: Ni where

i = 1....6.

There are inter module inputs N12, N13, N24,N25 and N26 The translational motion of the torso module will be kept
in the system equations and represents the translation component of the system:

Xa = X22.

The translation of the system could be represented by the translation of one point of the six-sub module system.
We consider the movement of the center of gravity of the mid-torso segment for this purpose.

Suppose the dynamics of the six-sub module system are programmed by the same subroutine that provides the 12
equations of motion from the 36-dimensional equations of motion of the three-link. The 24 position and velocity
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variables in the equations of motion must be augmented to 36 equations as input to the subroutine. Therefore, a
more accurate block diagram is the one presented in Figure 5 where the augmentation and reduction of dimension
are marked and allow for inclusion of passive structures (Hemami & Hemami, 2014).

Reduction Module

α,β N

Module State

Augment 1/sSubmodules 1,...6 Q

d/dt(Q)

Γ

Figure 5. The six-sub module system where the expansion and reduction of the dimensinality are also marked to
accommodate passive structures.

Let the individual segments of each sub module be numbered by 1, 2 and 3 upwards. The variables in the system
have three subscripts: sub module number, segment number and attitude angle (1 for roll, 2 for pitch and 3 for
yaw.) With the subscripts ij, i refers to the sub module and j refers to the segment. The torso segments are labeled
11,12 and 13. The right foot, leg and thigh are labeled 21, 22 and 23. The left foot, leg and thigh are labeled
31, 32 and 33. The right upper arm, lower arm and hand are labeled 41, 42 and 43 - the arm is assumed to be
stretched upward vertically. The left upper arm, lower arm and hand are labeled 51, 52 and 53.The neck and head
segments are labeled 61, 62 and 63. For every one of the eighteen rigid bodies above, a 3 × 3 matrix Ai j defines
the transformation from of the rigid body’s BCS to ICS. We briefly introduce the contact constraints that relate
the individual sub module’s translation to that of the torso. The holonomic connection constraints that define the
projection operator, as is done in appendix A for the torso module, are described here for the whole module. Let
the translation of the torso module be Xm and let the remaining five translational vectors for the other five modules
be X22, X32, X42 , X52 and X62. It follows that the translations can be eliminated by the following projection:

Xm = Xm

X22 = Xm + A12R12 − A11S 2l + A11R1r − A23S 23 + A23R23 − A22S 22

X32 = Xm + A12R12 − A11S 21 + A11R1l − A33S 33 + A33R33 − A32S 32

X42 = Xm + A12S 12 − A23R23 + A23S 1r − A41R41 + A41S 41 − A42R42

X52 = Xm + A22S 12 − A23R23 + A23S 1l − A51R51 + A51S 51 − A52R52

X62 = Xm + A22S 12 − A23R23 + A23S 13 − A61R61 + A61S 61 − A62R62

(13)

In this projection, the translational degrees of freedom of the torso module are kept and the other 15 translation
degrees of freedom as well as the forces between the segments are eliminated. Only the contact forces of the feet
remain in the 57-dimensional dynamics. The first derivative of Eq.13 defines the projection operator for reducing
the dimension of the system from 72 to 57. The second derivative helps carry out the reduction and derivation
of the reduced order system equations. Let Ha be the latter projection operator. This operator is parsed into six
horizontal strips: the first 12 rows pertain to module 1, and the next successive nine rows sequentially are related
to modules 2, 3, 4, 5 and 6. These parsed strips are named, respectively,

Ha1,Ha2,Ha3,Ha4,Ha5,Ha6.

The inner product of each of these strips with H, as defined in Eq. 12, defines the dynamics of the individual sub
modules and their couplings.

To complete the model, an additional module is necessary to compute the forces of support while the contact with
the ground is in effect for either individual foot or for both feet. This step is well understood (Hemami & Wyman,
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1979, 1980). It is also to be noted that, up to this point ( namely, the development of the dynamic sub-modules) all
operations are of the inner product type and summation. Only integration of the dynamics and computation of the
support forces requires inversion of appropriate matrices.

5. Control and Support

A set of N moments of force act on the module. These inputs will be specified later. Each moment of force is
brought about by a pair of muscle-like actuators (Ajay & Pandy, 2007; Brooks, 1986; Kandel, Schwartz, & Jessell,
1991). Three pairs of muscles (Ajay & Pandy, 2007) control each of the three degrees of freedom, respectively, at
every joint. We assume the system is on tiptoe and the toe extensors and flexors that control the sagittal motion of
the toes can be replicated in the frontal and medial planes such that there is one pair of actuators for every degree
of freedom. Similarly we assume three pairs at the ankle and three pairs at the knee joint. The structures of the nine
pairs of muscles may not be anatomically correct for humans, but they simplify the modeling and simulations here.
The model here can be made more anatomically correct by adding a three-segment foot and more representative
musculature (Humphrey, 2009). For bi-articular (such as the gastrocnemius) and multi-articular (such as the rectus
femoris) muscles, modeling difficulties arise partly because the function of many such intertwined structures are
not well understood or articulated. Slings and caps can be added here.

The precise understanding of the function of the cap is necessary in order to formulate the action of arbitrary
muscles in the dynamics of any musculo-skeletal system. Briefly, if one uses Lagrangian dynamics, the incremental
work dW performed by an actuator on the system is given by F.dl where F and dl are, respectively, the muscle
force and the incremental change in the length of the muscle. Let Θ be the vector of the totality of the angles of the
skeletal elements. It follows that the effect of the force F can be entered in the dynamics as:

(∂l/∂Θ)F.

Therefore, it is important to be able to specify the dependence of the length of the muscle on θ. To clarify this
point, we consider a sagittal plane approximation to a sling where an actuator spans the toes, the bottom of the foot
and around the heel. It is connected to the tendon of another actuator as shown in Figure 6.

A

B

dl1

dl2

dl3

Θ

Θ

1

2

Figure 6. An actuator spanning two joints and, at one end, connected to a tendon

There are three links shown in Figure 6. Link one is at angle zero. As links 2 and 3 rotate, two caps accommodate
the change of direction for the tendon of the muscle. The change of length of the muscle could possibly depend on
a number of angles θ. Let the radius of cap 1 be r1, the radius of cap 2 be r2 and let the change of the tendon shown
in the Figure be ∆l3.
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The incremental change of the length of the muscle is

∆l1 + ∆l2 + ∆l3

or
∆l = r1θ1 + r2(θ2 − θ1) + ∆l3,

where ∆l3 could potentially depend on several more angles of the system.

The first term in the above expression can summarize one function of the five flexors: flexor digitorum brevis,
quadratus plantae, flexor hallucis brevis, flexor digiti minimi brevis and lumbricales (Warfel, 1978). When the toes
are firmly in touch with the ground and the limb is unloaded, the action of lifting the heel is facilitated and can be
fast due to the collective action of these five muscles. This means there will be a moment of force acting on the
foot to plantar-flex it, and the heel lifts easily due to the simultaneous effort of these five flexors.

This action amounts to having available feedback and/or feed-forward by these five muscles for the purpose of
lifting the heel when the lower limb is not loaded. These feed-backs amount to state feedback in the system
theoretic sense: it is shown below that linear state feedback stabilizes the attitude of the rigid body system in
physical space.

For attitude control (Ren, Jones, & Howard, 2006; Honarvar & Nakashima, 2012), gravity compensation (Minetti,
Cisotti, & Mian, 2011), inclusion of constraints and actuation (Pope, Crowninshield, Miller, & Johnson, 1976;
Gruber, Ruder, Denoth, & Schneider, 1998), it is necessary to relate the rigid body attitude (in BCS) to the ICS
system ( see Eq. 3):

6. Computational Experiment

The objective is to carry the arm through a point to point movement, such as pointing (Soechting & Flanders, 1989)
and directing music, and then carry the reverse movement to get the arm back to its original position.

The arm has nine degrees of freedom and the motion is observed imagined or intended in the ICS system. A neural
network (Arbib, Erdi, & Szentagothai, 1998; Bullock, Grossberg, & Gyenther, 1996; Kandel, Schwartz, & Jessell,
1991) with two populations of neurons is designed (Houk, 1995; Ajemian & Bullock, 2000; Hemami & Dariush,
2012) to transform the ICS trajectory to the trajectories of four of the nine Bryant angles. All other Bryant angles
and velocities are zero. The fingers position in ICS is described by

Xp = A1L1 + A2L2 + A3L3 (14)

Suppose this motion is, arbitrarily, carried out by pitch and yaw of the arm, yaw of the lower arm and yaw of the
hand which is assumed to be the same as the yaw of the arm. This reduces the computational problem to three
unknown angles that are the solution of the following three equations: cos(θ12)cos(θ13)

sin(θ13
−sin(θ12)cos(θ13)

 l1 +
 cos(θ22

0
−sin(θ22

 (l2 + l3) = Xp (15)

Given a desired Xp(t), expressed in ICS, which is received for example from visual observation, the task of the
central controller is to solve for the three Bryant angles in Eq. 15 above as functions of time. We make use of
the three neural population circuits described in Hemami and Dariush (2012) to construct the Bryant angles from
Xp(t). Suppose the Bryant angles, in a simpler form and for two seconds, are parameterized as:

θ12 = −pi/4 + (pi/8) ∗ sin(pi ∗ t)
θ13 = pi/4 ∗ cos(pi ∗ t)
θ22 = pi/8 ∗ cos(pi ∗ t)
θ32 = pi/8 ∗ cos(pi ∗ t)

The arm motion was simulated to demonstrate the feasibility of the three-link sub modules and the control strategy
of co activation (Hogan, 1984). All the physical parameters are listed in Appendix B. The four Bryant angle inputs
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and the actual four Bryant outputs of the system are shown in Figure 7. The desired trajectory of the tip of the
fingers, and the actual trajectory of the fingers in the ICS system are shown in Figure 8.
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Figure 7. The four Bryant input angles (arm pitch and yaw and lower arm and hand yaw angles) are shown on the
left side. The same angles as outputs of the three-link system are shown on the right side.
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Figure 8. The desired trajectory of the hand and the actual trajectory in the ICS are shown.

7. Discussion and Conclusions

We have contrasted different state space formulations for a rigid body. These state space formulations can be
extended to multiple rigid body systems where dimensionality reduction procedures are easy to implement by

57



www.ccsenet.org/mer Mechanical Engineering Research Vol. 6, No. 1; 2016

projection operators. With the addition of Mealy outputs, the K or NE simulation programs can be adapted to
compute Lagrangian outputs.

We have developed a six sub module computational tool for studying the machinery, control and coordination
of human movement. For simplicity, all joints in the modules and between modules were assumed to have three
degrees of freedom. Anatomically accurate systems of muscles can be added to this model. One may vary the
number of muscles, disable them, and try different synergies. One can compute internal and support forces to
compare with available experimental measurements. One may add more modules to have a more accurate spinal
column, add modular tail structures for modeling animals as well as hand, foot, digit and toe modules. For testing
the six-sub modules system, a pair of agonist-antagonist actuators were added for each of the 54 rotational degrees
of freedom. The system can be supplied with a variety of sensory modalities: vision, vestibular, and tactile for
more comprehensive and instructive models. Parallel computations (Hebb, 1949; Adeli, 1992; Singer, 2000) can
be implemented to make the system more physiologically realistic.

The current model has two points of contact, with the ground providing support. This means all the movements are
on tiptoe and mass-less toes provide the support. The human foot is very complex. One of the many challenges is to
identify, define and precisely describe a three-link three-dimensional module for each foot (Humphrey & Hemami,
2010). Specifically, one of the many problems in formulating the foot is to articulate the dynamics of the joint
between the toes and the metatarsals, sometimes refereed to as a sling. Briefly stated, one of the simpler functions
of the sling is to change the direction of the force of the muscle or several muscles. This is similar to the function
of the kneecap for changing the direction of action of the rectus femoris’ heads at the knee (Rasch & Burke, 1978;
Warfel, 1978). The mechanism is needed for almost all bi-articular muscles that span a joint or segment.

Philosophically speaking, one may cite some advantages for this computational method. The ideas presented here
may be, pedagogically, superior in teaching rigid-body dynamics. They yield to more efficient and labor-saving
methods of simulation and system integration. Finally, many internal states can be added and are candidates to
be traced in the CNS of natural systems, and, therefore, help to unravel some of the magnificence of the brain
mysteries in signal processing.
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Appendix A, The Torso Model

Consider a three-body system with five external forces as shown in Figure 2. The first body is the lower torso. The
second one is the middle torso. The third body is the upper torso. Let bodies one and two be connected together at
one point. Let bodies two and three be connected at one point. There are seven forces involved in the torso system.
Five are external and two are internal. Let external forces Γ12 and Γ13 be external forces applied, respectively, to the
lower torso by the right and left thigh. Let Γ14 and Γ15 be the forces exerted on the upper torso by the arms. Let Γ16
be the force exerted on the body by the neck-head complex. There are also two forces Γ2 and Γ3 at the connection
points between lower and middle torso and between the middle and upper torso. We provide a first projection here
to eliminate the two internal torso forces.

Two steps are carried out here:

Step 1: Specify the sub modules equations in a format that is common to all six sub modules. Step 2: Project the
above equations onto the 12-degree-of-freedom space where the internal forces of constraint are eliminated.

Let the coordinates of the contact points of the thighs (right and left) in the lower torso be R2r and R2l, respectively.
Let the coordinates of the contact point of the lower torso with the middle torso, in the lower torso coordinate
system, be S 11. Consider the mid-torso segment. The two contact points with the lower and upper torso points are,
similarly R12 and S 12. Let the coordinates of the contact points of the upper torso with the middle torso, neck and
right and left arm be, respectively, R13, S 13, S 1ri, and S 1le.

Let X j, V j, Θ j and Ω j be, respectively, the translational and rotational states of the segments of the torso

j = 1, 2, 3
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segments. Let G j be the vector of gravity for body j. Let N j be the moment of input forces acting on body j. Let
the internal constraint forces between the mid-torso and the lower and upper torso be, respectively, Γ2 and Γ3. The
Newton-Euler equations of motion for the three segment torso, as free bodies, are:

Ẋ1 = V1

M1V̇1 = G1 + Γ12 + Γ23 − Γ2

Θ̇1 = B1(Θ1)Ω1

J1Ω̇1 = f (Ω1) + N1 + ˘R1rAT
1 Γ12 + ˘R1lAT

1 Γ13 − S̆ 11AT
1 Γ2

(16)

The second body represents middle torso

Ẋ2 = V2

M2V̇2 = G2 + Γ2 − Γ3

Θ̇2 = B2(Θ2)Ω2

J2Ω̇2 = f (Ω2) + N2 + ˘R12AT
2 Γ2 − ˘S 12AT

2 Γ3

(17)

The equations of the upper torso with the three connections to the arms and the neck are

Ẋ3 = V3

M3V̇3 = G3 + Γ3 − Γ14 − Γ15 − Γ16 (18)
Θ̇3 = B3(Θ3)Ω3

J3Ω̇3 = f (Ω3) + N3 + ˘R13AT
3 Γ3 − ˘S 1rAT

3 Γ14 − ˘S 1lAT
3 Γ15 − ˘S 13AT

3 Γ16

Let
Γ = [Γ12, Γ13,Γ2,Γ3,Γ14,Γ15,Γ16]′.

With these definitions, the 18 Newton-Euler equations can be summarily written as

J118×18V̇ = N1 + f1 +G1 + H1cΓ (19)

where V is defined in Eq. 11, and where the coefficient of Γ is an 18 × 21 matrix H1c and where N1, f1 and G1 are
18-vectors.

H1c =



I3×3 I3×3 −I3×3 03×3 03×3 03×3 03×3
˘R1rAT

1
˘R1lAT

1 − ˘S 111AT
1 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 −I3×3 03×3 03×3 03×3

03×3 03×3 ˘R12AT
2 − ˘S 12AT

2 03×3 03×3 03×3
03×3 03×3 03×3 I3×3 −I3×3 −I3×3 −I3×3

03×3 03×3 03×3 ˘R13AT
3 − ˘S 1rAT

3 − ˘S 1lAT
3 − ˘S 13AT

3


. (20)

Let Z be the 18-dimensional vector of translational and rotational positions states, defined by Eq. 10: Let the center
of gravity of the mid-torso segment be Xm = X2 and define vector W:

W = [ΘT
1 , Xm

T ,Θ2
T ,ΘT

3 ]T .

The projection from Z to W

Z = P2(W).
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allows one to derive the equation of motion for the torso module. By this projection, six degrees of translational
freedom as well as Γ2 and Γ3 are eliminated. The projection P is derived from the six holonomic connection
constraint equations

X1 = Xm + A2R12 − A1S 11. (21)
X2 = Xm

X3 = Xm + A2S 12 − A3R13.
Θ1 = Θ1

Θ2 = Θ2

Θ3 = Θ3

We differentiate Eq. 22 with respect to time to derive the projection operator. The result of the differentiation is as
follows: 

V1
V2
V3
Ω1
Ω2
Ω3


= (H1a)


Ω1
Vm

Ω2
Ω3

 (22)

For convenience, let

Vn = [Ω1,Vm,Ω2,Ω3]′

The 18 × 12 matrix H1a is

H1a =



+A1 ˘S 11 I3×3 −A2 ˘R12 03×3
03×3 I3×3 03×3 03×3

03×3 I3×3 −A2 ˘S 12 +A3 ˘R13
I3×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3


.

Differentiating Eq. 22 once more, with respect to time, renders



∂V1/∂t
∂V2/∂t
∂V3/∂t
∂Ω1/∂t
∂Ω2/∂t
∂Ω3/∂t


= (H1a)


∂V1/∂t
∂Ω1/∂t
∂Ω2/∂t
∂Ω3/∂t

 + H1b

The 18-vector H1b is

H1b =



−A1(Ω̆1)2(S 11) + A2(Ω̆2)2(R22)
03×1

(+A2(Ω̆2)2)(S 12) − A3(Ω̆3)2R13
03×1
03×1
03×1


.
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parameter symbol value unit
mass of upper arm m1 2.40 kg
mass of forearm m2 2.00 kg
mass of hand m3 1.20 kg
principal moment of inertia j41x 0.0080 kg m2

principal moment of inertia j41y 0.0080 kg m2

principal moment of inertia j41z 0.0010 kg m2

principal moment of inertia j42x 0.0070 kg m2

principal moment of inertia j42y 0.0070 kg m2

principal moment of inertia j42z 0.0040 kg m2

principal moment of inertia j43x 0.0070 kg m2

principal moment of inertia j43y 0.0070 kg m2

principal moment of inertia j43z 0.0050 kg m2

cog of upper arm k1 0.14 m
cog of forearm k2 0.13 m
cog of hand k3 0.07 m
l1 of upper arm l1 0.27 m
l2 of forearm l2 0.25 m
l3 of hand l3 0.16 m
gravity g 10.0 m/s2

Substitution of Eq. 23 in Eq. 19 and multiplying both side by H1T
a results in the 12-dimension torso dynamics As

a consequence of the reduction, Γ2, Γ3 get eliminated. The 12-dimensional equations of motion are

H1a
T J1H1aV̇n = H1a

T (N1 + f1 +G1 + H1cΓ) − H1a
T J1H1b. (23)

The 12 × 21 matrix

Hd = H1T
a H1c

is the coefficient of the seven external forces

H1d =


( ˘−S 1l + R1r)AT

1 ( ˘−S 11 + R11)AT
1 03×3 03×3 03×3 03×3 03×3

I3×3 I3×3 03×3 03×3 −I3×3 −I3×3 −I3×3
− ˘R12AT

2
˘R12AT

2 03×3 03×3 − ˘S 12AT
2 − ˘S 12AT

2 − ˘S 12AT
2

03×3 03×3 03×3 03×3 ( ˘R13 − S 1r)AT
2 ( ˘R13 − S 1l)AT

2 ( ˘R13 − S 13)AT
2



As can be seen from matrix H1d, columns 3 and 4 are all zero. This means forces Γ2 and Γ3 are eliminated. For the
leg modules, with one force on the bottom and one force on the top of the three link, the matrix H1d will have only
two columns similar to the columns one and six. For the arm and head modules, there will be only one column in
the corresponding H1d similar to column one of H1d, above.

Appendix B, Numerical Parameters

The physical parameters of the arm are given in Table 1. The muscular gains are given in Table 2 24 The upper
left 3 × 3 matrix represents the amplification factor of three pairs of muscles that move the arm about a stationary
shoulder. The middle 6 × 3 right side of the matrix represents the action of the three pairs of muscles at the wrist
that move the hand relative to the forearm.

The linear viscosity of the muscle, in the first phase, is assumed to be 0.2 of the gain of that muscle.

Table 1. Physical Parameters of the Arm
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Gain =



10 0 0 −2 0 0 0 0 0
0 10 0 0 −2 0 0 0 0
0 0 10 0 0 −2 0 0 0
0 0 0 2 0 0 −1.2 0 0
0 0 0 0 2 0 0 −1.2 0
0 0 0 0 0 2 0 0 −1.2
0 0 0 0 0 0 1.2 0 0
0 0 0 0 0 0 0 1.2 0
0 0 0 0 0 0 0 0 1.2


(24)
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