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Abstract 
Solutions of the problems of a viscoelastic dynamic contact between smooth curvilinear surfaces of two solid 
bodies by the application of the “Method of the specific forces” have been given in the article, and the new 
conception for the definition of the elastic and the viscous forces in the common case of dynamics of a 
viscoelastic contact is proposed here by the further development of this method. Essence of this method is that, 
the forces of viscosity and the forces of elasticity can be found by integration of the specific forces acting inside 
an elementary volume of the contact zone. It is shown here, that this method allows finding the viscoelastic 
forces for any theoretical or experimental dependencies between the distance of mutual approach of two solid 
bodies and the diameter of the contact area. Also, the derivation of the integral equations of the viscoelastic 
forces, the equations for pressure in the contact is presented. Viscoelastic dynamic contacts between two 
spherical bodies, and between a spherical solid body and a semi-space at impact have been examined. Work and 
Energy in the phases of compression and restitution, and at the rolling shear have been derived. Approximate 
solutions for the differential equations of movement (displacement) by using the method of equivalent work have 
been derived. Equations for the normal contact stresses have been obtained. Also, equations for kinematic and 
dynamic parameters of the viscoelastic collision have been derived in this article. Examples of the comparison of 
theoretical results and conclusions have been given in the paper. 
Keywords: viscoelastic forces, method specific forces, elementary distributed axial loads, geometry contact 
area, dynamic modules, dissipative energy, viscoelastic parameters, method equivalent work 
1. Introduction 
The objective of this paper is the further development of the application of the “Method of the specific forces 
(MSF)” for solutions to the problems of a viscoelastic dynamic contact between smooth curvilinear surfaces of 
two solid bodies. The new conception is proposed here, how to find the elastic and the viscous forces by an 
integration of the specific forces in the boundaries of the contact area, which can be found by considering of the 
geometry of the contact. This method has been already used by author for case of the collision between a 
spherical solid body and a semi-space (Goloshchapov, 2003, 2015).  
It is assumed here that the surfaces of contact are smooth and in this case we are not considering the influence of 
roughness on the contact forces, and the initial velocities of contact Vx and Vτ is less than the effective sound 
speed in the volume of deformation (Figure 1). Also the effect of the adhesive forces and a plastic deformations 
have not been considered in this paper.  
As we know, the mechanics of an elastic contact problem between two smooth surfaces have been studied yet in 
the 19-th century by Herts (1882, 1896) and Boussinesq (1885), and then later, for example, it was examined by 
many others researchers, such as: Bowden and Tabor (1939); Landau and Lifshits (1944); Timoshenko and 
Goodier (1951); Archard (1957); Galin (1961); Sneddon(1965); Greenwood and Williamson (1966); Johnson, 
Kendall and Roberts (1971); Derjaguin, Muller and Toporov (1975); Bush, Gibson and Thomas (1975); Tabor 
(1977); Johnson (1985); Webster and Sayles, 1986; Stronge (2000); Persson, Bucher and Chiaia (2002); 
Wriggers (2006); Hyun and Robbins (2007). Also a viscoelastic contact between smooth and rough curvilinear 
surfaces of two solids already have been researched very widely and their results was published in many 
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different manuscripts (Mindlin,1949; Radok. 1957; Hunter,1960; Goldsmith, 1960; Galin, 1961; Lee, 1962; 
Graham, 1965; Ting, 1966; Greenwood & Williamson, 1966; Simon, 1967; Jonas, 1982; Padovan, & 
Paramadilok, 1984; Johnson, 1985; Brilliantov, 1996; Brilliantov, Spahn, Hertzsch, & Poeschel, 1996; Ramírez, 
Poeschel, Brilliantov, & Schwager, 1999; Stronge, 2000; Barber & Ciavarella, 2000; Goloshchapov, 2001, 2003; 
Laursen, 2002; Dintwa, 2006; Carbone, Lorenz, Persson, & Wohlers, 2009; Harrass, Friedrich, & Almajid, 2010; 
Persson, 2010; Cummins, Thornton, & Cleary, 2012; Carbone & Putignano, 2013; Popov, 2015). In all these 
researches for a finding of the viscoelastic forces and stresses, the traditional theories and methods usually have 
been applied. But, in this paper, the novel theoretical and practical principals have been used for finding these 
forces and stresses. 

 
Figure 1. Illustration of the mutual approach between two curvilinear surfaces of two solid bodies along the axis 

X relative to the initial point of contact A 
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The illustration of the mutual approach between two curvilinear surfaces of two solid bodies along the axis X 
relative to the initial point of contact A is depicted in the Figure 1. Here is not shown the displacement of the 
bodies along the axes Z and Y.  
It is obviously that during the time of a dynamic contact, in the initial point A, the curvilinear surfaces are 
moving relative to each other with the normal relative velocity Vx and the tangential relative velocity Vτ between 
them under action of the normal force Fn and the tangential shear force Fτ. Also let: Fτy and Fτz are the tangential 
forces along axes Y and Z; x is the size of the mutual approach of the bodies along the axis X; r is a current radius 
of the contact area; hxa is the depth of the contact surface in the plane XAY , or other words it is the depth of 
indentation of the more hard body into the surface of more soft body; hxb is the depth of the contact surface in the 
plane XAZ (This size is not shown in the Figure 1); 1x  and 2x  are normal compression deformations of the 
contacting surfaces relative to the initial point of the contact A; R1a and R2a are the radiuses of curvature of the 
contacting surfaces on the border of contact area in the plane XAY; Vτy and Vτz are the projections of the tangential 
relative velocity Vτ by axes Y and Z, or they are the tangential relative velocities of the displacement of surfaces 
of bodies along axes Y and Z; a is the big axis of an elliptic (oval) contact area; b is the small axis of an elliptic 
(oval) contact area; O1 and O2 are the centres of curvature of the contacting surfaces in the initial point of contact 
A; R1b and R2b are the radiuses of curvature of the contacting surfaces on the border of contact area in the plane 
XAZ.  
It is obvious, that in a general case the area of contact is taking the shape of an oval or an ellipse, and in the same 
time, the contact surface takes the identical shape with the harder surface, and the surface, which has less 
hardness slips by a surface of the harder body. It is a micro-slip and we do not take in account the energy of this 
dissipative process in this paper. You can say that in process of sliding deformation under action of the tangential 
force, the area of contact does not take the elliptical shape, but it is the oval or other asymmetric figure.  
But indeed, if the tangential force equal zero the contact area takes the right elliptical shape, but in the case of 
sliding deformation under the action of the tangential force, the elliptic shape of the contact area is transformed 
in the oval. Therefore, we can suppose, since the normal force stays same independently of the action of the 
tangential force, the normal contact pressure (or the normal contact stress) is not changed and stays same, and 
therefore the size of square of the contact is not changed too. According to this statement, we approximately can 
consider the area of contact like having the elliptical shape during all the contact time. Also in the case of an 
impact between the contact surfaces, when the rolling shear between them has place, we can state that the area of 
contact approximately keeps the elliptical shape too. Moreover, as we will see further, it does not matter, the area 
of contact is an ellipse or it is an oval, in the both cases, the derivation of the sizes of the contact area can be 
done in the same manner. 
The viscoelastic forces can be found as the sums of the elastic forces and the viscous forces:  
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Where:  is the normal elastic force;  is the normal viscous force;  is the tangential viscous 
force by axis Y;  is the tangential elastic force by axis Y;  is the tangential viscous force by axis Z; 

is the tangential elastic force by axis Z. 
The general tangential force can be found as sum  
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As it is known (Brilliantov et al., 1996; Goloshchapov, 2003, 2015; Jonson, 1985; Mindlin, 1949; Ramirez et al., 
1999; Schafer et al., 1996; Schwager & Poschel, 2007; Stronge, 2000; Thornton, 2009 we can write all these 
viscoelastic forces, simply as: 
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Where , , , yb ,  are variable parameters depending of the displacement x, y and z , and where:  is 
the effective parameter of viscosity (damping parameter),  is the effective parameter of elasticity (stiffness); 

,  are the effective parameters viscosity at a shift; ,  are the effective parameters of elasticity 
(stiffness) at a shift.  are the relative displacements (deformations) between contacting bodies or 
between contacting surfaces in the initial point A;  are relative velocities of displacements 
(deformations) between contacting bodies or between contacting surfaces in the initial point A.  
In the past many old papers and others published recently (Mindlin, 1949; Simon, 1967; Johnson, 1985 ; 
Goloshchapov, 2003, 2015; Cundall & Strack,1979; Hertzsch, Spahn , Schafer, Dippel, & Wolf, 1996; Ramírez, 
Poeschel, Brilliantov, & Schwager, 1999; Stronge, 2000; Roylance, 2001; Brilliantov & Poeschel, 2004; Makse, 
Gland, Jnohnson, & Schwartz, 2004; Schwager & Poschel, Van Zeebroeck, 2005; Dintwa, 2006; Schwager & 
Poschel, 2007, 2008; Cheng, Subic, & Monir Takla, 2008; Becker, Schwagerand, & Pöschel, 2008; Schwager & 
Poschel, 2008; Thornton, 2009; Cummins, Thornton, & Cleary, 2012) have been used traditional theoretical 
rheological models, such as the “Linear Spring Dashpot Model”- (LS+D), the “Hertz Mindlin Spring Dashpot 
Model”- (HM+D), and the “Discrete Elements Method” - (DEM) and others . In all of these methods and 
models, for the definition of the effective parameter of elasticity  (Some authors name it like a stiffness, or 
spring parameter), the Hertz’s theory of elastic contact between two surfaces (Landau and Lifshitz, 1944, 1965) 
has been used. Also, for the purpose of finding the tangential forces, the coefficient of friction was taken as a 
constant value. The more comprehensive analysis and review of these already known models and methods can 
be found, for example, in the monographs of the authors, such as: Stronge (2000); Van Zeebroeck (2005); 
Dintwa (2006); Li (2006). But, the most basic problem in the finding of the mechanical dynamic parameters of 
viscoelasticity , , ,  in the equations (3) is that, they are not the constant values. They all are variable 
magnitudes, because all dynamic mechanical and physical properties of the materials depend on dynamic 
conditions of loading (displacements, a velocity and a frequency) and temperature. But, the Hertz theory allows 
only the finding the normal elastic force. The existing methods still cannot give the complete answer, how these 
nonlinear parameters of viscoelasticity can be found for the practical application by using the dynamic modules 
of elasticity and viscosity, which usually can be found by using the known methods (Ferry, 1948, 1963; Moore, 
1975; Van Krevelen 1972; Nilsen, 1978, 1994) For example as we know according the Hertz theory (Landau &  

Lifshtz, 1944, 1965) for the contact of two spherical surfaces . Where E is effective  

elasticity modulus, R is the effective radius of contact curvature. As we can see, the stiffness cx is the nonlinear 
function of displacement x, but we still have a problem in definition of others parameters , , , , , 
which are the variable nonlinear functions too.  
And also in already existing researches, the coefficient of friction usually is taken like a constant value for the 
purpose of finding the tangential forces, but according to Equations (1), (2) and (3) it can be defined as follows:  
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As we can see from this equation, the coefficient of friction is not a constant value, but it changes during the time 
of contact, because the dynamic contact between two bodies is a non-equilibrium process, and all dynamic 
mechanical and physical properties of the materials depend on dynamic conditions of loading and temperature. 
For example, the dynamic elasticity modules are very yieldable to a changing of a velocity and temperature of 
the matter in the area of deformations (Ferry, 1948, 1963; Lee, 1962; Van Krevelen, 1972; Moor 1978; Nilsen, 
1978, 1994; Lakes, 1998; Meyers, 1994; Menard, 1999; Roylance, 2001; Goloshchapov, 2001, 2003, 2015; 
Hosford, 2005; Popov, 2010, Popov & Hess, 2015). 
Also, it is necessary to mention that, the researches in the field of the collision of viscoelastic particles (granules) 
with identical mechanical properties have been made by Brilliantov, Spahn, Hertzsch and Pöschel (1996). They 
have obtained the equation for the normal viscous force with variable viscosity parameter  
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A is the damping viscous parameter, and where 1η  and 2η  are the viscous 

constants. But this theoretical result can only be used for the contact of the bodies with the same 
physical-mechanical properties, and in this case we have the problem of finding the viscous constants “ 1η ” and 
“ 2η ”. If the contacting surfaces have different physical-mechanical properties this conception does not give the 
answer, because this is a yet more difficult problem. 
Also the interesting method - "Method of Dimensionality Reduction (MDR)" has been presented by Popov 
(2015), but it can be used only in the case of contact between three-dimensional, axial-symmetric bodies and a 
foundation (a semi-space). In all these papers, to find the equations for tangential forces, the coefficient of 
friction again was taken as a constant value. 
Thus, as we can see, the many problems still exist now in these research areas. Therefore, especially for the 
solving of these problems, such as the definition of the normal viscous force and the all tangential viscoelastic 
forces, and for the finding of the kinematic and the dynamic mechanical parameters between two contacting 
surfaces, such as the elasticity modulus and the viscosity modulus, the theoretical and experimental ways have 
been developed and represented in this article below.  
2. Derivation of the Equations for the Viscoelastic Forces by the “Method of the Specific Forces (MSF)”  
Let us assume that in the infinitesimal period of the time dt, when the mutual approach between a body and a 
semi-space is the infinitesimal magnitude dx (Figure 2), inside the elementary infinitesimal volume dV, which is 
arising around the initial point of the contact A (Figure1 and Figure2), the infinitesimal viscoelastic forces dFn, 
dFτy and dFτz are beginning to act.  
 

 
Figure 2. Illustration of the action of the specific elementary viscoelastic forces inside the infinitesimal volume 

dV in the vicinity of point A 
 

These forces can be found by the differentiation of the normal Fxi, and the tangential Fyi and Fzi specific forces 
by sizes da, db and dx: 
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Where: da and db the big and the small axes of the infinitesimal contact area;  is the normal effective 
specific viscoelastic force;  is the tangential effective specific viscoelastic force by axis Z; is the 
tangential effective specific viscoelastic force by axis Y. 
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Also it is very important to understand indeed that, these specific forces Fxi, Fyi and Fzi are the elementary axial 
loads distributed on the infinitesimal sizes, da, db and dx parallel to axes X, Y and Z (Figure2). The name 
“specific force" already was applied by author of article (Goloshchapov, 2015), and this name is the short name, 
which usually is used to denote the elementary distributed axial loads.  
2.1 The Effective Dynamic Modules and the Effective Dynamic Viscosities 
According to the “Newton’s Third Law” the effective specific forces and the specific forces between bodies have 
to be equal: 21 xxxi FFF == , , . Where:  and  are the normal 
specific viscoelastic forces of the bodies by axis X; and is the tangential viscoelastic specific forces of 
the bodies by axis Y; and is the tangential viscoelastic specific forces by axis Z. (Here and further in 
this paper the subscript 1 is used for more soft body, and 2 is used for more solid body). On the other hand, the 
specific viscoelastic forces can be found as the sum of the specific elastic forces and the specific viscous forces:  

 
Where:  is the normal effective specific viscous force;  is the normal effective specific elastic force; 

 and  are the normal specific viscous forces; and  are the normal specific elastic forces; 
 and  are the tangential effective specific viscous forces;  and is the tangential effective 

specific elastic forces; , and ,  are the tangential viscous specific forces; , 
and ,  are the tangential elastic specific forces. 
Also let us suppose that the volume of deformation is the system of an infinitely large number of elementary 
discrete elements (Figure 3.) connected among themselves definitely. And also, in this case let us assume, that 
for the infinitesimal period of the contact time dt all deformations inside of each elementary discrete element are 
changing linearly and therefore all specific forces are changing linearly too. Based on this, the equations for all 
specific forces can be written as the linear functions:  
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Figure 3. Illustration of the “Elementary discrete elements model (EDEM)”: a. the elementary discrete element 
of the normal contact between two bodies; b. the effective elementary discrete element of the normal contact 
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Where: E′ is the effective dynamic elasticity modulus; Eη ′ is the effective dynamic viscosity;  is effective 
dynamic elasticity modulus at the shear; is the effective dynamic viscosity at the shear;  and  are 
the dynamic elasticity modules. E1η ′ and  are the dynamic viscosities; and is the dynamic 
elasticity modules at the shear. and  is the dynamic viscosities at the shear. 
In the proposed model, each elementary deformation between two bodies develops analogically like the 
deformation of the elementary discrete element, which is depicted in Figure 3.a. It is a simple case of the linear 
model of deformations of elementary discrete elements, and instead this model with four elements we can use its 
analogy - the model with two effective elements depicted in Figure 3.b. Also the “Elementary discrete elements 
model” for the normal forces can be used for the tangential forces in the same manner. 
It is obvious that the according to the initial conditions, when t = 0, х = 0, the specific elastic forces acting by X 
are equal at the initial instant of the contact (in this point they are equal zero); and the according to the boundary 
conditions, when х = хm, they are equal at the instant of the maximum compression between two surfaces (in this 
point they reach the maximum value). But at the same time, the specific viscous forces are equal at the initial 
instant of the contact, when t = 0, х = 0 (in this point they are equal to the maximum value, because the velocity 

 has the maximum value), and they are equal at the instant of the maximum compression between two 
surfaces, when х = хm (in this point they are equal zero, because the velocity ). All of these forces in the 
Equation 7 are linear continuous functions and if they are equal for these two values of the argument x, they have 
to be equal for any other values as well, or by other words, they are equal in any instant of the time of the 
contact. Analogically this conclusion is valid for other specific forces acting by axes Y and Z. Thus consequently 
we can write that  

= = , = = , = = , = =  and = = , (7*) 

and hence we get respectively 
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Since as ,  ,  according to (8) we can write the equations for the 
effective dynamic modules and the effective dynamic viscosities as  
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And also we can write that  
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Where:  and  are the coefficients of deformation. 
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and according to (7), since , xEFxc ′= , , , , , the 
twelve expressions for the infinitesimal viscoelastic forces can be written separately as: 

 
And since the limits of integration hxa and hxb are known, the integral equations for all viscoelastic forces can be 
written respectively as  

    
2.3 The Geometry of the Area of the Contact and the Pressure Distribution  
And now, the important moment, it can be seen that for a finding of the solutions for all Equations (12) we have 
to know only the equations or the formulas for a = f(x), b = f(x), and for hxa = f(x) and hxb = f(x). For example, 
we can use that 2/1)(Rxr =  according to the Hertz theory, but according to this theory, the area of contact is a 
flat surface and the depth of indentation (the depth of the contact surface) hx = 0. But in reality the area of 
contact usually is not a flat, it is a curvilinear surface. In Hertz's theoretical models has been taken that the 
contacting surfaces deform together without of the micro-sliding, but in reality each surface deforms 
independently. Therefore, to find the radiuses of the contact area ra and rb in reality, first of all, let us consider 
the geometry of contact between two curvilinear surfaces in the normal section in the plane XAY, like it is 
depicted in the illustration in Figure1. It is obviously that, in the time of indentation of more hard surface into a 
soft surface, the contact surface takes a curvilinear shape, where the point B (see Figure1) is a special point 
where the deformations always equal zero, and the border of the area of contact always pass through this point B. 
According to this statement, the distance O2B between this point and the centre of curvature O2 of the surface of 
more hard body will not be changed in the period of time of contact. This distance always equals to the radius of 
curvature R2. Also the distance O1B between this point and the centre of curvature O1 of the surface of less hard 
body will not be changed in the period of time of contact too. This distance always equals to the radius of 
curvature R1. Hence, obviously that O2B = O2D = R2a and O1B = O1E = R1a, and also we can write that 
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calculation, if to neglect by members of smallest order, we get the next equation for the radius of contact area  
ra = f(x) equals a/2, and then analogically in same way we can find the radius of contact area )(xfrb =  equals 
b/2 as follows: 
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                                               dbFFdaFFdF xcxbxcxbn )()( +++= , 
 
                                              dxFFdbFFdF ycybycyby )()( +++=τ ,                                   (10*)  
 
                                              dxFFdaFFdF zczbzczbz )()( +++=τ ,         
 

xF Exb η′= yF Gyb η′= yGFyc ′= zF Gzb η′= zGFzc ′=

 

                           
daxdF Eabn η ′= , xdaEdFacn ′= ,  dbxdF Ebbn η ′= , xdbEdFbcn ′= ,  

                           dbydF Gbby η′= ,  ydbGdFbcy ′= , dxydF Ghby η′= ,  ydxGdFhcy ′= ,                        (11)

                           dazdF Gabz η′= ,  zdaGdFacz ′= ,  dxzdF Ghbz η′= ,  zdxGdFhcz ′=   

                          
′= daxF Eabn η ,  ′= xdaEFacn ,  ′= dbxF Ebbn η ,  ′= xdbEFbcn ,   

                          ′= dbyF Gbby η ,  ′= dbyGFbcy ,  ′=
xah

Ghby dxyF
0

η , ′=
xah

hcy dxyGF
0

,                (12)

                          ′= dazF Gabz η ,  ′= dazGFacz ,  ′=
xbh

Ghbz dxzF
0

η ,  ′=
xbh

hcz dxzGF
0
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   xRkr apaa
22 = , xRkr bpbb

22 =   (14) 

where  

   
a

pa R
xk −= 2 , 

b
pb R

xk −= 2   (15) 

are the correlation coefficients. Practically for the solution of the contact problems, the correlation coefficient 
can be found by the method of iterations and a consecutive approximation.  
Obvious from (13) that the surface of the contact takes the elliptical shapes in the planes XAY and XAZ, but for a 
simplification, its shape can be approximated by the parabolic functions (14) respectively as 

   2
2

1
a

apa

r
Rk

x = , 2
2

1
b

bpb

r
Rk

x =   (16) 

Since the surface of the contact has approximately the parabolic shape, let us to take that the radial distribution 
of the pressure inside of this area changes analogically according to the parabolic function as 

  









−= 2

2

1
a

y
c r

r
PP , 








−= 2

2

1
b

z
c r

rPP    (17) 

Where: ry is a current radius of the contact area by axis Y; rz is a current radius of the contact area by axis Z; Pc is 
the maximum magnitude of the pressure in the centre of the contact area. 
Further since the square under these functions in the Equation17 and the square under the linear function of the 
mean pressure Pm in the contact area are equal, we can write that  

      rPdr
r
r

P m

r

y
a

y
c

a

=









−

0
2

2

1 , rPdr
r
rP m

r

z
b

z
c

b

=







−

0
2

2

1    (18) 

Then after the integration follows  

  rPrrP mc =





 −

3
1

,   (19) 

and finally the ratio between maximum and the mean pressure in the contact zone can be found as 

   mc PP
2
3=    (20) 

Now let us to define the depths of the contact surface (see Figure 1) in the planes XAY and XAZ. The expressions 
for the radiuses of contact area can be found also as follows  

 ( )2
2

2
2

2
2

2 )( xaaaa hxRRr +−−= , ( )2
2

2
2

2
2

2 )( xbbbb hxRRr +−−=   (21) 

After a simple geometric calculation, if to neglect by members the smallest order, we obtain the next equations 
for the radiuses of contact area: 

          2
222

2 )()(2 xaxaaa hxhxRr +−+= , 2
222

2 )()(2 xbxbbb hxhxRr +−+=   (22) 

Then after the comparison equations (22) and (13) we can write that  

 xRhxR axaa 2)(2 22 ≈+  , xRhxR bxbb 2)(2 22 ≈+   (23) 

Finally since xDx 22 = , the formulas for xah  and xbh can be written as follows  
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               xkx
R

RDRh ha
a

aa
xa =







 −=
2

22 , xkx
R

RDRh hb
b

bb
xb =







 −
=

2

22   (24) 

Where 






 −
=

a

aa
ha R

RDR
k

2

22  and 






 −
=

b

bb
hb R

RDR
k

2

22  are the coefficients of depth of the contact  

surface.  
Also let us remark that, in the case a very small deformations, when xRa >> and xRb >>  according to 
Equations (15) follows 2≈≈ bpa kk , and we can write that 

   ( ) 2/12 xRr aa = , ( ) 2/12 xRr bb =   (25) 

But, according to the Hertz theory (Landau and Lifshitz 1944, 1965) ( ) 2/1Rxr = , but it is possible only in the 
one case when 1== pbpa kk .  
2.4 The Equations for all Viscoelastic Forces 
Since as ara 2= and brb 2= , according to the Equation (14) we can write that 

   2/12/12 xRka apa=  , 2/12/12 xRkb bpb=   (26) 

The taking of the derivatives da/dx and db/dx gives us  

   dx
x

Rk
da apa

2/1

2/1

=  , dx
x

Rk
db bpb

2/1

2/1

= ,  (27) 

and then after an integration of the integral equations for the normal forces from (12), we get  

 ′= dxxREkF apaacn
2/12/1

 = 2/32/1

3
2 xREk apa ′ , ′= dxxREkF bpbbcn

2/12/1
 = 2/32/1

3
2 xREk bpb ′   (28) 

Since as bcnacncn FFF +=  we get  

                2/32/12/12/3

3
2)(

3
2 xERkRkxEF bpbapacn ψ′=+′= ,  (29) 

where )( 2/12/1
pbpbpapa RkRk +=ψ , [m1/2] is the parameter of curvature. 

If 1== pbpa kk  and if the contact area is a circle Ra = Rb = R we have the same solution that have been 
obtained for the contact between spherical surfaces by using the Hertz theory (Landau & Lifshitz, 1944, 1965): 

       2/32/1

3
4 xREFcn ′=   (30) 

Thus, it is obvious that the proposed method of the finding of the normal elastic forces definitely is valid and 
correct. It can be seen that, if we know a functional dependency between r and x, we can always find the elastic 
force. But, if this method is correct for the definition this force, hence it should be valid for the definition of all 
viscoelastic forces in the equations (12). The equation for the normal viscous forces can be found in the same 
way by integration: 

 

                                       

2/12/1
2/1

2/1

)(2)( xtxRkdx
x
RtxkF aEpa

a
Epaabn  ηη ′=′= 

                                     (31)

2/12/1
2/1

2/1

)(2)( xtxRkdx
x
RtxkF bEpb

b
Epbbbn  ηη ′=′= 
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Here )(tx  are the function linear independent from x, and it cannot be integrated by x, and it stays outside of 
integrals. And since as bbnabnbn FFF +=  follows 

             2/12/12/12/1 2)(2 xxRkRkxxF EbpbapaEbn  ψηη ′=+′=   (32) 

In the case when the contact area is a circle ppbpa kkk == and Ra = Rb = R we get 

   2/12/14 xxRkF Epbn η ′=   (33) 

Since as x and y are linearly independent and dx
x

Rk
da apa

2/1

2/1

= , dx
x

Rk
db bpb

2/1

2/1

= , and xkh haax = ,  

xkh hbxb = , after an integration of the equations for the tangential forces from Equation (12) their solutions can 
be written as follows: 

 
Here zzyy ,,,   are the functions linear independent from x, and they cannot be integrated by x, and they stay 
outside of integrals.  
The equations for the tangential elastic and viscous forces can be written now, as the sum of the elastic and the 
viscous tangential forces from Equation (34):  

 
Where: 

 2/12/12 xRkxkP bpbhabx += , 2/12/12 xRkxkP apahbax +=   (36) 

Thus finaly, according to Equations (1), (31), (34) and (35) the next system of equations for general viscoelastic 
forces can be written respectively: 
 

                 yxRkdbyF bGpbGbby  2/12/12 ηη ′=′=  ,       yxRGkdbyGF bpbbcy
2/12/12 ′=′=   

     

                 yxkdxyF Gha

h

Ghby

xa

 ηη ′=′= 
0

,              xykdxyGF ha

h

hcy

xa

=′= 
0

,                        

                                                                                                                                                                              (34) 
 

                  zxRkdazF aGpaGabz  2/12/12 ηη ′=′=        zxRGkdazGF apaacz
2/12/12 ′=′=                   

                     

                  zxkdxzF hb

h

Ghbz

xb

 =′= 
0

η ,                         xzkdxzGF hb

h

hcz

xb

=′= 
0

         

 

  
                              yPFFF bxGbbyhbyyb ητ ′=+= ,  yPGFFF bxbcyhcyyc ′=+=τ  
                                                                                                                                                                     (35)
                              zPFFF axGbbzhbzzb ητ ′=+= ,    zPGFFF axaczhczzc ′=+=τ                                
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















′+′=+=

′+′=+=

′+′=+=

zPGzPFFF

yPGуPFFF

xExxFFF

axaxGzczbz

bxbxGycyby

Ecnbnn







η

η

ψψη

τττ

τττ

2/32/1

3
22

 (37) 

And thus, we can write the expressions for the variable viscoelasticity parameters as follows:  

 axzaxGzbxybxGyxEx PGcPbPGcPbxEcxb ′=′=′=′=′=′= ,,,,
3
2,2 2/12/1 ηηψψη   (38) 

It is not possible the finding of the viscoelastic forces separately for each contacting body if to use the Hertz 
theory and others already existing theories, but it is possible by using the “Method of the specific forces (MSF)”. 
The integral Equation (12) separately for each contacting body can be written as follows: 

 
Where usually the index i = 1 use for a soft body and i = 2 use for a hard body. 

Since as 
2

2

1

1

D
x

D
xx == , we can write that 2/1

1

2/1
12/12

D
x

Rka apa=  and as well 2/1
2

2/1
22/12

D
x

Rka apa= , and 

2/1
1

2/1
12/12

D
x

Rkb bpb=  and as well 2/1
2

2/1
22/12

D
x

Rkb bpb= , then after differentiation we get: 

 12/1
1

2/1
1

2/1

dx
xD

Rk
da apa= , 22/1

2
2/1

2

2/1

dx
xD

Rk
da apa= , 12/1

1
2/1

1

2/1

dx
xD

Rk
db bpb= , 22/1

2
2/1

2

2/1

dx
xD

Rk
db bpb=   (40) 

After a substituting the expressions (40) into (39) and then after their integration we can get the equations for the 
viscoelastic forces separately for each body. If we can find the viscoelastic forces separately for each body hence 
we can find separately the viscoelastic stresses for each body too. It is not possible to do by using the Hertz 
theory or by using others already existing theories and methods.  
The normal viscoelastic stresses, which equal to the mean pressure Pm in the contact area, can be found as 

 
x

n
m S

FP = ,  (41) 

where abS x 4
π=  is the contact area, and according to Equation (26) follows xRRkkS bapbpax

2/12/1π= . In 

correspondence with Equations (20), (37) and (41) the expression for maximum value of the normal contact 

                 
′= daxF iiEabni η ,  ′= daxEF iiacni ,  ′= dbxF iiEbbni η , ′= dbxEF iibcni ,   

                 ′=
xah

iiGhbyi dxyF
0

η , ′=
xah

iihcyi dxyGF
0

,  ′=
xbh

iiGhbzi dxzF
0

η , ′=
xbh

iihczi dxzGF
0

,                (39)

                  ′= dbyF iiGbbyi η , ′= dbyGF iibcyi , ′= dazF iiGabzi η ,   ′= dazGF iiaczi  
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pressure (stresses) can be written as follows: 

 2/12/12/1
)3(
xRRkk

xExP
bapbpa

E
c π

ηψ ′+′
=


  (42) 

3. Dynamic Contact between two Spherical Bodies at Impact 
In the case of the contact between two spheres, when the contact area is a circle Ra =Rb = R, ra = rb =r, a = 
b=2r, Fτz = 0, Fτ = Fτy , Fbτ = Fbτy , Fcτ = Fcτy (see Figure1) follows that ,  
and , 2/12 Rk p=ψ , and then according to Equations (1) and (37) we get the next system of 
equations for the main viscoelastic forces:  

              













′+′=+=+=

′+′=+=+=

yPGуPycybFFF

xREkxxRkxcxbFFF

xxGyycb

pEpxxcnbnn





η

η

τττ

2/32/12/12/1

3
44

  (43) 

Where , and where the expressions for the variable viscoelasticity parameters in the 
Equation (3) can be written as follows  

  bxybxGyxEx PGcPbxREcxRb ′=′=′=′= ;,
3
2;4 2/12/12/12/1 ηη   (44) 

Also, for this case, the expression for the depth of the contact surface can be written as follows  

    xkx
R

RDRh hx =






 −=
2

22   (44*) 

4. Contact between a Spherical Solid Body and a Semi-Space at Impact 
This example is given here, because the results, which can be obtained in this case, can be used also for others 
cases of a dynamic contacts, such as for the dynamic contact at impact between two spherical bodies or between 
two cylindrical bodies. 
Let a spherical body, having the average statistical mass , the radius R and the initial velocity V0, comes into 
viscoelastic contact under an arbitrary angle of attack α to the surface of semi-space at the initial instant of the 
time t = 0, at the initial point of contact 0 (Figure 4). And let the vectors of velocities are applied to the centre of 
mass of the body (the point C0). Also in Figure4 are designated: V0x = V0 sinα, V0y = V0 cosα are the initial normal 
and tangential velocities of a body; M = Fτlx is the reactive moment; lx is the shoulder of tangential force; ω is 
the angular velocity and ε is the angular acceleration around of the centre of mass of a body; Vd is the volume of 
deformations, which is forming in the course of contact. Also the geometry of surface of the contact zone is 
characterised by the geometrical parameters, such as ( Figure 4):  is the normal deformation of the surface of 
semi-space in the middle of the contact area, which as well, is the approach of a semi-space relative to a body; 

is the normal deformation of the surface of a body in the middle of the contact area, which as well, is the 
approach of a semi-space relative to a semi-space; r - the radius of the contact area; hx is the depth of the contact 
surface, or other words, hx is the depth of indentation of a body into the surface of semi-space. 
Also, it is seen here (Figure4) that at the initial instant of the time, the body with the centre of mass in the point 
C0 comes into contact with the surface of semi-space at the initial point of the contact 0 with coordinates х = 0 
and y = 0, but at the instant of the time t, the centre of mass of a body (the point Ct) takes the position with 
coordinates x and y.  
 

pbpap kkk == xbxax hhh ==
hbhah kkk ==

2/12/12 xRkxkP phx +=

2m

1x

2x



www.ccsenet.org/mer Mechanical Engineering Research Vol. 5, No. 2; 2015 

72 

 
Figure 4. Schematic illustration of the indentation of a spherical body into a semi-space 

 
It is obviously that the viscoelastic forces Fn and Fτ are acting in the contact area between the surfaces of the 
contact and according to Newton’s Second Law we can write: 

 








−=
−=
−=

ϕ
τ





z

n

JM
ymF
xmF

  (45) 

Where: m is the effective or reduced mass of the contacting bodies; - the accelerations of the centre of 
mass of the body; Jz is the moment of inertia of a body;  the angle of rotation of the body around the centre of 
mass;  is the angular acceleration of a body around the centre of mass.  
Remark: The term “effective mass” already have been used by Stronge (2000), Dintwa, (2006), Bordbar, 
Hyppänen (2007), Antypov, Elliott, Hancock (2011), and by many others authors. Also the mass m was called 
like the reduced mass by Landau (1944, 1965), Brilliantov (1996). 
We can see here that 21 xxx +=  is the distance of the mutual approach (the total deformation) between a 
body and a semi-space, and as well, in the same instant of the time, it is the displacement of the centre of mass of 
a body relative to the initial point of contact 0 by axis X. At impact of two bodies, the effective mass m enters 
usually like the mass of the third body, and the movement (the displacement) x of the centre of mass of this third 
body takes equal to the distance of the mutual approach (or a compression, an overlapping) of the colliding 
bodies. At impact of two bodies, according to the second law of Newton, we can write that 

dt
dVm

dt
dVm

dt
dVmF xxx

n
2

2
1

1
0 −=−=−= , 

where V0x = V1x +V2x. These equations are valid only for the movement of the centres of mass of the bodies. All 
authors, who use these equations, for example, Stronge (2000), Dintwa, (2006), Bordbar, Hyppänen (2007), 
Antypov, Elliott, Hancock (2011), Landau (1944, 1965), Brilliantov (1996) take that x is the displacement of 
centre mass of this third body and x is the mutual approach (a compression, an overlapping) between the bodies  
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too. From these two expressions follows that  and since as in the case of the collision of a  

body and a semi-space , and hence we can take that . As well, if the semi-space is 
immovable, when the velocity of a semi-space V1x = 0, follows that . Hence it is proved that in the case 
of collision between a body and a semi-space, the mass of a body 2m  is equal to the effective mass m. Further 
in this paper, the mass of body is designated by the symbol m. Consequently, the distance of the mutual approach 
between a body and a semi-space is equal to the displacement x of the centre of mass of a body. Analogically as 
for x we can write that  is the displacement of the centre of mass of a body relative to the initial 
point of contact 0 by axis Y, where - is the tangential deformation of the surface of a semi-space  is the 

tangential deformation of the surface of a body.  
It is obvious that, in the case of the contact between a spherical body and a semi-space, the effective radius R and 
the radius of a body are equal, and if take in account (25) and that M = Fτ lx, then if the dynamic viscosities 
replace by the dynamic viscosity modulus according to the known expressions (Ferry, 1948, 1963; Lee, 1962; 
Van Krevelen, 1972; Moor 1978; Nilsen, 1978, 1994; Lakes 1998; Meyers 1994; Menard 1999; Goloshchapov, 
2001, 2003, 2015; Hosford 2005; Popov 2010, Popov and Hess 2015) 

       and ,  (46) 

the equations for the normal and the tangential viscoelastic forces and for the reactive moment can be written as 
follows: 

             (47) 

Where is the effective viscosity modulus under, is the effective viscosity modulus at shear,  is the 
normal angular frequency of damped oscillations of the volume of deformation Vd by the axis X,  is the 
tangential angular frequency of damped oscillations of the volume of deformation Vd by the axis Y. 
We have to mark that in the case of contact between a spherical body and a semi-space, when R2 = R (see 
Equation 44*) follows that 12 )1( DDkh =−= , and hence  

 xDxhx 11 ==   (47*) 

Viscosity modules can be found by using the known (Ferry,1948; Moore,1975; Van Krevelen, 1972; Nilsen, 
1978; Landel, 1994) formula 

        ,  (48) 

where  is the angle of mechanical losses.  
Let us notice that often the dynamic modulus of elasticity is named yet as the accumulation (storage) modulus, 
and the dynamic modulus of viscosity is named yet as the loss modulus. 
And now, according to (45) and (47), the differential equations of the movement (displacement) of the centre of 
mass of a body can be written as follows: 
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Or it can be also written in the canonical form as 

   (50) 

Where, the formulas for the variable viscoelasticity parameters in the system of equation (50) can be written as  

 xyx
y

yx
x

x PGcPGbxREcxREb ′=
′′

=′=
′′

= ,,
3
4,4 2/12/12/1

2/1

ωω
  (51) 

4.1 Work and Energy 

As we know the period of time at impact includes two principally different phases such as, the phase of the 
compression and the phase of the restitution. Also in the duration of a collision, the full initial kinetic energy of a  

body 
2

2
0

0
mVW =  is divided into the two independent parts such as, the normal initial kinetic energy of a body 
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W = . On the other hand, the full 

kinetic energy of a body at the instant of rebound 
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W =  (where Vt is the velocity of the centre of mass of  

a body in the instant of rebound) is included two independent parts such as, the normal kinetic energy of a body  

at the instant of rebound 
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W =  (where Vtx is the normal velocity of the centre of mass of a body in the 

instant of the rebound ) and the tangential kinetic energy of a body at the instant of rebound 
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ty
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(where Vty is the tangential velocity of the centre of mass of a body in the instant of rebound). Therefore, the 
description of the processes of the compression and the restitution along the axis X, and the shear along the axis 
Y are given independently in this part of the paper. The basic problems here are the finding the equations for the 
work of viscoelastic forces, the dissipative energy in the phases of the compression, the restitution and at the 
shear. Also it is necessary to determine the coefficients of restitution, the maximum size of the compression 
between a body and a semi-space, the dynamic modules of elasticity and viscosity. 
4.1.1 Work and Energy in the Phases of Compression and Restitution  
The graphical illustration of the functional dependences between the normal viscoelastic forces and the 
displacement of the centre of mass of a body is depicted in Figure 5: (a). Also the “Rheological model of 
Kelvin-Vogt”, which usually is used for the viscoelastic contact, is represented in Figure 5: (b). As we can see, 
the viscosity force has the extremum in some point of the time equal τb. 
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It is obvious that the normal initial kinetic energy of the body W0x is spent for the work Axm of the normal 
viscoelastic force nF  in the compression phase. But on other hand, Axm can be found as the sum of the works 
Axcm and Axbm, where Axcm is the work of the normal elastic force cnF  and Axbm is the work of the normal 
viscous force bnF  in the compression phase. Also we can say that the part of the kinetic energy W0x is 
transformed into the potential energy of the nonlinear elastic element (spring) (Figure5: (b)) and the other part of 
this kinetic energy is dissipated during the time of deformation at the compression of the nonlinear viscous 
element (dashpot). However, on the other hand, the work Axt of the normal viscoelastic force nF  in the 
restitution phase is equal to the normal energy of a body Wtx at the instant of rebound, and also Axt can be found 
as the difference between Axct and Axbt, where Axct is the work of the normal elastic force cnF  and Axbt is the 
work of the normal viscous force bnF  in the restitution phase. Consequently, we can write that 
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Figure 5: (a) - The graphical illustration of the functional dependences between the normal viscoelastic forces 

and the displacement x of the centre of mass of a body; (b) - The “Nonlinear Rheological Model of 
Kelvin-Vogt”, where cx and bx are not the constant magnitudes 

It is obvious that Axcm = Axct and hence the potential energy which has been accumulated inside of the elastic 
element (spring) fully returns back to the body in the instant of rebound. The works Axcm and Axbm at the 
compression can be found by integration:  
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Analogically the works Axct and Axbt in the restitution phase can be found as follows: 
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Where: 21 τττ +=x  is the period time of the contact; 1τ  is the period time of the compression; 2τ is 
the period time of the restitution; xm is the maximum magnitude of the compression between a body and a 
semi-space (also it is the maximum displacement of the centre of mass of a body, which is equal to the maximum 
of mutual approach between a body and a semi-space).  
According (52), (53), (54), (55) and (56) the equations for the work of the compression and the restitution can be 
written as follows: 
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and according (48) and (57) we can write  

 























−′=









+′=

2

2/52/1

1

2/52/1

31
15
8

31
15
8

τω
β

τω
β

x
mpxt

x
mpxm

tgxREkA

tgxREkA

  (58) 

Since as 
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WA == , and by using the first of the equations (58), we get the 

formula for xm respectively  
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Also, we can define the energetic coefficient of restitution ex, which equals to the square of the kinematic 
coefficient of restitution kx (further it will be named simply the coefficient of restitution), like the ratio between 
Wtx and W0x: 
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Since as we can take that 
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we get that 
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and using (60) and (62) we get that 
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Thus, we have got the equation, which binds the coefficient of restitution and the tangent of the angle of 
mechanical losses. So, if kx = 1, tgβ → 0 we get the totally elastic impact, but if kx = 0, tgβ → ∞ then we get the 
totally viscous impact. Using (63) we can write the formula for the restitution coefficient as 
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If to compare the Equations (59) and (64) we can finally get the expression for the maximum magnitude of the 
compression between a body and a semi-space respectively as  
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In the case of a totally elastic impact, when kx = 1 and kp = 1 we get the same result, as it has been obtained by L. 
Landau (1944, 1965) according to the Hertz theory for the absolutely elastic contact.  
4.1.2 Work and Energy at the Rolling Shear 
It is obvious that, in the during time of the displacement and the rolling shear along axis Y, the tangential initial 
kinetic energy of a body W0y is spent for the work Ay of the tangential viscoelastic force τF . The work Ay can 
be found as the sum of the works Ayb and Ayc, where Ayb is the work of the tangential viscous force τbF  and Ayc 
is the work of the tangential elastic force. But on other hand, it is obvious as well, that the work Ayb is 
transformed into the dissipative energy Qω and the work Ayc is transformed into the work Aω of the rotation of the 
body around the centre of mass of a body. Thus, according to the “Law of preservation of energy for a 
non-conservative (dissipative) mechanical systems”, we can write the equations for the displacement of the 
centre of mass of a body and for the rotation of a body relative to the centre of mass of a body, as follows below: 
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Where: dyFAy = τ ; ϕω dMA −= ; dyFQ b= τω , and where xlFM τ= . 

Since τττ bc FFF +=  and if R >> x, we can take that RFFRFM bc )( τττ +== , and since as
Rdyd /=ϕ , hence 
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   dyFFdMA bc )( ττω ϕ +−=−=    (67) 

Also since, if the initial angular velocity 0ω  equals zero we can write the Equation (66) for the boundary 
conditions in the instant of the time 1τ=t  of the maximum compression mxx =  and 1yy = as follows: 
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Where: Vmy is the velocity at the instant of the time 1τ=t ; ωm is the angular velocity relative to the centre of 
mass of a body at the instant of the time 1τ=t ; 1y  is displacement of the centre of mass of a body along axis 
Y at the instant of the time 1τ=t  . The Equation (68) can be rewritten as 
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Also at the point of the rebound, when xt τ=  we get  
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  (70) 

Then we can write that 
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The summation of the systems (69) and (71) together yields the following result  
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We can rewrite Equation (72) in the next order 
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Finally we get 
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Where: dyFA
y

bybm =
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0
τ  is the work of the tangential viscous force τbF in the compression period 1τ ; 
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Since as from Equation 47 follows that yPGF x
y
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=  and yPGF xc ′=τ , all these works in (74) can be found by 

integration, as follows:  
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Where 

 2/12/1
1 2 mpmm xRkxDP +=   (76)  
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The full changing of the energy of the dissipative system at the rolling shear can be found as the difference 
between Ay and Ayc from (74):  
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  (77) 

According to the Equation (74) the conclusion can be drawn that the work Ayc is transformed into the kinetic 
energy of the rotation of the body relative its centre of mass, but on the other hand the work Ayb is transformed 
into dissipative energy Qω in the process of the internal friction. Accordingly, using (74) and (75) we have  
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Hence the equation for the angular velocity at the instant time of rebound can be written as follows 
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Since the work Ayb of the viscous tangential force τbF  is equal to the dissipative energy Qω , using Equation 
(75) we get 
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Since as 21 ττ xk= , finally we get 
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5. Approximate solution to the Differential Equations of the Displacement by using the Method of the 
Equivalent Works 
For practical application of the differential Equation (50) with the variable viscoelasticity parameters, we can 
find their approximate solutions in the same manner as for the equations with the equivalent constant 
viscoelasticity parameters, if we choose the equivalent constant parameters Bx, Cx and By, Cy so that the work 
Axcm and Axbm, Aycm and Aybm with the variable viscoelasticity parameters cx, bx and cy, by will be equal to the works 
with the constant viscoelasticity parameters. Thus, according to this statement, and since as the work Axcm and 
Axbm , Aycm and Aybm are known from Equations (53), (54) and (75), we can write next equations in the phase of 
the compression 
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and also in the phase of the rolling shear for the period of the compression time 
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Hence, according to the results obtained in (82) and in (83), we can write the expressions for the equivalent 
constant viscoelasticity parameters, respectively as: 
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Thus, the Equation (50) with variable parameters can be rewritten as the equations with constant parameters as 
follows:  
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The Equation (85) are the equations of the damped oscillations and the solutions to these equations are known:  
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Where: 22
0 xxx δωω −= ; 

m
Bx

x 2
=δ  is the normal damping factor; 

m
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x =0ω  is the angular frequency 

of the harmonic oscillations by axis X ; 
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is the tangential damping factor; 

m
Cy

y =0ω  is the angular frequency of the harmonic oscillations by axis Y.  

It is obviously that the period of time of the contact τx is equal to the semi-period of damped oscillations Tx/2 by 
axis X. 
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Since as 21 τττ +=x  and also by using Equations (60), (62),(63) and (87) we get: 
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The equation for the restitution coefficient we can write now as follows: 
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If tgβ = 0 hence kx = 1 , it is a totally elastic impact, but if tgβ = π/2 hence kx = 0 and x = 0 , it is absolutely 
plastic impact. Both of these two cases are not possible in nature. 
Finally, from (65) and (89) follows that  
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Thus we have a very simple way to calculate xm, if we know the value of tgβ. According to the Equation (9), (46) 
and (48) tgβ can be calculated by formula 
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The equations for the velocities of the centre of mass of a body can be received by differentiation of (86): 
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Using (92) for the velocity, the duration of the time of the impact equals to the period of the time of the contact 
can be found now from the conditions txVx =  and xt τ=  as  

 
x

x
x

k
δ

τ ln−=  ,   (93) 

where 

2/12/12/1
2/1

5
8

5
8

2 mx
p

m
x

px
x xR

m
tgEk

x
m

REk
m

B τ
π

β
ω

δ
′

=
′′

== ,  (94) 

and since tgβ is known from (88), by using (65),(93) and (94) we get  
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6. Determination of the Dynamics Modules by the Method of the “Temperature -Time Superposition” 
The dynamic elasticity and viscosity modules for high velocities of the collision can be found, if to follow the 
principles of the “Time-temperature superposition” according to the equation of the “WLF” Williams - Landel - 
Ferry or Arrhenius (Ferry, 1963; Van Krevelen, 1972; Moore, 1975; Nilsen and Landel, 1994). First of all we 
have to define experimentally the effect of temperature for the period of the contact time τx, and for the 
coefficient of restitution kx at the fixed initial velocity of impact. For example, if we define these parameters for 
velocity at 2 m/s, then using the principles of the “Time-temperature superposition” we can determine their 
values for any velocities interesting for us, for example for velocity 100 m/c and for temperature 100 0C. After 
this, when τx and kx will be known, we can find the value of tgβ and the dynamic modules E′′ and E′. If to use the 
equation (95), the expression for the calculation of the effective dynamic elasticity module can be written as 
follows 
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And, if to use (48), (88) and (96) we get the formula for the calculation of the effective dynamic viscosity 
module  
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Obviously, if kx = 0, then E′′ = 0 too. We can find G′ and G′′ in the analogical way. 
8. Analyse and Conclusion  

It is a very important now to confirm of the correctness of the offered theories and methods, obtained in this 
article, if to compare them with others already available. For example, the equation for the elastic force  

 have been obtained by the using of the “Method of the specific forces”. In the case,  

when kp = 1 we have the same solution like in the Hertz theory. Hence the Hertz theory gives the partial results 
in comparisons with proposed “MSF” method, because MSF” let to find the viscoelastic forces for any 
curvilinear contact between two surfaces, but Hertz case can be using only for the flat contact. The obtained 
result proves us that, the "Method of the specific forces" is definitely valid for finding of the normal elastic force, 
because if we know a functional dependency between r and x, we can always find the elastic force. It is 
obviously that, if it gives the correct way for the definition elastic force, and also as it was represented, it is valid 
for the definition of the viscous force and the tangential viscoelastic forces. We cannot find viscous force and the 
tangential viscoelastic forces by using the Hertz’s theoretical model, but we can do this by using the “Method of 
the Specific Forces”. It is obviously that, for the finding the normal viscous and the tangential viscoelastic 
forces, we can take kp = 1, like according the Hertz theory, but we should be aware that, in this case, the contact 
area is a flat surface according to 2D tensor of deformations and hx – the depth of indentation has to be equal to 
zero. But in reality, the contact surface takes the curvilinear shape, therefore, alternatively in this paper, the way 
of the finding of the radius of the contact area, by considering the geometry of contact between two curvilinear 
surfaces, have been proposed. It was received that the radius of contact area r = f(x)can be find by the equation  

. Since this equation is not convenient in using, and therefore it was proposed the finding r as 

, where  is the correlation coefficient, which can be found by the method of iterations  

and consecutive approximations. If a deformation is small, when , hence we can take . And, 
if contact area is a flat, when , follows from Equation 47* that . Practically the area of contact 
can be considered as a flat surface only in the case, when the surface of a semi-space in many times harder than 
the surface of a body. For example, it is possible in the case of impact between a rubber ball and a steel plane. 
Hence, it is obviously, that the “MSF” is the universal method, which can be used for any functional 
dependencies between the radius or the diameter of the contact area and the distance of the mutual approach (the 
total deformation) between two curvilinear surfaces. But nevertheless, we still have the question: What kind of 
the equation is better to take for finding of the radius of contact area, by the Hertz theory or directly by the way 
of consideration the geometry of the contact, like it is proposed in this article? Objectively to answer this 
question, we have to analyse simply logically the way as these equations were received. It was taken according 
to the Hertz theory that the contact surface is a flat, and the deformations are very small, the contact pressure is 
distributed analogically as an electrical potential ( Remark: an electrical potential is the scalar function, but a 
pressure is the vector function), and then, on the basis of this main statements, the equation between the radius of 
the contact area and the normal elastic force, and the equation between the distance of the mutual approach and 
the normal elastic force as the effect have been obtained. Then only after that, in result of the comparison of 
these two equations by excluding the normal force (Landau, 1944, 1965), the expression  have been 
received. But in this article the analogical functional dependence have been proposed as the cause, in the result 
of the direct consideration the geometry of the contact. It was shown that, in the time of indentation of more hard 
surface into a soft surface, the contact surface takes a curvilinear elliptical shape (the function  is 
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the elliptical function, which can be approximated by the parabolic function ), where the point B (see 
Figure1) is a special point where the deformations always equal zero, and the border of the area of contact 
always pass through this point B. Therefore, the proposed geometrical method is more exact, than according to 
the Hertz's theoretical model. 

On the other hand, the equation for the normal viscous force  gives the similar 

result as it has place in the contact between two bodies with identical mechanical properties in the equation (4*), 
which have been obtained by Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., and Poeschel, T. (1996). After the 
comparison of two these equations, since as and we obtain the following 

   (98)  

But since as  and in the quasi-static conditions  we get 

   (99) 

If  hence  too, it is a totally elastic impact. Thus we can find the parameter A by a very simple way 
using the “Method of the Specific Forces”.  
Also the equation (65) to determine the maximum displacement xm have been derived. It is obvious, that in the 
case of kx = 1 and kp =1 we have the same result, as was obtained by Landau (1944,1965) for a totally elastic 
impact by using the Hertz Theory. It proves the correctness of the way of finding the Equation 65. But we have 
to understand that, this equation has the borders of application which can be found if to solve the next equation 

22
0 xxx δωω −= . First of all since as  and 

m
Bx

x 2
=δ , we can write that  and we get  

the next algebraic equation . This equation has only the one valid solution  

 and it has the valid root only when , therefore , and 

according to Equation 88 we get for a viscoelastic contact that 

   (100) 

In the case when  the plastic deformations will be have place in the zone of the contact. 

Also it is necessary to proof the correctness of the definition of the work for the normal viscous force in 
Equation (54) and in Equation (82), because two ways in the order of integrations are possible to apply here such 
as, that have been taken for finding the solution in Equation (54) and in Equation (82) and like it is shown below 

   (101) 

It is simple to proof that the 1-st variant of the order of integration in Equation (54) and in Equation (82) is 
correct and the second variant in Equation (101) is not correct. It obviously that the attitude between the normal 
viscous force and the normal elastic force can be find as follows 

      (102) 
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      (103) 

As we can see this attitude is a constant value and it should not change at dependence by the order of integration. 
If we take the second variant of integration according to Equation (101), the values of the constants of 
viscoelasticity Cx and Bx will be changed. Thus therefore, in the first variant of integration as it is taken in 
Equation (54) and in Equation (82) we have a valid solution. 
In conclusion, first of all, let us to mark, that the method of specific viscoelastic forces allows to find the 
equations for all viscoelastic forces. The proposed method is a principally different with others in which are 
using the Hertz's theory, the classical theory of elasticity and the tensor algebra. In this method the new 
conception is proposed, how to find the elastic and viscous forces by an integration of the specific forces in the 
infinitesimal boundaries of the contact area. The radius of contact area can be taken according the Hertz theory 
or can be found by the considering the geometry of the contact. This method can be used in researches of the 
contact dynamics of any shape of contacting surfaces. Also in the article the method of the solution of the 
differential equations of a movement has been proposed and they have been solved. This method also can be 
used for determination of the dynamic mechanical properties of materials, and it can be used in the design of 
wear-resistant elements and coverings for components of machines and equipment, which are working in harsh 
conditions where they are subjected to the action of flow or jet abrasive particles. Also the theoretical and 
experimental statements which are presented here can be useful in the design of elements and details machines 
and mechanism which are being in the conditions of the dynamic contact. The results of the experimental and 
theoretical research and the method of the specific forces presented in this article can be used for the 
determination of the viscoelastic forces, contact stresses, durability and fatigue life for a wide spectrum of the 
tasks relevant to collisions between solid bodies under different loading conditions. Opportunities exist to use the 
obtained results practically in the design and development of new advanced materials, wear-resistant elastic 
coatings and elements for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors, 
valves, gate valves and in other installations. Also the using of this theory gives an opportunity for the 
development of analytical and experimental methods allowing optimising the basic dynamic and mechanical 
visco-elastic qualities already existing materials and in the development new advanced materials and elements of 
machines. Also this theory can be used not only for visco-elastic contact and also for any other kind of contacts, 
such as the elasto- plastic contact and for the elasto-visco-plastic contact too. 
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