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Abstract 
Based on the approaches of Gibbs’s dividing surface and Rusanov’s dividing line, the wetting behaviors of 
cylindrical droplets that at equilibrium are sitting inside a homogeneous and smooth regular triangular prism filled 
with gas in three convex corners are studied. For the three-phase system, which is composed of solid, liquid and gas 
phases, a generalized Young equation for cylindrical drops in a homogeneous and smooth regular triangular prism 
imbued with gas within three apex corners has been successfully derived including the effects of the line tension.  
Keywords: generalized Young equation; cylindrical droplet; line tension; regular triangular prism; convex corner 
1. Introduction 
Wetting is one of the most important behaviors of solid surfaces and plays a critical role in daily lives and industrial 
applications, such as self-cleaning windows and antifouling surfaces (Li & Amirfazli, 2005; Ebert & Bhushan, 2012; 
Li et al., 2010), nanofluids (Balakin et al., 2015), carbon nanotubes (Ghadyani & Öchsne, 2015), biomaterials (Rupp 
et al., 2014), and evaporation (Li et al., 2014). The Wettability of a solid by a liquid may be represented by using the 
contact angle between the gas-liquid and solid-liquid interfaces. For a chemically homogeneous and smooth flat 
surface, the contact angle is given by Young’s equation (Young, 1805) 

  cos SG SL
Y

LG

σ σθ
σ

−
=    (1) 

where SGσ , SLσ  and LGσ  are the interfacial tensions of solid-gas, solid-liquid, and liquid-gas, separately. 
The wetting of liquids on a rough surface in general is investigated by one of the following two models: in the 
Cassie model (Cassie & Baxter, 1944), the drop remains suspended beyond the asperities of the solid surface, and in 
the Wenzel model (Wenzel, 1936), the drop penetrates into the asperities of the corresponding surface. The 
aforementioned Young equation, the Cassie and Wenzel models build the theoretical foundation of wetting studies.  
In the past two decades, scholars have shown great interest in the wetting properties of solid surfaces and carried out 
a great deal of related studies (Patankar, 2003; Dumitrascu & Borcia, 2006; Boinovich & Emelyanenko, 2011; Zhu 
et al., 2013; Yano & Nishino, 2015). However, until now, there is still not the generalized Young’s equation for 
cylindrical droplets inside a homogeneous and smooth regular triangular prism filled with gas in three apex corners. 
Therefore, the purpose of this paper is to thermodynamically derive a generalized Young equation for contact angles 
of cylindrical droplets within a homogeneous and smooth regular triangular prism, which is imbued with gas in three 
corners.  
2. Calculating the Systematic Free Energy 
Considering a cylindrical drop (phase L) with single component in contact with its gas (phase G), placed within a 
homogeneous and smooth regular triangular prism (phase S) with both gas in three corners and sides of length L, as 
illustrated in Figure 1. 
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Figure 1. A cylindrical droplet in a homogeneous and smooth regular triangular prism filled with gas  

within three corners 
 
Using the method of Gibbs’s dividing surface, the system shown in figure 1 contains six phases: liquid phase, gas 
phase, solid-liquid interface, solid-gas interface, liquid-gas interface, and the three-phase line. And then, the total 
Helmholtz free energy F can be expressed as 
 L G SL SG LG SLGF F F F F F F= + + + + +  (2) 
where LF , GF , SLF , SGF , LGF  and SLGF  being the Helmholtz free energies of the above six phases, respectively, 
the subscripts being the quantities relate to the homologous phases, interfaces along with the triple phase line (for 
example, the subscripts G and SL mark the gas phase and solid-liquid, respectively), separately. 
The Helmholtz free energies of various phases are written as (Rowlinson & Widom, 1982) 
 L L L L LF p V Nμ= − +   (3) 
 G G G G GF p V Nμ= − +  (4) 
 SL SL SL SL SLF A Nσ μ= +   (5) 
 SG SG SG SG SGF A Nσ μ= +  (6) 
 LG LG LG LG LGF A Nσ μ= +   (7) 
 SLG SLG SLG SLGF kL Nμ= +    (8) 
where p is the pressure, V is the volume, μ  is the chemical potential, N  is the mole number of molecule, A  is the interfacial area, σ  is the interfacial tension, k is the line tension, and L  is the length of the triple phase 
line. 
Ignoring the effects of both the gravity and the other forces or fields, therefore, the balanced shape of the cylindrical 
droplet in Figure 1 is that of combining a hexagonal prism and three cylindrical fractions, each similar to a 
cylindrical cap. 
The liquid volume LV  is 

 
( )2 2 2 21 coscos 3 sin 3 sin cos

2 sinLV H L R L R Lαα β β β β
α

= − + −
  

(9)
 

here H , L  and α  are the side length, height and semiapex angle of the regular triangular prism, separately, R  
is the radius of the cylindrical droplet, and β  is the apparent contact angle. 
The total systematic volume tV  is 
 t L GV V V= +  (10) 
The liquid-gas interfacial area LGA is 
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  6LGA RLβ=  (11) 
The solid-liquid interfacial area SLA is 

 sin3 6
sinSLA HL RL β

α
= −  (12) 

The sum tA of the solid-liquid and solid-gas interfacial areas is 
 t SL SGA A A= +  (13) 
The length of the three-phase line is 
 6SLGL L=

 
(14) 

Using Eqs. (9-14) and Eqs. (3-8) before, we obtain 

 ( )2 2 2 21 coscos 3 sin 3 sin cos
2 sinL L L LF p H L R L R L Nαα β β β β μ

α
 = − ⋅ − + − +  

 (15) 
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  = − ⋅ − − + −   
+   

(16) 

 sin3 6
sinSL SL SL SLF HL RL Nβσ μ

α
 = ⋅ − + 
 

  (17) 

 sin3 6
sinSG SG t SG SGF A HL RL Nβσ μ

α
 = ⋅ − + + 
 

  (18) 

 6LG LG LG LGF RL Nσ β μ= ⋅ +  (19) 
 6SLG SLG SLGF L k Nμ= ⋅ +  (20) 
     Now substituting the above Eqs. (15-20) into Equation (2), we have 
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 = − − ⋅ − + −  
 − ⋅ + ⋅ + − ⋅ − + ⋅ + ⋅ 
 

+ + + + + +

 (21) 

3. Derivation of a Generalized Young’s Equation 
The grand thermodynamic potential Ω of the above three-phase system can be written as 

 i i
i

F NμΩ = −  (22) 

where the sign i  stands for the phase number of the investigated system. 
Putting Equation (21) into Equation (22) leads to 

 
( ) ( )

( )
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2 sin

sin6 3 6 6
sin
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G t LG SL SG SG t

p p H L R L R L
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αα β β β β
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α

 Ω = − − ⋅ − + −  
 − ⋅ + ⋅ + − ⋅ − + ⋅ + ⋅ 
 

 (23) 

By minimizing the grand potential Ω  with respect to the radius R , we obtain 

 0d
dR
Ω  =     (24) 

Due to the interfacial tensions SLσ  and SGσ  independent of dividing surfaces, there are the following constraints 
(Rusanov et al., 2004) 

  0, 0SL SGd d
dR dR
σ σ   = =      

  (25) 

Substituting Equation (23) into Equation (24) and using Equation (25), we can write 
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    − − ⋅ + ⋅ + ⋅         
    + − ⋅ + ⋅ + ⋅ =        

   

  (26) 

The following expressions can be obtained from Figure 1 
 sin sinR hβ α=   (27) 
 cos cosh R OA constα β+ = =   (28) 

 
2

γ α β
πθ γ

= +

 = +     

(29) 

and 

 
( )
( )

sin
cos

d
dR R

α ββ
α β
+

= −
+

   
(30) 

 
( )

1
cos
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= −
+

   
(31) 

According to Eqs. (9, 11, 12, 14, 30, 31), there have 

 6LdV RL
dR

β  =       
(32) 

 
( )
( )

sin
6 6

cos
LGdA

L L
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α β
β

α β
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(33) 

 ( )
6

cos
SLdA L

dR α β
  =  +     

(34) 

 0SLGdL
dR

  =      
(35) 

There is a general Laplace equation applicable to the cylindrical liquid drop in Figure 1 (Rowlinson & Widom, 
1982) 

 LG LG
L G

dp p
R dR

σ σ − = +      
(36) 

Putting Eqs. (32-36) into Equation (26) yields 

 ( ) ( )cos
sin SL SG

LG LG

dk
dR

α βσ σα β
σ σ

+−  + = + ⋅       
(37)

 

 

Substituting Equation (29) into Equation (37) arrives at 

 sincos SG SL

LG LG

dk
dR

σ σ θθ
σ σ

−  = −       
(38) 

After comparing Equation (1) with Equation (38), we get 

 sincos cos Y
LG

dk
dR

θθ θ
σ

 = −        
(39) 

Therefore, for cylindrical droplets sitting within a homogeneous and smooth regular triangular prism filled with gas 
in three corners, Equation (39) is the generalized Young’s equation that can be applied to random interfaces dividing 
the liquid and gas phases. 
4. Conclusion 
In this paper, on the basis of the concepts of Gibbs’s dividing surface and Rusanov’s dividing line, taking the 
influences of the line tension into account, we thermodynamically investigate the wetting characteristics of 
cylindrical droplets in a homogeneous and smooth regular triangular prism, which is filled with gas within three 
apex corners, and derive the corresponding generalized Young equation.  
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