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Abstract

Solutions of the problems of a viscoelastic dynamic contact between smooth curvilinear surfaces of two solid
bodies by the application of the “Method of the specific forces” have been given in the article, and the new
conception for the definition of the elastic and the viscous forces in the common case of dynamics of a
viscoelastic contact is proposed here by the further development of this method. Essence of this method is that,
the forces of viscosity and the forces of elasticity can be found by integration of the specific forces acting inside
an elementary volume of the contact zone. It is shown here, that this method allows finding the viscoelastic
forces for any theoretical or experimental dependencies between the distance of mutual approach of two solid
bodies and the diameter of the contact area. Also, the derivation of the integral equations of the viscoelastic
forces, the equations for pressure in the contact is presented. Viscoelastic dynamic contacts between two
spherical bodies, and between a spherical solid body and a semi-space at impact have been examined. Work and
Energy in the phases of compression and restitution, and at the rolling shear have been derived. Approximate
solutions for the differential equations of movement (displacement) by using the method of equivalent work have
been derived. Equations for the normal contact stresses have been obtained. Also, equations for kinematic and
dynamic parameters of the viscoelastic collision have been derived in this article. Examples of the comparison of
theoretical results and conclusions have been given in the paper.

Keywords: viscoelastic forces, method specific forces, elementary distributed axial loads, geometry contact
area, dynamic modules, dissipative energy, viscoelastic parameters, method equivalent work

1. Introduction

The objective of this paper is the further development of the application of the “Method of the specific forces
(MSF)” for solutions to the problems of a viscoelastic dynamic contact between smooth curvilinear surfaces of
two solid bodies. The new conception is proposed here, how to find the elastic and the viscous forces by an
integration of the specific forces in the boundaries of the contact area, which can be found by considering of the
geometry of the contact. This method has been already used by author for case of the collision between a
spherical solid body and a semi-space (Goloshchapov, 2003, 2015).

It is assumed here that the surfaces of contact are smooth and in this case we are not considering the influence of
roughness on the contact forces, and the initial velocities of contact Vyand V7 is less than the effective sound
speed in the volume of deformation (Figure 1). Also the effect of the adhesive forces and a plastic deformations
have not been considered in this paper.

As we know, the mechanics of an elastic contact problem between two smooth surfaces have been studied yet in
the 19-th century by Herts (1882, 1896) and Boussinesq (1885), and then later, for example, it was examined by
many others researchers, such as: Bowden and Tabor (1939); Landau and Lifshits (1944); Timoshenko and
Goodier (1951); Archard (1957); Galin (1961); Sneddon(1965); Greenwood and Williamson (1966); Johnson,
Kendall and Roberts (1971); Derjaguin, Muller and Toporov (1975); Bush, Gibson and Thomas (1975); Tabor
(1977); Johnson (1985); Webster and Sayles, 1986; Stronge (2000); Persson, Bucher and Chiaia (2002);
Wriggers (2006); Hyun and Robbins (2007). Also a viscoelastic contact between smooth and rough curvilinear
surfaces of two solids already have been researched very widely and their results was published in many
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different manuscripts (Mindlin,1949; Radok. 1957; Hunter,1960; Goldsmith, 1960; Galin, 1961; Lee, 1962;
Graham, 1965; Ting, 1966; Greenwood & Williamson, 1966; Simon, 1967; Jonas, 1982; Padovan, &
Paramadilok, 1984; Johnson, 1985; Brilliantov, 1996; Brilliantov, Spahn, Hertzsch, & Poeschel, 1996; Ramirez,
Poeschel, Brilliantov, & Schwager, 1999; Stronge, 2000; Barber & Ciavarella, 2000; Goloshchapov, 2001, 2003;
Laursen, 2002; Dintwa, 2006; Carbone, Lorenz, Persson, & Wohlers, 2009; Harrass, Friedrich, & Almajid, 2010;
Persson, 2010; Cummins, Thornton, & Cleary, 2012; Carbone & Putignano, 2013; Popov, 2015). In all these
researches for a finding of the viscoelastic forces and stresses, the traditional theories and methods usually have

been applied. But, in this paper, the novel theoretical and practical principals have been used for finding these
forces and stresses.
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Figure 1. Illustration of the mutual approach between two curvilinear surfaces of two solid bodies along the axis
X relative to the initial point of contact 4
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The illustration of the mutual approach between two curvilinear surfaces of two solid bodies along the axis X
relative to the initial point of contact 4 is depicted in the Figure 1. Here is not shown the displacement of the
bodies along the axes Z and Y.

It is obviously that during the time of a dynamic contact, in the initial point 4, the curvilinear surfaces are
moving relative to each other with the normal relative velocity Vyand the tangential relative velocity V;between
them under action of the normal force F, and the tangential shear force .. Also let: 7 and F7. are the tangential
forces along axes Y and Z; x is the size of the mutual approach of the bodies along the axis X; r is a current radius
of the contact area; A, is the depth of the contact surface in the plane XAY , or other words it is the depth of
indentation of the more hard body into the surface of more soft body; /. is the depth of the contact surface in the
plane XAZ (This size is not shown in the Figure 1); X, and X, are normal compression deformations of the
contacting surfaces relative to the initial point of the contact 4; R;,and R,,are the radiuses of curvature of the
contacting surfaces on the border of contact area in the plane XAY; V;, and V- are the projections of the tangential
relative velocity V; by axes Y and Z, or they are the tangential relative velocities of the displacement of surfaces
of bodies along axes Y and Z; a is the big axis of an elliptic (oval) contact area; b is the small axis of an elliptic
(oval) contact area; O; and O:are the centres of curvature of the contacting surfaces in the initial point of contact
A; Ripand Ry are the radiuses of curvature of the contacting surfaces on the border of contact area in the plane
XAZ.

It is obvious, that in a general case the area of contact is taking the shape of an oval or an ellipse, and in the same
time, the contact surface takes the identical shape with the harder surface, and the surface, which has less
hardness slips by a surface of the harder body. It is a micro-slip and we do not take in account the energy of this
dissipative process in this paper. You can say that in process of sliding deformation under action of the tangential
force, the area of contact does not take the elliptical shape, but it is the oval or other asymmetric figure.

But indeed, if the tangential force equal zero the contact area takes the right elliptical shape, but in the case of
sliding deformation under the action of the tangential force, the elliptic shape of the contact area is transformed
in the oval. Therefore, we can suppose, since the normal force stays same independently of the action of the
tangential force, the normal contact pressure (or the normal contact stress) is not changed and stays same, and
therefore the size of square of the contact is not changed too. According to this statement, we approximately can
consider the area of contact like having the elliptical shape during all the contact time. Also in the case of an
impact between the contact surfaces, when the rolling shear between them has place, we can state that the area of
contact approximately keeps the elliptical shape too. Moreover, as we will see further, it does not matter, the area
of contact is an ellipse or it is an oval, in the both cases, the derivation of the sizes of the contact area can be
done in the same manner.

The viscoelastic forces can be found as the sums of the elastic forces and the viscous forces:
Fn = an + Fcn
Fzy = F,”y + F”y )
Fzz = Fbrz + Fcrz

Where:Fcn is the normal elastic force; F| b, is the normal viscous force; £ by is the tangential viscous

force by axis ¥; [, is the tangential elastic force by axis ¥; F,_ is the tangential viscous force by axis Z;

F -z 1s the tangential elastic force by axis Z.

The general tangential force can be found as sum

_ 2 2
F, = 1/F2y + F o

As it is known (Brilliantov et al., 1996; Goloshchapov, 2003, 2015; Jonson, 1985; Mindlin, 1949; Ramirez et al.,
1999; Schafer et al., 1996; Schwager & Poschel, 2007; Stronge, 2000; Thornton, 2009 we can write all these
viscoelastic forces, simply as:

F, =bx F =cx

F,=by F,=cy 3)
F,.=bz F,_=cz
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Where ¢, c,, b, by, b_ are variable parameters depending of the displacement x, y and z , and where: bx is
the effective parameter of viscosity (damping parameter), €. is the effective parameter of elasticity (stiffness);
by, bz are the effective parameters viscosity at a shift; ¢,, C, are the effective parameters of elasticity
(stiffness) at a shift. x,),z are the relative displacements (deformations) between contacting bodies or
between contacting surfaces in the initial point 4; ),X,Z are relative velocities of displacements

(deformations) between contacting bodies or between contacting surfaces in the initial point 4.

In the past many old papers and others published recently (Mindlin, 1949; Simon, 1967; Johnson, 1985 ;
Goloshchapov, 2003, 2015; Cundall & Strack,1979; Hertzsch, Spahn , Schafer, Dippel, & Wolf, 1996; Ramirez,
Poeschel, Brilliantov, & Schwager, 1999; Stronge, 2000; Roylance, 2001; Brilliantov & Poeschel, 2004; Makse,
Gland, Jnohnson, & Schwartz, 2004; Schwager & Poschel, Van Zeebroeck, 2005; Dintwa, 2006; Schwager &
Poschel, 2007, 2008; Cheng, Subic, & Monir Takla, 2008; Becker, Schwagerand, & Pdschel, 2008; Schwager &
Poschel, 2008; Thornton, 2009; Cummins, Thornton, & Cleary, 2012) have been used traditional theoretical
rheological models, such as the “Linear Spring Dashpot Model”- (LS+D), the “Hertz Mindlin Spring Dashpot
Model”- (HM+D), and the “Discrete Elements Method” - (DEM) and others . In all of these methods and
models, for the definition of the effective parameter of elasticity €, (Some authors name it like a stiffness, or
spring parameter), the Hertz’s theory of elastic contact between two surfaces (Landau and Lifshitz, 1944, 1965)
has been used. Also, for the purpose of finding the tangential forces, the coefficient of friction was taken as a
constant value. The more comprehensive analysis and review of these already known models and methods can
be found, for example, in the monographs of the authors, such as: Stronge (2000); Van Zeebroeck (2005);
Dintwa (2006); Li (2006). But, the most basic problem in the finding of the mechanical dynamic parameters of
viscoelasticity ¢, C,, bx, by in the equations (3) is that, they are not the constant values. They all are variable
magnitudes, because all dynamic mechanical and physical properties of the materials depend on dynamic
conditions of loading (displacements, a velocity and a frequency) and temperature. But, the Hertz theory allows
only the finding the normal elastic force. The existing methods still cannot give the complete answer, how these
nonlinear parameters of viscoelasticity can be found for the practical application by using the dynamic modules
of elasticity and viscosity, which usually can be found by using the known methods (Ferry, 1948, 1963; Moore,
1975; Van Krevelen 1972; Nilsen, 1978, 1994) For example as we know according the Hertz theory (Landau &

Lifshtz, 1944, 1965) for the contact of two spherical surfaces ¢ :ﬂER”zx”z. Where E is effective
3

elasticity modulus, R is the effective radius of contact curvature. As we can see, the stiffness cx is the nonlinear
function of displacement x, but we still have a problem in definition of others parameters c,.C,, bx,bv, bz,
which are the variable nonlinear functions too.

And also in already existing researches, the coefficient of friction usually is taken like a constant value for the
purpose of finding the tangential forces, but according to Equations (1), (2) and (3) it can be defined as follows:

f :i — \/(FZ”J’ +me)2 +(Fb22 +Fczz)2 _ \/(by_).}'i_cyy)z +(b22+CZZ)2
F Fvcn +Fb

n

“

cx+bx

n

As we can see from this equation, the coefficient of friction is not a constant value, but it changes during the time
of contact, because the dynamic contact between two bodies is a non-equilibrium process, and all dynamic
mechanical and physical properties of the materials depend on dynamic conditions of loading and temperature.
For example, the dynamic elasticity modules are very yieldable to a changing of a velocity and temperature of
the matter in the area of deformations (Ferry, 1948, 1963; Lee, 1962; Van Krevelen, 1972; Moor 1978; Nilsen,
1978, 1994; Lakes, 1998; Meyers, 1994; Menard, 1999; Roylance, 2001; Goloshchapov, 2001, 2003, 2015;
Hosford, 2005; Popov, 2010, Popov & Hess, 2015).

Also, it is necessary to mention that, the researches in the field of the collision of viscoelastic particles (granules)
with identical mechanical properties have been made by Brilliantov, Spahn, Hertzsch and Péschel (1996). They
have obtained the equation for the normal viscous force with variable viscosity parameter

Y .
an :ng :4_(1_V2) /Reff A\/gé:l/z, (4%)

where é::X, RY =R, Y is the Young modulus or the elasticity modul, V is the Poisson ratio,
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A= 1Gn, -n, )’ {(1 -vHd- 2‘/)} is the damping viscous parameter, and where 77, and 77, are the viscous
3(3n,+21,) Yv?

constants. But this theoretical result can only be used for the contact of the bodies with the same

physical-mechanical properties, and in this case we have the problem of finding the viscous constants “77, ” and

“n,”. If the contacting surfaces have different physical-mechanical properties this conception does not give the

answer, because this is a yet more difficult problem.

Also the interesting method - "Method of Dimensionality Reduction (MDR)" has been presented by Popov
(2015), but it can be used only in the case of contact between three-dimensional, axial-symmetric bodies and a
foundation (a semi-space). In all these papers, to find the equations for tangential forces, the coefficient of
friction again was taken as a constant value.

Thus, as we can see, the many problems still exist now in these research areas. Therefore, especially for the
solving of these problems, such as the definition of the normal viscous force and the all tangential viscoelastic
forces, and for the finding of the kinematic and the dynamic mechanical parameters between two contacting
surfaces, such as the elasticity modulus and the viscosity modulus, the theoretical and experimental ways have
been developed and represented in this article below.

2. Derivation of the Equations for the Viscoelastic Forces by the “Method of the Specific Forces (MSF)”

Let us assume that in the infinitesimal period of the time df, when the mutual approach between a body and a
semi-space is the infinitesimal magnitude dx (Figure 2), inside the elementary infinitesimal volume dV, which is
arising around the initial point of the contact 4 (Figurel and Figure2), the infinitesimal viscoelastic forces dF;,,
dF,, and dF; are beginning to act.

Where: T F., —— F,,  Fy

Figure 2. Illustration of the action of the specific elementary viscoelastic forces inside the infinitesimal volume
dV in the vicinity of point 4

These forces can be found by the differentiation of the normal Fy;, and the tangential F); and F; specific forces
by sizes da, db and dx:

dF, =F da+F db, dF , = F,db + F ,dx , dF . = F_da + F ;dx 5)

Where: da and db the big and the small axes of the infinitesimal contact area; [, is the normal effective

specific viscoelastic force; F, is the tangential effective specific viscoelastic force by axis Z; F yi1s the

tangential effective specific viscoelastic force by axis Y.
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Also it is very important to understand indeed that, these specific forces Fxi, Fyi and Fzi are the elementary axial
loads distributed on the infinitesimal sizes, da, db and dx parallel to axes X, Y and Z (Figure2). The name
“specific force" already was applied by author of article (Goloshchapov, 2015), and this name is the short name,
which usually is used to denote the elementary distributed axial loads.

2.1 The Effective Dynamic Modules and the Effective Dynamic Viscosities

According to the “Newton’s Third Law” the effective specific forces and the specific forces between bodies have
tobeequal: F, =F ,=F,, F,=F,=F,, F,=F,=F,. Where: I, and F,, are the normal
specific viscoelastic forces of the bodies by axis X; F 2 and F ) is the tangential viscoelastic specific forces of
the bodies by axis ¥; £ ,and F_,is the tangential viscoelastic specific forces by axis Z. (Here and further in
this paper the subscript / is used for more soft body, and 2 is used for more solid body). On the other hand, the

specific viscoelastic forces can be found as the sum of the specific elastic forces and the specific viscous forces:

in = Fxh + Fxc 2 Fxl = Fxlb + Fxl(‘ s EYZ = Fth + FXZ('
Fyi :Fyb +cha Fyl :Fylb +Fylz" Fyz :Fyzb +Fi1ﬁ2(‘ (6)
in = sz + sz 4 le = leb + Fz]z' ’ FzZ = Fsz + Fz2c

Where: Fxb is the normal effective specific viscous force; Fxc is the normal effective specific elastic force;
F, and F_,, are the normal specific viscous forces; F . and F,. are the normal specific elastic forces;

xle x2c¢
F b and F, are the tangential effective specific viscous forces; F . and £ is the tangential effective

yc

specific elastic forces; Fylb ’Fy.2b and .leb, _Fzzb are the tangential viscous specific forces; Fylc’ Fch
and I, F,. are the tangential elastic specific forces.

Also let us suppose that the volume of deformation is the system of an infinitely large number of elementary
discrete elements (Figure 3.) connected among themselves definitely. And also, in this case let us assume, that
for the infinitesimal period of the contact time df all deformations inside of each elementary discrete element are
changing linearly and therefore all specific forces are changing linearly too. Based on this, the equations for all
specific forces can be written as the linear functions:

Exb:n;x’ Fxc:E,x’ Fyb:n,Gy’ ch:G{y’sz:n;’Z" Fz :G,Z

c

, . (7
Fop=mx, F

xle

:El,xl’ Fylb :771,(;).’1» Fylc :Gl,yl’ F..,=1n/s%,F

zl

’
=0z,

— ’ . — 4 — ’ . —_ ’ — / . — 4
Foy=mpX,, F, =Ex,, Fy2b =T16Y2» Evzc =G,y,, F,, =M%, F, =Gz,

lF xi

l

X

a. b.

Figure 3. Illustration of the “Elementary discrete elements model (EDEM)”: a. the elementary discrete element
of the normal contact between two bodies; b. the effective elementary discrete element of the normal contact

64



WwWw.ccsenet.org/mer Mechanical Engineering Research Vol. 5, No. 2; 2015

Where: E' is the effective dynamic elasticity,moduluS' n 'E is the effective dynamic viscosity; G " s effective
dynamic elasticity modulus at the s}}ear Ngis the effective dynamic viscosity at the shear; E 1’ and E’ , are
the dynamic elasticity modules. y g and 77 2 r are the dynamic viscosities; Gl and G is the dynamic
elasticity modules at the shear. 77, and 772G is the dynamic viscosities at the shear.

In the proposed model, each elementary deformation between two bodies develops analogically like the
deformation of the elementary discrete element, which is depicted in Figure 3.a. It is a simple case of the linear
model of deformations of elementary discrete elements, and instead this model with four elements we can use its
analogy - the model with two effective elements depicted in Figure 3.b. Also the “Elementary discrete elements
model” for the normal forces can be used for the tangential forces in the same manner.

It is obvious that the according to the initial conditions, when ¢ = 0, x = 0, the specific elastic forces acting by X
are equal at the initial instant of the contact (in this point they are equal zero); and the according to the boundary
conditions, when x = x,,, they are equal at the instant of the maximum compression between two surfaces (in this
point they reach the maximum value). But at the same time, the specific viscous forces are equal at the initial
instant of the contact, when ¢ = 0, x = 0 (in this point they are equal to the maximum value, because the velocity
X has the maximum value), and they are equal at the instant of the maximum compression between two
surfaces, when x = x,, (in this point they are equal zero, because the velocity x=0). All of these forces in the
Equation 7 are linear continuous functions and if they are equal for these two values of the argument x, they have
to be equal for any other values as well, or by other words, they are equal in any instant of the time of the
contact. Analogically this conclusion is valid for other specific forces acting by axes Y and Z. Thus consequently
we can write that

F . =F, =F

xle x2¢ >

Fxb:Fxlb:EVZb’ F, .=F

ye yle

=F

y2c?

F,=F,,=F,, and F,=F ,=F, (7%
and hence we get respectively
( ’ ’ ’ 7 . ’ . ’ .
Ex = Exx;=E;X,, NpX=0;X; =1, X,
{ Gy=Gy=Gy,s NGV=106Y =MD, (8)

’ ’ ’ 7 . ’ . 7 .
Gz=Gz,=G,y,; NGZ=MZ,=T5%,

\

Since as x=x,+x,, y=y,+y, , z=2z +z, according to (8) we can write the equations for the
effective dynamic modules and the effective dynamic viscosities as

,  E/E, ' 11 G M
EZ%’UE:M’ G,Z%’ U’G:% (9)
E +E, e T G +G, e T
And also we can write that
x,=Dx and X, =D,x (10)
Where: D, = ,—2 and D, = —1, are the coefficients of deformation.

E'+E; E +E;

2.2 Integral Equations for the Viscoelastic Forces

Now, since according to (5) and (6) we can write that
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dF, =(F, + F )da +(F, + F_)db,
ar , = (F, + F, )db + (F, + F, )dx, (10%)

dF ., = (F, + F_)da +(F, + F_)dx ,

and according to (7), since Frbzﬂg)'c, ECCIE'X, Fyb:ﬂ'Gj/, F;CZGy, F, =77£;Z', F. =Gz, the

twelve expressions for the infinitesimal viscoelastic forces can be written separately as:

dF, =n.%da,dF, =E’da. dF, =n,idb, dF,

bcn

= E'xdb ,

dF,,, =n,ydb, dF, =GYdb, dF,, =n,ydx, dF,

hey

=G'ydx, (11)

dF

abz

=1n_zda, dF, =Gzda, dF,, =n_zdx, dF, =Gzdx

acz

And since the limits of integration /., and /., are known, the integral equations for all viscoelastic forces can be
written respectively as

F,. =ni[da, F,, =E[xda, F, =n5[db, F,,=E[xdb,

h.\(l
\Fuy =53 [db. F,, =G¥[db. F,, =n,y|dx. F, =Gy [dr, (12)
0

F .. =77éz'.|'da , F,. = G'zjda, F,. = n'Gz'hj‘hdx , F,.. = G'zIdx
0

2.3 The Geometry of the Area of the Contact and the Pressure Distribution

And now, the important moment, it can be seen that for a finding of the solutions for all Equations (12) we have
to know only the equations or the formulas for a = f(x), b = f{x), and for Ay, = f{x) and h. = f(x). For example,
we can use that r = ( R)c)”2 according to the Hertz theory, but according to this theory, the area of contact is a
flat surface and the depth of indentation (the depth of the contact surface) 4, = 0. But in reality the area of
contact usually is not a flat, it is a curvilinear surface. In Hertz's theoretical models has been taken that the
contacting surfaces deform together without of the micro-sliding, but in reality each surface deforms
independently. Therefore, to find the radiuses of the contact area r, and 7, in reality, first of all, let us consider
the geometry of contact between two curvilinear surfaces in the normal section in the plane XAY, like it is
depicted in the illustration in Figurel. It is obviously that, in the time of indentation of more hard surface into a
soft surface, the contact surface takes a curvilinear shape, where the point B (see Figurel) is a special point
where the deformations always equal zero, and the border of the area of contact always pass through this point B.
According to this statement, the distance O.B between this point and the centre of curvature O; of the surface of
more hard body will not be changed in the period of time of contact. This distance always equals to the radius of
curvature R». Also the distance O,;B between this point and the centre of curvature O; of the surface of less hard
body will not be changed in the period of time of contact too. This distance always equals to the radius of
curvature R;. Hence, obviously that O,B = 0D = Ry, and O;B = O;E = Rj,, and also we can write that
0,C+0,C=(R,+R,,)—x, and since as O,C=(R} —r))"*and 0,C=(R2, —r?)"*, after a simple
calculation, if to neglect by members of smallest order, we get the next equation for the radius of contact area
ra = f(x) equals a/2, and then analogically in same way we can find the radius of contact arear, = f(x) equals
b/2 as follows:

rP=2Rx-x", 1} =2R x—x’ (13)
R R . o . . R, R
—la—2¢_ s the effective initial radius of contact curvature in the plane X4Y and R, = 102

R, +R,, R, +R,,

is the effective initial radius of contact curvature in the plane X4Z. The Equation (13) is not

Where R, =

convenient for using and therefore, let us rewrite them as
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2 2 2 2
r. =k, R.x, 1, =k, Rx (14)

X X
ko= [2——, k,=[2—— (15)
» R, R,

are the correlation coefficients. Practically for the solution of the contact problems, the correlation coefficient
can be found by the method of iterations and a consecutive approximation.

Obvious from (13) that the surface of the contact takes the elliptical shapes in the planes XAY and XAZ, but for a
simplification, its shape can be approximated by the parabolic functions (14) respectively as

where

L L

X = r = 14
2 a’ 2 b
kpaRa kprb

(16)

Since the surface of the contact has approximately the parabolic shape, let us to take that the radial distribution
of the pressure inside of this area changes analogically according to the parabolic function as

v 2 r2
P=P|1-= |, P=P|1-5 (17)
ru Vb

Where: 7, is a current radius of the contact area by axis Y; 7. is a current radius of the contact area by axis Z; P. is
the maximum magnitude of the pressure in the centre of the contact area.

Further since the square under these functions in the Equation17 and the square under the linear function of the
mean pressure P, in the contact area are equal, we can write that

r, 7"2 Ty "'2
Y _ -z =
.PCJ- 1——2 dl"y—Pml", I)Cj 1 5 d}; —Pml" (18)
0 ¥ 0 rb
Then after the integration follows
1 —_—
P r—gr =P r, (19)
and finally the ratio between maximum and the mean pressure in the contact zone can be found as
3
P=2P (20)
2

Now let us to define the depths of the contact surface (see Figure 1) in the planes X4Y and XAZ. The expressions
for the radiuses of contact area can be found also as follows

ra2 = RZZa - (R22a - (‘x2 + hxa))2 s rbz = RZZb - (R22b - (‘x2 + hxb))z (21)

After a simple geometric calculation, if to neglect by members the smallest order, we obtain the next equations
for the radiuses of contact area:

raz =2R,, (x, +h,)—(x, + hxa)z ) ’”bz =2R,, (x, +hy)—(x, + hxb)2 (22)
Then after the comparison equations (22) and (13) we can write that
2R, (x,+h,)=2R,x , 2R, (x, +h,)=2R,x (23)

Finally since X, = D,x, the formulas for /_, and /_, can be written as follows
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R —D,R R, —D,R
hxa:[ - 2 2HJ‘)C:kha‘x’ hxb:( . 2 2bjx:khbx (24)

2a 2b

R —D,R R, —D,R
Where £, =(“—22“j and k,, :(% are the coefficients of depth of the contact
R, 2b

a

surface.

Also let us remark that, in the case_a very small deformations, when R, >>xand R, >>x according to
Equations (15) follows k,, =k, =«/2, and we can write that

=(2R,x)", r,=(2R,x)" (25)

But, according to the Hertz theory (Landau and Lifshitz 1944, 1965)r = (Rx )1/2, but it is possible only in the
one case when kpa = kpb =1.

2.4 The Equations for all Viscoelastic Forces

Since as @ = 2r, andb = 27, , according to the Equation (14) we can write that
a= 2kpaR:l/2x”2 , b= 2kpr;,/2x”2 (26)

The taking of the derivatives da/dx and db/dx gives us

k Rl/2 k Rl/2
da=—tor—dx db:‘”;l—/ﬁdx, 27)

and then after an integration of the integral equations for the normal forces from (12), we get

acn ben

—k ERI/ZI l/zdx _ %kpaE'Rl/zxm, F ZkaE'R,i/ijl/zdx _ %kpr'R;uxm 28)

Sinceas F, =F,  +F, weget

F, = %E'xm(kpaRyz +k,R,*)= EE’W”, (29)

where v =(k, Rl/2 +k, Rl/z) [m!?] is the parameter of curvature.

If k pa = k b = =1 and 1f the contact area is a circle R, = R, = R we have the same solution that have been
obtained for the contact between spherical surfaces by using the Hertz theory (Landau & Lifshitz, 1944, 1965):

F =gE'Rl/2x3/2 (30)

cn

Thus, it is obvious that the proposed method of the finding of the normal elastic forces definitely is valid and
correct. It can be seen that, if we know a functional dependency between r and x, we can always find the elastic
force. But, if this method is correct for the definition this force, hence it should be valid for the definition of all
viscoelastic forces in the equations (12). The equation for the normal viscous forces can be found in the same
way by integration:

1/2

kpanEx(t)j e =2%, TR 5(1)x"?
31

1/2

bbn—kpbnEx(t)I NIE I = 2kpb771,fR£1,/2X'(t)xl/2
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Here Xx(¢) are the function linear independent from x, and it cannot be integrated by x, and it stays outside of
integrals. And sinceas F,, =F,, +F, = follows

abn
r . 172 1/2 1/2 ro e 172

F,, =2nyxx""(k,,R,“+k,R, ") =2n,pxx (32)

In the case when the contact area is a circle k,, =k, =k, and R, = Ry = R we get
F, =4k n R xx'"? (33)

1/2 1/2
Since as x and y are linearly independent and da =%dx , db= pbl /; dx, and hax =khax,
X X

hxb = khbx , after an integration of the equations for the tangential forces from Equation (12) their solutions can
be written as follows:

bey = n,GyJ. db = 2kph77,GRi£/2xl/2y > Emy = G,yJ.db = 2kprlRli/2xl/2y

Dy Iy
thy :néj;jdx:khangxy’ F;wy :G’yj‘dx:khaxy’
0 0

(34)
F, = 77'62'.[ da= 2kpa77'GR‘11/2x”zz' F, .= G'ZI da = ZkWG'R;/Zx”ZZ

h

hay ch
F. =77é2'fdx=khbx2', F =G/Zde=khbxz
0 0

hez

Here y,y,Z,z are the functions linear independent from x, and they cannot be integrated by x, and they stay
outside of integrals.

The equations for the tangential elastic and viscous forces can be written now, as the sum of the elastic and the
viscous tangential forces from Equation (34):

Fb‘zy = thy + bey = nz;Pbxy > F'czy :E1cy +F})cy :G,Ijbxy
(35
szZ:thz+bez :néPaxz’ F'czz:icz-i_Facz:G,])axZ
Where:
B, =k, x+2k, R *x"*, P, =k,x+2k, R/ x'" (36)

Thus finaly, according to Equations (1), (31), (34) and (35) the next system of equations for general viscoelastic
forces can be written respectively:
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n

F . =F, +F, =2nwix'"? + %E’WW

F

7y

Fb1y+Fc1y:n£?Pbx)>+G’Pbxy (37)

F_=F

7z b1z

+F,_ =n.P, z+G'P,_z

And thus, we can write the expressions for the variable viscoelasticity parameters as follows:
b =217 1/2 _ 2., 1/2 b =1 b =n -
x_277EwC H CX—EEI//X > y_nGB;x’ GBJX’ z _nGPax’ C, _GRJX (38)

It is not possible the finding of the viscoelastic forces separately for each contacting body if to use the Hertz
theory and others already existing theories, but it is possible by using the “Method of the specific forces (MSF)”.
The integral Equation (12) separately for each contacting body can be written as follows:

Fopi = ﬂ;ExiJ.da, F.i= Ei,_'-xidaa Fopi = n;ExiJ.db: Foni = Ei’_[xidb,
Dy hyg hy, K

Flyi = M6V, .[dx, By = Gy, J.dx, Fyp = M2, J.dx, = :G"IZ" .[dx’ (39)
0 0 0 0

Fyi = ,Gy,.[db beyi _Gyzj.db wsei = TigZi J.da i =Gz, Ida

Where usually the index i = / use for a soft body and i = 2 use for a hard body.

1/2 1/2

. X X R!2 X 1/2
Since as X = —— =-—% we can write that @ = 2k 11/2 and as well a = 2k R, 1/2 , and
| P | D,
L2 L2
1/2 . L
b=2k ,R)* = andaswell b=2k, ,R,’* —2— then after differentiation we get:
D 1 p Dl/2
| 2
172 172 1/2 1/2
da—idx da=—1""_ £y dx,, db= kpbidx db:kp”idx (40)
172 172 %Mo 1/2 172 92> 172 172 %Mo 12 12 92
1 X 2y X 1 X X2

After a substituting the expressions (40) into (39) and then after their integration we can get the equations for the
viscoelastic forces separately for each body. If we can find the viscoelastic forces separately for each body hence
we can find separately the viscoelastic stresses for each body too. It is not possible to do by using the Hertz
theory or by using others already existing theories and methods.

The normal viscoelastic stresses, which equal to the mean pressure P, in the contact area, can be found as

P =—, (41)

T
where S =—ab is the contact area, and according to Equation (26) follows S, =7k k R”szx In
x 4 pa'y pb

correspondence with Equations (20), (37) and (41) the expression for maximum value of the normal contact
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pressure (stresses) can be written as follows:
__ YyQ@npi+EY)
¢~ 12 p1/2 _1/2
i,k R/ R, “x

pa’ pb

(42)

3. Dynamic Contact between two Spherical Bodies at Impact

In the case of the contact between two spheres, when the contact area is a circle R, =Ry, = R, r, = rp =1, a =
b=2r, Fr. = 0, F; = Fy, Fie = Fyty, Fer = Fery (see Figurel) follows that kp = kpa = kpb, h.,=h,=h,
and k, =k, =k,,, w=2k pRl/z, and then according to Equations (1) and (37) we get the next system of
equations for the main viscoelastic forces:

F,=F, +F, =bx+cx=4kn R *ix"’ +§ka'R”2x3/2

(43)
F =F, +F., =byy+cyy:77'Gij/+G'ny

Where P = k WX+ 2k pR”Zx”Z, and where the expressions for the variable viscoelasticity parameters in the
Equation (3) can be written as follows

b, =4n,R"*x'"?; ¢ :%E'R”Zx”z, b, =ngP,; ¢, =GP, (44)

x y

Also, for this case, the expression for the depth of the contact surface can be written as follows

po=| B=DRy |y (44%)
x R h
2

4. Contact between a Spherical Solid Body and a Semi-Space at Impact

This example is given here, because the results, which can be obtained in this case, can be used also for others
cases of a dynamic contacts, such as for the dynamic contact at impact between two spherical bodies or between
two cylindrical bodies.

Let a spherical body, having the average statistical mass #1, , the radius R and the initial velocity ¥y, comes into
viscoelastic contact under an arbitrary angle of attack a to the surface of semi-space at the initial instant of the
time ¢ = 0, at the initial point of contact 0 (Figure 4). And let the vectors of velocities are applied to the centre of
mass of the body (the point Cy). Also in Figure4 are designated: Vo, = Vysina, Vo, = Vycoso are the initial normal
and tangential velocities of a body; M = F.l; is the reactive moment; /. is the shoulder of tangential force; w is
the angular velocity and ¢ is the angular acceleration around of the centre of mass of a body; Vis the volume of
deformations, which is forming in the course of contact. Also the geometry of surface of the contact zone is
characterised by the geometrical parameters, such as ( Figure 4): X, is the normal deformation of the surface of
semi-space in the middle of the contact area, which as well, is the approach of a semi-space relative to a body;
X, is the normal deformation of the surface of a body in the middle of the contact area, which as well, is the
approach of a semi-space relative to a semi-space; » - the radius of the contact area; /4, is the depth of the contact
surface, or other words, /4, is the depth of indentation of a body into the surface of semi-space.

Also, it is seen here (Figure4) that at the initial instant of the time, the body with the centre of mass in the point
Cycomes into contact with the surface of semi-space at the initial point of the contact 0 with coordinates x = 0
and y = 0, but at the instant of the time 7, the centre of mass of a body (the point C;) takes the position with
coordinates x and y.
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Figure 4. Schematic illustration of the indentation of a spherical body into a semi-space

It is obviously that the viscoelastic forces F, and F; are acting in the contact area between the surfaces of the
contact and according to Newton’s Second Law we can write:

F,=—-mXx
F,=-my (45)
M =-J.¢

Where: m is the effective or reduced mass of the contacting bodies; ), X - the accelerations of the centre of
mass of the body; J: is the moment of inertia of a body; ¢ the angle of rotation of the body around the centre of
mass; () is the angular acceleration of a body around the centre of mass.

Remark: The term “effective mass” already have been used by Stronge (2000), Dintwa, (2006), Bordbar,
Hyppénen (2007), Antypov, Elliott, Hancock (2011), and by many others authors. Also the mass m was called
like the reduced mass by Landau (1944, 1965), Brilliantov (1996).

We can see here that x =X, +x, is the distance of the mutual approach (the total deformation) between a
body and a semi-space, and as well, in the same instant of the time, it is the displacement of the centre of mass of
a body relative to the initial point of contact 0 by axis X. At impact of two bodies, the effective mass m enters
usually like the mass of the third body, and the movement (the displacement) x of the centre of mass of this third
body takes equal to the distance of the mutual approach (or a compression, an overlapping) of the colliding
bodies. At impact of two bodies, according to the second law of Newton, we can write that

v, v, dv,,

1x

F =-m—=-m—=-m, —,
dt dt dt
where Vo, = Vi V2. These equations are valid only for the movement of the centres of mass of the bodies. All
authors, who use these equations, for example, Stronge (2000), Dintwa, (2006), Bordbar, Hyppénen (2007),
Antypov, Elliott, Hancock (2011), Landau (1944, 1965), Brilliantov (1996) take that x is the displacement of
centre mass of this third body and x is the mutual approach (a compression, an overlapping) between the bodies
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1 1

. 1 . . ..
too. From these two expressions follows that — = — 4+ — and since as in the case of the collision of a
m m;  m,

body and a semi-space 1, >>m,, and hence we can take that m =m,. As well, if the semi-space is
immovable, when the velocity of a semi-space Vi, = 0, follows that 7 = m,. Hence it is proved that in the case
of collision between a body and a semi-space, the mass of a body m, is equal to the effective mass m. Further
in this paper, the mass of body is designated by the symbol m. Consequently, the distance of the mutual approach
between a body and a semi-space is equal to the displacement x of the centre of mass of a body. Analogically as
for x we can write that y =y, + ), is the displacement of the centre of mass of a body relative to the initial
point of contact 0 by axis Y, where y, - is the tangential deformation of the surface of a semi-space ), is the
tangential deformation of the surface of a body.

It is obvious that, in the case of the contact between a spherical body and a semi-space, the effective radius R and
the radius of a body are equal, and if take in account (25) and that M = F; [, then if the dynamic viscosities
replace by the dynamic viscosity modulus according to the known expressions (Ferry, 1948, 1963; Lee, 1962;
Van Krevelen, 1972; Moor 1978; Nilsen, 1978, 1994; Lakes 1998; Meyers 1994; Menard 1999; Goloshchapov,
2001, 2003, 2015; Hosford 2005; Popov 2010, Popov and Hess 2015)

E” G’
— =1, and — =7, (46)
o, @,

the equations for the normal and the tangential viscoelastic forces and for the reactive moment can be written as
follows:

F =F +F = 4ka”R”2fcx”2 +ik E/R1/2x3/2
n bn cn a)x 3 P
” 47
Fr:be+Fcr:G_ny+G,ny ( )

o [G_y-+ G'prx,
a

¥y

Where E”is the effective viscosity modulus under, G” is the effective viscosity modulus at shear, @, is the
normal angular frequency of damped oscillations of the volume of deformation Va by the axis X, @, is the
tangential angular frequency of damped oscillations of the volume of deformation V4 by the axis Y. ’

We have to mark that in the case of contact between a spherical body and a semi-space, when R; = R (see
Equation 44*) follows that k, = (1—D,) = D,, and hence

h, =x, =Dx (47%)

X

Viscosity modules can be found by using the known (Ferry,1948; Moore,1975; Van Krevelen, 1972; Nilsen,
1978; Landel, 1994) formula

E” G”
= = ) (48)
= o 8h

where [ is the angle of mechanical losses.

Let us notice that often the dynamic modulus of elasticity is named yet as the accumulation (storage) modulus,
and the dynamic modulus of viscosity is named yet as the loss modulus.

And now, according to (45) and (47), the differential equations of the movement (displacement) of the centre of
mass of a body can be written as follows:
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7”pl/2
mx + 4kp ixxl/z + ika’Rl/zxyz -0
a)X
LG, o
my+w—ny+Gny:0

y

J6+ [G_ny- N G'pxy]zx o
a)y

Or it can be also written in the canonical form as

mxX+bx+cx=0
my+b,y+c,y=0 (50)
Jog+1,-(b,y+¢,y)=0

Where, the formulas for the variable viscoelasticity parameters in the system of equation (50) can be written as

7”pl/2 ”
= 4E—Rxl/2, c. = iE»Rl/le/z’ by — G_Px, ¢, = G'PX (51
(5 3 a)y

b

4.1 Work and Energy

As we know the period of time at impact includes two principally different phases such as, the phase of the

compression and the phase of the restitution. Also in the duration of a collision, the full initial kinetic energy of a

2
body W, = mVy s divided into the two independent parts such as, the normal initial kinetic energy of a body
mV;. e mv ;
W, = — and the tangential initial kinetic energy of a body = —_ 9 . On the other hand, the full
¥y 2

2
my, (where V:is the velocity of the centre of mass of

kinetic energy of a body at the instant of rebound W, =

a body in the instant of rebound) is included two independent parts such as, the normal kinetic energy of a body

2

at the instant of rebound W, = mVy (where V, is the normal velocity of the centre of mass of a body in the
2
instant of the rebound ) and the tangential kinetic energy of a body at the instant of rebound w, = v
2

(where V}, is the tangential velocity of the centre of mass of a body in the instant of rebound). Therefore, the
description of the processes of the compression and the restitution along the axis X, and the shear along the axis
Y are given independently in this part of the paper. The basic problems here are the finding the equations for the
work of viscoelastic forces, the dissipative energy in the phases of the compression, the restitution and at the
shear. Also it is necessary to determine the coefficients of restitution, the maximum size of the compression
between a body and a semi-space, the dynamic modules of elasticity and viscosity.

4.1.1 Work and Energy in the Phases of Compression and Restitution

The graphical illustration of the functional dependences between the normal viscoelastic forces and the
displacement of the centre of mass of a body is depicted in Figure 5: (a). Also the “Rheological model of
Kelvin-Vogt”, which usually is used for the viscoelastic contact, is represented in Figure 5: (b). As we can see,
the viscosity force has the extremum in some point of the time equal zs.
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It is obvious that the normal initial kinetic energy of the body Wi, is spent for the work A, of the normal
viscoelastic force F , in the compression phase. But on other hand, 4., can be found as the sum of the works
Axem and Aypn, where Ay, is the work of the normal elastic force F on and A, is the work of the normal
viscous force F,, in the compression phase. Also we can say that the part of the kinetic energy Wy, is
transformed into the potential energy of the nonlinear elastic element (spring) (Figure5: (b)) and the other part of
this kinetic energy is dissipated during the time of deformation at the compression of the nonlinear viscous
element (dashpot). However, on the other hand, the work 4., of the normal viscoelastic force F’ , in the
restitution phase is equal to the normal energy of a body W, at the instant of rebound, and also 4, can be found
as the difference between A, and A, where A, is the work of the normal elastic force F  and Ay is the

cn
work of the normal viscous force £ s 10 the restitution phase. Consequently, we can write that

mvV;
Axm = Axcm + Axbm = VVO){ = TOX
(52)
my;
Axt - Axct - Axbt = VVL‘C = -
2
F,
Compressing Restitution
F, F,, Kelvin - Voigt Model
F,
F, bn C; bx
0 0 x F,
X, (b)
Xm Xm
(a)

Figure 5: (a) - The graphical illustration of the functional dependences between the normal viscoelastic forces
and the displacement x of the centre of mass of a body; (b) - The “Nonlinear Rheological Model of
Kelvin-Vogt”, where ¢, and by are not the constant magnitudes

It is obvious that 4., = Ay and hence the potential energy which has been accumulated inside of the elastic
element (spring) fully returns back to the body in the instant of rebound. The works Ay and A at the
compression can be found by integration:

A = jF de =2k E’z?e”2jx3/2arx=i
xem ) cn 3 p 15

0

ka’R”zxj/2 (53)

and
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X, w4k E'RV? 4k E'R? rmjdxxl/zdx Rk E'R"2x"?
Ay, = [ By = [————iex = | —~ . " (54
0 0 W, W, J.Ol dt S0,7,
Analogically the works A4, and 4, in the restitution phase can be found as follows:
h 04 8
A == [Fdx==[Zk,ER"x" dx=—k, E'R"x}" (55)
: 73 15
and
0 24k E'R'" sk RN K dx g prpiagn
A, = —jﬂndxz —|———xx"dx = u o . =7 “ (56)
X, X, a)x a)x ' dt Sa)r TZ
|

Where: T, =7, + T, is the period time of the contact; 7, is the period time of the compression; 7, is
the period time of the restitution; x, is the maximum magnitude of the compression between a body and a
semi-space (also it is the maximum displacement of the centre of mass of a body, which is equal to the maximum

of mutual approach between a body and a semi-space).

According (52), (53), (54), (55) and (56) the equations for the work of the compression and the restitution can be
written as follows:

Axm = Axcm + Axbm = ikpjzl/zxri/z (E, + 3i)
15 .7,
(57)
Axt = Axct - Axbt = ikp]el/zxrsn/2 (E,_ 3E )
a)xTZ
and according (48) and (57) we can write
4, =Sk ERV (1 e j
a)xz-l
(58)

A, =§k ER"x? 1_3tg,3
15 : a)xTZ

2

_ mVﬂzr _ _ thx : :
=W_= 5 and by using the first of the equations (58), we get the

Since as 4 =W, = 5 A

Xt x

formula for x,, respectively
5 2/5
I5Smw TV,
X = T pll2 9
16(3tgf + w,7)k ,E'R

Also, we can define the energetic coefficient of restitution e,, which equals to the square of the kinematic
coefficient of restitution k, (further it will be named simply the coefficient of restitution), like the ratio between
Wi and Wy:
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v: (o, -3t T
e, =k} = ’§=( . gﬂ}—‘ (60)
VOx a)le + 3tgﬁ TZ

Since as we can take that

IV, / v,/
=~ T, =—5%-7

X, = , (61)
2 12 7
we get that
k, =11, (62)
7’-2
and using (60) and (62) we get that
wrt 1-k
1gff = — . (63)
gp 3 P

Thus, we have got the equation, which binds the coefficient of restitution and the tangent of the angle of
mechanical losses. So, if k. = 1, 1gf — 0 we get the totally elastic impact, but if k. = 0, tgf — o then we get the
totally viscous impact. Using (63) we can write the formula for the restitution coefficient as

k, = D2y (64)
' (3tgﬁ + a)xrl)

If to compare the Equations (59) and (64) we can finally get the expression for the maximum magnitude of the
compression between a body and a semi-space respectively as

2 2/5
| Bmre o (65)
16k, E'R"? "

m

In the case of a totally elastic impact, when & = 1 and k, = / we get the same result, as it has been obtained by L.
Landau (1944, 1965) according to the Hertz theory for the absolutely elastic contact.

4.1.2 Work and Energy at the Rolling Shear

It is obvious that, in the during time of the displacement and the rolling shear along axis Y, the tangential initial
kinetic energy of a body Wy is spent for the work A4, of the tangential viscoelastic force F, . The work 4, can
be found as the sum of the works A,» and 4,., where 4, is the work of the tangential viscous force F,_ and A,.
is the work of the tangential elastic force. But on other hand, it is obvious as well, that the work 4, is
transformed into the dissipative energy Q., and the work 4,. is transformed into the work 4, of the rotation of the
body around the centre of mass of a body. Thus, according to the “Law of preservation of energy for a
non-conservative (dissipative) mechanical systems”, we can write the equations for the displacement of the
centre of mass of a body and for the rotation of a body relative to the centre of mass of a body, as follows below:

2 2
ﬂ[d_yj +A = mVOy

2\ dt 2 (66)
2 2
2\ dt 2

Where: Ay = IF,dy ; A, = —Iqu); 0, = JFdey ,and where M = F [ .
Since F, =F, _+F,, and if R >> x, we can take that M=FR=(F._ +F )R, and since as

T

dp=dy/ R, hence
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A, =~[Mdo=~[(F,. +F,)d (67)

Also since, if the initial angular velocity @, equals zero we can write the Equation (66) for the boundary
conditions in the instant of the time #=7, of the maximum compression X=X, and ) =y, as follows:

’nVé’+T(F‘-+F‘)d —’nV;
2 d cT bt y_ 2

J

(68)

a)Z Y1 Y1
- [(F..+F,)dy+ [ F,dy =0
0 0

Where: V., is the velocity at the instant of the timef =7, ; w, is the angular velocity relative to the centre of
mass of a body at the instant of the time ¢=7,; y, is displacement of the centre of mass of a body along axis
Y at the instant of the timef =7, . The Equation (68) can be rewritten as

2 2
m Voy m me

N1
[(F. +F)dy =

0 2
. (69)
J.o ‘
z7m _— FC dy
A
Also at the point of the rebound, when =7, we get
my;>: my’
Tty+ I(FCT +F,,)dy = 5 2
2 ); ¥ 2 (70)
J.o ¢ ¢ J.o
- [(F.+ F,)dy + [ Fdy ===
bl pal
Then we can write that
m Vj t my;
—+ J(FCT +F,, )dy =—=
2 5 2
J ot Jab a1
z 7t z77m
5 5 I Fl.dy
N
The summation of the systems (69) and (71) together yields the following result
m th m Voly 1 Y
= [(F. + F)dy = [(F.. + F,)dy
0 N (72)

2

S0 ylewdy + TFmdy
0 »

We can rewrite Equation (72) in the next order
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mvy, mV.; % e
4, == — = [(F+ F,)dy + [(F., + F,,)dy
0 Y1 (73)
J. o> ¥ Yr
2 : = J.FLTdy + J.FCTdy
0 Y1
Finally we get
mVOZy thyz
Ay = T_ Tz Aybm + Aycm + Aybt + Ayct
(74
‘]za)t2
Ayc = 2 :Aycm +Ayct
N JE—
Where: Aybm=J‘F,;Tdy is the work of the tangential viscous force F,_in the compression period 7, ;
0
N PR
Aycm = J'Fﬁdy is the work of the tangential elastic force /., in the compression period 7; ;
0
Y JE—
A bt I—IFb,dy is the work of the tangential viscous force £}, in the restitution period 7, ;
hl
Yy R
A yet = —j F_dy is the work of the tangential elastic force ., in the restitution period 7, .
bl

Since as from Equation 47 follows that £ :g Py and F = G'P.y, all these works in (74) can be found by
o

id

integration, as follows:

R
» P, b ” dydy ” 2
A}bnz_ijdpxjydy_G IO J; _Gi yfl
y 0 0 0)) O‘d 20)}, Tl
F, » Gl R
Aycm =G J.dPxJ-ydy :7Pmy] (75)
0 0
Vi
” 0 Yy ” dydy ” 2.2
4, =—Gdeij'dy=—G(0—Pm)j""{ -9 p XA
@, o, “ dt 20, T -1
0 e G/
Ay, ==G'[dP, [ ydy = =P, (y} - »])
P, pat

Where

P, =Dx, +2k,R"x,? (76)
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The full changing of the energy of the dissipative system at the rolling shear can be found as the difference
between 4, and 4, from (74):

2 2
AW,=4,-4 :mVoy_thy —Jza)f:A

y o 2 2 2 oom 4

=4

(77)

ybt yb
According to the Equation (74) the conclusion can be drawn that the work A,. is transformed into the kinetic
energy of the rotation of the body relative its centre of mass, but on the other hand the work A4, is transformed
into dissipative energy Q,, in the process of the internal friction. Accordingly, using (74) and (75) we have

2 ’
=9 _Tpy (78)

A
ye 2 2 mJt

Hence the equation for the angular velocity at the instant time of rebound can be written as follows

1
4 2
oS )

J

z

Since the work A4,, of the viscous tangential force F},T is equal to the dissipative energy Q. , using Equation
(75) we get

G” 2 2 2
Aby :Qw :Aybm +Aybt :_Pm[y_l_y_l—i_y_t (80)
20, T, T, T,
Sinceas T = k 7, , finally we get
G” 2 2
Ay, =0, =4y, +4,, =mebl (1—kx)+kxyt] (81)

5. Approximate solution to the Differential Equations of the Displacement by using the Method of the
Equivalent Works

For practical application of the differential Equation (50) with the variable viscoelasticity parameters, we can
find their approximate solutions in the same manner as for the equations with the equivalent constant
viscoelasticity parameters, if we choose the equivalent constant parameters By, C;, and By, C, so that the work
Axem and Axpm, Ayem and Ay, with the variable viscoelasticity parameters cy, by and c,, by, will be equal to the works
with the constant viscoelasticity parameters. Thus, according to this statement, and since as the work A.., and
Axpm 5 Ayemand Aypy are known from Equations (53), (54) and (75), we can write next equations in the phase of
the compression

4,,=C.| ydx=1C 12 =§ka'12”ij/2
D 15

(82)
X, K 7 p1/2
Ay, =B, [idx=B L g SKERT o
xbm X X X m
0 " dt 27, 5Q 7,
0

and also in the phase of the rolling shear for the period of the compression time
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N 1 1 ,
Ay =C, [ydy=-C,y} =GPy}
0

(83)

RV

Avhm _B jydy y 22_] 2(0}1’1 mJ'1

Hence, according to the results obtained in (82) and in (83), we can write the expressions for the equivalent
constant viscoelasticity parameters, respectively as:

16 E"k R'? ”
_WERR T Vi,C 16k E'R"*x)?, B -G p ,C, =GP, (84

Sa)x m X 15 y a)y m y

Thus, the Equation (50) with variable parameters can be rewritten as the equations with constant parameters as
follows:
mi+B x+C x=0
mj+B,j+C,y=0 (85)
J.p+1 -(B,y+C,y)=0

The Equation (85) are the equations of the damped oscillations and the solutions to these equations are known:

V,, - .
x="2¢ " sin(w,t)
a)X
(86)
V,, -6
y= e sm(a) t)
(l)y
2 2 BY . . Cx .
Where: @, =@, —§X ; 5¥ = —= is the normal damping factor; @), =,/— is the angular frequency
' " 2m m
of the harmonic oscillations by axis X ; @, = a)(fy - 5y2 ; 5y =—" s the tangential damping factor;

2m

IC
@y, = — isthe angular frequency of the harmonic oscillations by axis Y.
m

It is obviously that the period of time of the contact z, is equal to the semi-period of damped oscillations 7./2 by

axis X.
;=L 87)
2 .,
Sinceas T, =7, + T, and also by using Equations (60), (62),(63) and (87) we get:
1-k
gf=Zx12k) (88)
3 (1 + k)

The equation for the restitution coefficient we can write now as follows:
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_ (z -3up) (89)
Yo(r+3tgf)

If tgf = 0 hence k.= 1 , it is a totally elastic impact, but if tgf = /2 hence k.= 0 and x = 0 , it is absolutely
plastic impact. Both of these two cases are not possible in nature.

Finally, from (65) and (89) follows that

5

2/
. - 15mV ., « (r —3tgB)
" |16k, ER'" (7 +3igf)

(90)

Thus we have a very simple way to calculate x,, if we know the value of #gff. According to the Equation (9), (46)
and (48) zgf can be calculated by formula

B’ _ E[EL(E[+E))

tgﬁ = - ’ 2 (91)
E"  EJE,(E+E])
The equations for the velocities of the centre of mass of a body can be received by differentiation of (86):
. VOx -0, .
X =2, cos(w,t)- 6, sin(m,1)]
a)’C
(92)
y= Lo o o, cos(w,¢)- 8, sin(w ¢)]
y= P e , cos\@, , sinl@,
y

Using (92) for the velocity, the duration of the time of the impact equals to the period of the time of the contact

can be found now from the conditions X =V, and {=7_ as
In k,
L=mms (93)
X
where
7”pl/2 ’
6 — Bx — 8k[7E R x1/2 — 8k]7E tgﬁ T R1/2x1/2 (94)
Yo 2m Smao. " 57m y "

and since #gf is known from (88), by using (65),(93) and (94) we get

4/5

2 20+ k,)Ink, S5m
7y :_Vz/s(l—k )kl/SX 8k E'R?
0x X x P

6. Determination of the Dynamics Modules by the Method of the “Temperature -Time Superposition”

95)

The dynamic elasticity and viscosity modules for high velocities of the collision can be found, if to follow the
principles of the “Time-temperature superposition” according to the equation of the “WLF” Williams - Landel -
Ferry or Arrhenius (Ferry, 1963; Van Krevelen, 1972; Moore, 1975; Nilsen and Landel, 1994). First of all we
have to define experimentally the effect of temperature for the period of the contact time z,, and for the
coefficient of restitution k. at the fixed initial velocity of impact. For example, if we define these parameters for
velocity at 2 m/s, then using the principles of the “Time-temperature superposition” we can determine their
values for any velocities interesting for us, for example for velocity 100 m/c and for temperature 100 0C. After
this, when z, and £, will be known, we can find the value of ¢/gf and the dynamic modules £ and E’. If to use the
equation (95), the expression for the calculation of the effective dynamic elasticity module can be written as
follows
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/4

, S5m (2Ink)1+k))

E = 8kaolx/2Rl/2Tj/2 ki/s(l_kv) (96)

And, if to use (48), (88) and (96) we get the formula for the calculation of the effective dynamic viscosity
module

1/4

” 15 7zm I+ k.

E"= 172 pli2,_5/2 X(=2In kx)5/4 ( PN ) CH)
24ka0x R T k.(1-k.)

Obviously, if k. = 0, then E” = 0 too. We can find G' and G" in the analogical way.

8. Analyse and Conclusion

It is a very important now to confirm of the correctness of the offered theories and methods, obtained in this

article, if to compare them with others already available. For example, the equation for the elastic force

cn

F = %kp E’R"*x*? have been obtained by the using of the “Method of the specific forces”. In the case,

when &, = / we have the same solution like in the Hertz theory. Hence the Hertz theory gives the partial results
in comparisons with proposed “MSF” method, because MSF” let to find the viscoelastic forces for any
curvilinear contact between two surfaces, but Hertz case can be using only for the flat contact. The obtained
result proves us that, the "Method of the specific forces" is definitely valid for finding of the normal elastic force,
because if we know a functional dependency between » and x, we can always find the elastic force. It is
obviously that, if it gives the correct way for the definition elastic force, and also as it was represented, it is valid
for the definition of the viscous force and the tangential viscoelastic forces. We cannot find viscous force and the
tangential viscoelastic forces by using the Hertz’s theoretical model, but we can do this by using the “Method of
the Specific Forces”. It is obviously that, for the finding the normal viscous and the tangential viscoelastic
forces, we can take k, = /, like according the Hertz theory, but we should be aware that, in this case, the contact
area is a flat surface according to 2D tensor of deformations and 4, — the depth of indentation has to be equal to
zero. But in reality, the contact surface takes the curvilinear shape, therefore, alternatively in this paper, the way
of the finding of the radius of the contact area, by considering the geometry of contact between two curvilinear
surfaces, have been proposed. It was received that the radius of contact area » = f{x)can be find by the equation

r* =2Rx—x". Since this equation is not convenient in using, and therefore it was proposed the finding r as
P2 = k; Rx, where kp = /2 X s the correlation coefficient, which can be found by the method of iterations
R

and consecutive approximations. If a deformation is small, when R >> x , hence we can take k )= N2, And,
if contact area is a flat, when % =0, follows from Equation 47* that D, = 0. Practically the area of contact
can be considered as a flat surface only in the case, when the surface of a semi-space in many times harder than
the surface of a body. For example, it is possible in the case of impact between a rubber ball and a steel plane.
Hence, it is obviously, that the “MSF” is the universal method, which can be used for any functional
dependencies between the radius or the diameter of the contact area and the distance of the mutual approach (the
total deformation) between two curvilinear surfaces. But nevertheless, we still have the question: What kind of
the equation is better to take for finding of the radius of contact area, by the Hertz theory or directly by the way
of consideration the geometry of the contact, like it is proposed in this article? Objectively to answer this
question, we have to analyse simply logically the way as these equations were received. It was taken according
to the Hertz theory that the contact surface is a flat, and the deformations are very small, the contact pressure is
distributed analogically as an electrical potential ( Remark: an electrical potential is the scalar function, but a
pressure is the vector function), and then, on the basis of this main statements, the equation between the radius of
the contact area and the normal elastic force, and the equation between the distance of the mutual approach and
the normal elastic force as the effect have been obtained. Then only after that, in result of the comparison of
these two equations by excluding the normal force (Landau, 1944, 1965), the expression r> = Rx have been
received. But in this article the analogical functional dependence have been proposed as the cause, in the result
of the direct consideration the geometry of the contact. It was shown that, in the time of indentation of more hard
surface into a soft surface, the contact surface takes a curvilinear elliptical shape (the function 7> =2Rx—x’ is
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the elliptical function, which can be approximated by the parabolic function ? = k; Rx ), where the point B (see
Figurel) is a special point where the deformations always equal zero, and the border of the area of contact
always pass through this point B. Therefore, the proposed geometrical method is more exact, than according to
the Hertz's theoretical model.

E”
p a)_v

On the other hand, the equation for the normal viscous force F, =4k R'"?xx'? gives the similar

result as it has place in the contact between two bodies with identical mechanical properties in the equation (4*),
which have been obtained by Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., and Poeschel, T. (1996). After the

comparison of two these equations, sinceas X=¢& and R = R we obtain the following
” 2
A=Ek”(1 ve) (98)
Yo,
Butsinceas @ = 7 andin the quasi-static conditions E'=Y we get
T}f
k t
Az”—gﬂx(l—vz)xrx 99)
T

If #=0 hence4=0 too, it is a totally elastic impact. Thus we can find the parameter 4 by a very simple way
using the “Method of the Specific Forces”.

Also the equation (65) to determine the maximum displacement x,, have been derived. It is obvious, that in the
case of k. = 1 and k, =1 we have the same result, as was obtained by Landau (1944,1965) for a totally elastic
impact by using the Hertz Theory. It proves the correctness of the way of finding the Equation 65. But we have
to understand that, this equation has the borders of application which can be found if to solve the next equation

®, =+, —0. . First of all since as @, :i‘ and é;:%ﬂ, we can write that g, =32w°2"¢gﬂ and we get

X

the next algebraic equation @' — @] @’ +w; tg’#=0. This equation has only the one valid solution

”

2
W’ = &(1 +4/1— 9tg2ﬂ) and it has the valid root only when 1— 9tg2ﬁ >0, therefore 1gf3 = i < l, and
X 2 ’
according to Equation 88 we get for a viscoelastic contact that
ko>71 (100)
T+1

In the case when ;, _Z—! the plastic deformations will be have place in the zone of the contact.
Yo+l

Also it is necessary to proof the correctness of the definition of the work for the normal viscous force in
Equation (54) and in Equation (82), because two ways in the order of integrations are possible to apply here such
as, that have been taken for finding the solution in Equation (54) and in Equation (82) and like it is shown below

” Y 1/2 ”
(4, BRI\ [ 5 dvdy 16k, ERV
xbm T 7 -
J‘ dt 15w,7,
0

It is simple to proof that the 1-st variant of the order of integration in Equation (54) and in Equation (82) is
correct and the second variant in Equation (101) is not correct. It obviously that the attitude between the normal
viscous force and the normal elastic force can be find as follows

(101)

(2

bx Bx _3gfx
cx Cx o x

(102)

Or hence we can write respectively
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b, _B, _3gB (103)

c, C w,

X X

As we can see this attitude is a constant value and it should not change at dependence by the order of integration.
If we take the second variant of integration according to Equation (101), the values of the constants of
viscoelasticity Cy and B, will be changed. Thus therefore, in the first variant of integration as it is taken in
Equation (54) and in Equation (82) we have a valid solution.

In conclusion, first of all, let us to mark, that the method of specific viscoelastic forces allows to find the
equations for all viscoelastic forces. The proposed method is a principally different with others in which are
using the Hertz's theory, the classical theory of elasticity and the tensor algebra. In this method the new
conception is proposed, how to find the elastic and viscous forces by an integration of the specific forces in the
infinitesimal boundaries of the contact area. The radius of contact area can be taken according the Hertz theory
or can be found by the considering the geometry of the contact. This method can be used in researches of the
contact dynamics of any shape of contacting surfaces. Also in the article the method of the solution of the
differential equations of a movement has been proposed and they have been solved. This method also can be
used for determination of the dynamic mechanical properties of materials, and it can be used in the design of
wear-resistant elements and coverings for components of machines and equipment, which are working in harsh
conditions where they are subjected to the action of flow or jet abrasive particles. Also the theoretical and
experimental statements which are presented here can be useful in the design of elements and details machines
and mechanism which are being in the conditions of the dynamic contact. The results of the experimental and
theoretical research and the method of the specific forces presented in this article can be used for the
determination of the viscoelastic forces, contact stresses, durability and fatigue life for a wide spectrum of the
tasks relevant to collisions between solid bodies under different loading conditions. Opportunities exist to use the
obtained results practically in the design and development of new advanced materials, wear-resistant elastic
coatings and elements for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors,
valves, gate valves and in other installations. Also the using of this theory gives an opportunity for the
development of analytical and experimental methods allowing optimising the basic dynamic and mechanical
visco-elastic qualities already existing materials and in the development new advanced materials and elements of
machines. Also this theory can be used not only for visco-elastic contact and also for any other kind of contacts,
such as the elasto- plastic contact and for the elasto-visco-plastic contact too.
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