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Abstract 

In this study results are presented of a study of applying surrogate plate models for dynamic design of 
structurally orthotropic heat transfer plates. The plates are assembled at fixed supports at upper and lower ends. 
One plate consists of parallel tubes joined by intermediate plates to each other.  

They are loaded by dynamically varying hot flue gas flow and pressure loads and by random soot mass impact 
loads due to operation conditions. These cause fatiguing stresses leading to fracturing and shutdowns and 
explosions. The goal is to obtain a predictive design model for increasing the reliable useful operating time.  
Several available methods are used in a larger study, matrix based, composite structure based and continuous 
beam based methods. In this study the orthotropic plate surrogate material approach is chosen. The dynamic 
behaviors are measured .The surrogate model predictions and measurements agree well. The predictions of the 
homogeneous surrogate orthotropic plate agree well with FEM model predictions. FEM modeling of complex 
structures made of orthotropic plates can be made cost effectively with reasonable accuracy using this surrogate 
plate approach.  

Keywords: beams, orthotropic plates, dynamics, optimum design, FEM, soot, recovery boilers 

1. Introduction 

1.1 Background and Motivation   

Orthotropic and composite plates and shells are important basic components of the technological infrastructures. 
They are used extensively in static and mobile structures. Now objects of study are recovery boilers and their 
heat transfer plates. They are assembled in parallel vertically and stiffly supported at upper and lower ends.  
Their endurance is essential for the whole process. 

Since the plates are orthotropic and complex in geometry they are difficult and costly to calculate in detail even 
with best FEM. Therefore cost-effective surrogate models are needed which are fast, easy to use and accurate 
enough. Now orthotropic plate models are applied to construct surrogate plate FEM model to simulate accurately 
enough the dynamic behavior of the actual plate.  

Orthotropic plate composite theory and dynamics are discussed by (Swanson, 1997), (Barbero, 1999) and 
(Agarwal & Broutman, 1990). General plate theory is discussed by (Szilard, 1975). The optimum fuzzy design is 
used and discussed by (Martikka & Pöllänen, 2009). The applicability and utility of this method is shown in the 
design of suspension bridges (Martikka & Taitokari, 2013). This method is based on results of (Diaz, 1988). 
Structural analysis of plates, beams and shells by (Case et al., 1993), (Boresi, 1993) and (Ventsel & 
Krauthammer, 2001) can be used. Flow induced vibration and flutter are important in parallel plates under 
process conditions as discussed by (Blevins, 1990) and by (Dimarogonas, 1992). Since consequences of boiler 
failures are serious they should be designed with the reliability based design approach, as discussed by (Dhillon 
et al., 1981) and (Leitch, 1988). In this study the advanced FEM program NX Nastran is applied. Basic 
engineering data is essential in calculations as by (Dubbel Handbook, 1994). Surrogate beam models for 
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dynamic design of a complex heat transfer plates are useful in design of recovery boilers as discussed by 
(Martikka, Pöllänen, & Simonen, 2006).  

Extensive literature surveys made by a recovery boiler manufacturer and engineering design companies showed 
that the published focus has been narrowly on varying external process control variables within restricted limits 
like, pressure, temperatures, and flows in and out with the aim of minimizing soot layer thickness without 
destroying the boiler. One example is the rapport by (Jamee, Araned, & Luks, 1998). It explains techniques of 
extending the recovery boiler runtime through temperation of steam at soot blower. But there are no studies 
focused on the internal dynamics and endurance of the boiler and new innovations for removing the soot like the 
present study. The aim of this study is to optimize energy efficiency by controlling the endurance of internal 
components and minimizing pluggages and soot layer thickness.    

1.2 Goals and Outline  

The goals and outline of this work are described.   

The overall goal is to promote the reliable, safe and cost-effective operation of the recovery boilers. Main 
hindrances are soot accumulation to heat transfer plates causing energy losses. Other risks are the process flow 
and soot cleansing flow induced fatiguing vibrations. But modeling of a collective of interacting complex plates 
is prohibitive for even the best FEM. Thus a surrogate easy to use FEM plate model is needed.   

(1) The first goal is development of methodology for making a surrogate plate models for an orthotropic plate 
which is accurate enough for describing the dynamic behavior of the plates.  

(2) The second goal is verification of the predictions of the surrogate FEM model of the orthotropic plate by 
comparing with experimental measurements and with accurate FEM model predictions. 

(3) The third goal is to develop a physical soot growth and removal model which can be used to design new 
means of its removal and retarding its growth. These results are not shown in this paper.  

The outline in this work:    

First the dynamic behavior model of the orthotropic plates is reviewed. Then the derivations of the orthotropic 
plate surrogate parameters are presented. It is based on actual steel plate geometry. 

Next these surrogate model parameters are used in a plate FEM model. These results are compared with the 
experimental modal analysis results of test plates. Then the utility of the surrogate models is extended to get a 
quick stress strain and fatigue endurance estimates. 

2. The Studied Structure 
The objective in this section is to describe the overall structure of a recovery boiler. The specific objects of this 
study are the orthotropic heat transfer plates. Their cost effective function is of paramount importance for the 
whole system. The major problems are heat efficiency loss due to soot accumulation and fatiguing vibrations.   

2.1 Geometry and Loading 

Sketches of the structure and its loads are shown in Figures 1(a) and 1(b). One plate may be modeled as a stiffly 
supported beam. Figure 1(c) shows a typical pluggage prior to soot blowing (Jamee, Araned, & Luks, 1998).  
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(a)                    ( b)                             (c) 

Figure 1. Sketch of main structure of a typical recovery boiler: a) Main dimensions; b) Flow pressure variations 
due to soot clogging due to pressure load peaks on the plates exciting deleterious vibrations; 

c) Typical pluggage prior to soot blowing (Jamee, Araned, & Luks, 1998) 

 

 

 

 

 

 

 

 

 

 

 

(a)                  (b)                  (c)                (d) 
Figure 2. Heat transfer plates: a) FEM modeling of whole plate with 1.15 million elements 

The length is 23 m and total width 2.8 m with 0.28 m gap with stiff supports at at upper and lower ends and free 
sides; b) The first modal form by FEM had eigenfrequency 0.545 Hz; c) The orthotropic analytic plate with 

length 23m, width 5 m and with all edges freely supported gave higher frequency fanal = 2.86 Hz due to stiffer 
free-support conditions at all edges; d) Typical tube weld fracture 

  
2.2 Structure of the Orthotropic Plate 

In Figures 2(a), (b) and (c) the detailed FEM model is shown. In Figure 2(d) a typical weld fracture is shown.  

Plate models are shown in Figure 3. The main goal is to get a surrogate model for the plate which can be used to 
predict roughly the same lowest eigenfrequency as by FEM model. The second goal is to get estimates for 
stresses and deflections. Using the surrogate model it is possible to model cost-effectively large and 
geometrically complex structures fast and with reasonable accuracy.  

3. Dynamic Behavior of the Orthotropic Plate 

The objective of this section is to give a detailed enough description of the dynamic behavior of orthotropic 
plates. Basic definitions are shown in Figure 3. 

 

  

r 
w(x,t) 

x = L 

impul 

ses 
 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 3, No. 2; 2013 

31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                       (b) 
Figure 3. Plate models: a) Plate deformation and stress resultant definitions;  

b) The basic structure and dimensions 

 
The dimensions of the cross section in Figure 3b) are   

0.0635, 0.0056, 0.0579, 0.0245, 0.006u uD t D D t e c        

The governing equation of the plate is by (Swanson, 1997) 
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Here the Mik are moments and p is pressure as illustrated in Figure 3. Next the moment vector is expressed as 
function of the deflection w as illustrated in Figure 3. 

If neutral plane strains are zero then the relationships between moment resultants, curvatures and stiffness 
properties are  
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Substituting here the elements of D gives (Swanson, 1997)    
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The stress strain model of Hooke’s law for an orthotropic lamina in principal material co-ordinates LT is  
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Here the principal material directions are denoted by: L = Longitudinal, T= Transverse direction 
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Substituting Equation (2) to Equation (1) one obtains  
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Next performing the first matrix operation gives 
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Now some approximations can be used to simplify the results without sacrificing accuracy. The effect of shear 
deformations on bending deformations are assumed to be so small that they may be neglected 

16 260 , 0D D                                        (7) 

The equation of static deflection is now simplified. By adding the dynamic inertia volume force term, the 
equation of motion of the plate becomes    
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Eigenfrequencies are calculated with the following equation (Swanson, 1997) 
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Here ρa is mass per unit area. 

Trial solution for the static deflection equation under static distributed pressure p is 
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Dynamic deflection is now product some of eigenmode shape functions and eigentime functions  
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Derivatives are needed 
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Eigenfrequencies are obtained from equation of free vibrations by setting load to zero,  p = 0. 

Substitution of the freely supported solution to the equation of motion  
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Each coefficient in the terms of the sum must vanish. The eigenfrequencies are obtained as  
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Mass per unit area is obtained by dividing the mass by its mid plane area A’   
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4. Orthotropic Plate Parameters  

The first objective in this section is to develop a methodology for formulating surrogate plate models to simulate 
accurately enough the dynamic and static behavior of an orthotropic plate of the recovery boiler. Orthotropic 
plate parameters are now needed for the dynamic modeling. 

4.1 Axial Loading and Bending Loading Surrogate Elastic Models for the Axial Direction 

The objective is that the surrogate plate would approximate the behavior of the actual plate in axial and bending 
loading. Here E is elastic modulus and A is cross sectional area transverse to the tension direction of the plate. 
Two models can be used to estimate the surrogate axial elastic modulus. 

Model A: Equality of axial stiffnesses EA gives an estimate for E1,tension  
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Model B: Equality of bending stiffnesses EI gives an estimate for E1,bending   
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These results for the surrogate moduli by the Model A and B may be summarized as  
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The average is used as a trade-off compromise  

   E E E MPa1 0 5 0 5 4280 4460 4370    . .1,t 1,b
                     (21) 

4.2 Transverse Tension and Bending Elastic Moduli 

Several models are used to estimate them. The actual plates have the steel material modulus of elasticity. But in 
surrogate modeling the transverse bending elasticity is described by a fictive own modulus and in transverse 
tension with another. Only one elastic modulus must be chosen. Thus a trade-off compromise is needed to 
choose only one optimal transverse elastic modulus.   
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4.2.1 Same Bending Stiffness Model 

In Figure 4 the bending force F2 = Q2 ·bc acts at the end of the flange with an effective lever. This lever is a 
design variable for obtain optimized material properties.  Now transverse bending is considered. The 
assumption is that by equating the bending stiffness for the surrogate plate and for the steel plate one will get a 
reasonable estimate for the transverse elastic modulus in bending 
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Thus the following equation can be used to get an approximation for the elastic modulus under bending  
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Here L2 is a lever parameter of the model which can be tuned to obtain optimal model accuracy, Figure 4b).  

 If L2 = e = L2,min then E2b  = 200MPa, this is the minimal estimate  

 if L2 = ½D+e = L2.max then E2,b= 2100 MPa, this is the maximal estimate 

Thus a reasonable value can be assumed to be in the range 200 < E2b < 2100MPa.  

A trade-off compromise value is E2 = 800MPa. 

4.2.2 Use of the Compressed Circular Spring Model to Obtain Transverse Elasticity  

In transverse loading the tube may be modeled as circular ring of diameter D and thickness t and some length b 
as shown in Figure 4a). The force loaded circular spring model is taken from (Ylinen, 1970) 

 

 
 
 
 
 
 
 
 

(a)                  (b)                           (c) 
Figure 4. Basic geometry and loading: a) Compressed ring model to model the transverse stiffness; b) Shear and 

transverse compressive forces acting on a module of structure; c) Orthotropic plate model 

 
Change in diameter D of the ring by force F is the spring deflection  
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From this one can solve the spring stiffness of the tube as 
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An estimate for the transverse tension-compression modulus E2t may be obtained from the equivalence of the 
transverse compression spring stiffness of the plate and the surrogate plate model  
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Assuming surrogate thickness h = 65mm gives 
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Two estimates are obtained for the transverse modulus of elasticity 

 Equating the two tension spring stiffness models gave an estimate E2,t = 1150.  

 Equating the two transverse bending stiffness models gave a range E2,b = 200…2100.  

The compromise value E2 = 800 is chosen. 

4.3 Estimation of Surrogate Shear Moduli 

Shear modulus G for isotropic steel is a material property of the isotropic elastic solid    
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Now the orthotropic plate the shear modulus G12 is often approximated as depending on the two principal elastic 
moduli. The model by (Ventsel, Krauthammer, 2001) is used. The effect of Poisson’s ratio is neglected for 
simplicity  
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The moduli G13 and G23 are needed for 3D modeling with the surrogate material but not for 2D modeling. 

The same shear force is transmitted through the surrogate plate cross section and also through the corresponding 
cross section of the steel structure. From this force balance one obtains the surrogate modulus   
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Equating the shear forces and shear angles in the transverse to the main direction gives 
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Thus the shear modulus G13 estimate is obtained as follows  
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5. Results 

The results of this work show that the initial goals were satisfactorily well achieved.   

(1) The first result is a methodology for formulating a surrogate plate model for an orthotropic plate of the 
recovery boiler. 

(2) The second result is the verification of the surrogate FEM model of the orthotropic plate by comparing with 
experimental measurements and with the accurate FEM model predictions. 

(3) The third result in this project is a physical soot growth and removal model which can be used to design new 
methods of its removal and retarding its growths. Now it is outside the scope of this paper.  
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5.1 Results of Parameters for FEM Modeling 

First the parameters of the surrogate model are summarized and some results obtained by using them.  

Table 1. Results of varying the surrogate plate thickness variables to get optimal elastic moduli (MPa) for use in 
FEM   

h,surrogate plate thickness h= 65 mm 

E1,b   b= bending 44600 

E1,t   t= tension  42800 

E1, used in axial direction  43700 

E2b, ,transverse bending estimate range  200…2100 

E2t , transverse tension estimate 

E2, used in transverse compromise  

1150 

800 

G, steel 80770 

G13 , used in 3D models 21900 

G23 , used in 3D models 7460 

Gventsel = G12 used as compromise 3000 

21, 12 , Poisson’s ratios for plane models 

31, 13, used in 3D models 

0.3, 0.055 

0.3, 0.3 

 

The D matrix is obtained as follows from Equations (2), (3) and (4)  
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Comparison of predictions for the lowest eigenfrequency by three methods is shown in Table 2. 

 
Table 2. Analytical and FEM surrogate plate eigenfrequencies using the data in Table 1 with surrogate thickness 
h = 0.065 m. The lowest eigenfrequency is presented, m = 1 is number of periods in main 1-direction, n = 1 is 
number of periods in transverse direction 

side of 

plate 

a (m) 

side of 

plate 

b(m) 

specimen 

code 

FEM 

Surrogate plate model free 

support-free support 

Analytical 

orthotropic plate model free 

support – free support 

FEM 

Large detailed plate  

model  

a b   f11(Hz) fmn (a,b)  (Hz) fmn (a,b)  (Hz) 

1.314 0.803 test plate 114 118 - 

23=L 2.8 = b FEM size - 2.86 0.545 
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 (a)                 (b)               (c) 
Figure 5. Sketches of plates: a) Heat transfer plate main dimensions; b) Surrogate orthotropic plate with same 

mid plane dimensions a and b and with even thickness h; c) Support conditions for a stiff-stiff beam 

 
5.2 FEM Results for the Test Plate 

The dynamic behavior of the test plate is analyzed using FEM model with constant thickness plate elements of 
surrogate material and two boundary conditions. The objective is a verification of the validity and accuracy of 
the surrogate FEM model of the orthotropic plate by comparing its predictions with experimental measurements 
and with accurate FEM model predictions. 

5.2.1 Frequencies of the Test Plate with all Edges Fully Free Using Measurements and FEM Surrogate Model  

Measurement of frequencies was made by (Talvio, 2009) using a modal analysis instrument with three positions 
for the accelerometer. The plate was supported by a rod loosely fitted inside the upper tube. It was nearly 
free-free supported along upper edge. The mode shapes were not measured. 

These measurements can be interpreted using the surrogate plate FEM modal analysis results in Figures 6 and 7. 
It had the same main dimensions and areal mass density as the steel test plate. The results are shown in Table 3. 
Comparison shows that with high probability the measured mode shapes were as predicted by the FEM results.  

 

Table 3. The measurement of the test plate gave only frequencies and not mode shapes. The FEM surrogate plate 
model gives both frequencies and mode shapes. The mode shapes of the test plate probably agree with the 
calculated surrogate plate mode shapes since the frequencies agree nearly   

Position 
Measured 

frequency  (Hz) 

FEM surrogate material 

plate  frequency  (Hz)

FEM surrogate  material 

mode shape 

upper part 169 170 torsion at edge, Figure 6(c) 

middle 325 344 maximal motion, Figure 7(c) 

lower part 169 170 torsion at edge 

 
FEM results are shown in Figure 6 and 7. The number of elements was 8·13 = 104. The element was square with 
sides 0.1 m. The plate width was L = 10·0.1 = 1 m and height b = 8·0.1= 0.8 m. The element type was 
quadrilateral parabolic plate. For purposes of illustration the plate thickness is also shown giving appearance of 
blocks. The visible gaps are only apparent but not actual. The justification for in using a surrogate FEM model 
instead of accurate FEM models is a trade-off task. The surrogate model gives reasonable predictions with less 
resource input.  
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Figure 6. Results of FEM modal analysis of the surrogate orthotropic plate model with the same side lengths as 
the test plate (L = a = 1.314m, b = 0.803m). The eigenfrequencies (Hz) and mode shapes are shown: a) f1 = 67 

plate model with no thickness illustration; b) f2 = 80; c) f3 = 170.7; d) f4 = 181 

 
In Figure 6(c) an illustrative sketch is shown to visualize the torsional modal deformation experienced by the 
upper part of the beam using vector geometry. Here P is a unit vector which is drawn tangential to the mid 
position of the accelerometer. Then P is shifted to the left and right edges. There its direction is compared with 
the tangential unit vectors along the edges. Due to symmetry the same angle  occurs at both edges. The angle is 
obtained from PRPL cos . In the case of the accelerometer location shown in Figure 6(d) the mode f4 
is not detected due to small motion since is at the node line of no motion.  

 

 

Accelerometer  

detects sensitively 

the motion of 

 
(a) f5 = 244 Hz       (b)    f6 = 283 Hz      (c)    f7 = 344 Hz 

Figure 7. Results of FEM modal analysis of the surrogate orthotropic plate model with the same side lengths as 
the test plate (L = a = 1.314 m, b = 0.803 m). The eigenfrequencies (Hz) and mode shapes are shown: 

a) f5 = 244; b) f6 = 283; c) f7 = 344 

 

5.2.2 FEM Results of the Test Plate with Free Supports on all Sides 

Using FEM modal analysis the shapes and eigenfrequencies shown in Figures 8 and 9 are obtained. 

The analytical plate model with free support gave f1,anal = 118 Hz. 

The FEM plate model with the surrogate properties gave f1,FEM = 114 Hz 

FEM results are shown in Figures 8 and 9. 
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(a)     f1 = 114Hz      (b)     f2 = 200Hz       (c)    f3 = 345Hz 
Figure 8. Results of FEM modal analysis of the surrogate orthotropic plate model with the same side lengths as 
the test plate (L=a= 1.314m, b = 0.803m). Now all edges are freely supported. The eigenfrequencies (Hz) and 

mode shapes are shown: a) f1= 114 (Analytic model gave 118Hz); b) f2=200; c) f3= 345  

 

 
(a)  f4 = 365Hz         (b)   f5 = 434Hz              (c)   f6 = 548Hz 

Figure 9. Results of FEM modal analysis of the surrogate orthotropic plate model with the same side lengths as 
the test plate (L = a = 1.314m, b = 0.803m). Now all edges are freely supported. The eigenfrequencies (Hz) and 

mode shapes are shown: a) f4 = 365; b) f5 = 434; c) f6 = 548 

 
5.3 Effect of Different Support Conditions on the Eigenfrequencies of Plates and Beams 

A conversion factor X can be used to estimate frequencies depending on the support conditions and model. For 
beams the eigenfrequency is proportional to 2.    

  
  beam

fsfs

ff

pfreepfreebeam

freefreebeam
plate

ANALfreeSfreeSplatesurr

freefreeplate X
l

l

f

f
X

Hz

Hz

f

f








 2
73.4

,44.1
118

170
2

2

2

,1
2

sup..sup.,,1

,,1

,,,,1

,exp,,1


       (34)  

In the case of the test plate the FEM surrogate model and the analytical orthotropic plate gave nearly the same 
lowest frequency when the boundary conditions were the same free support on all edges. This result supports the 
validity of the present modeling approach  
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6. Conclusions 

Orthotropic plates and shell structures are used increasingly and profitably in technical constructions. Some 
application benefits are low weight, high strength and high stiffness. These are the desired properties in high 
strength composites. In recovery boilers the heat transfer plates are orthotropic made of parallel tubes. This 
structure is multifunctional with many desired properties. It takes in heat from hot gas and transfers it by steam 
flow to electricity generation. The dynamics behavior and endurance are very important for the pulp and paper 
making industry. If some of the tubes fractures then the boiler may explode or be have to be run down for repair.  

(a) FEM modeling of orthotropic plates can be made cost effectively using the surrogate plate approach.  
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 In this case these structures are large with many geometrical details. Thus use of detailed FEM modeling is 
not cost effective. 

(b) The measured eigenfrequencies and the surrogate plate model eigenfrequencies agreed satisfactorily. This 
validates the methodology used.  The same free-free conditions were applied for both.   

 Accelerometer at edge positions gave 169 Hz.  

 Surrogate FEM plate model gave 170 Hz associated with torsion mode motions at the edges.  

 Accelerometer at mid point gave 325 Hz. 

 Surrogate FEM plate model gave 344 Hz at one mode shape having a bulge form and prominent motion at 
the middle line. 

(c) Two models for the fully freely supported plate with the test plate main dimensions gave similar results.   

 FEM surrogate plate model gave 114 Hz. 

 Analytic orthotropic plate model gave 118 Hz.    

(d) One additional advantage of the surrogate model is that it can be used to give estimates for stresses.  

 These surrogate stresses can be converted to true stress obtained by an accurate FEM model, using a 
conversion factor.  

 The surrogate modeling is cost effective in large models where detailed models are expensive. 

(e) Reasonable models for predicting the soot deposition and removal are obtained in this project.  

 These models can be used to design control procedures to minimize soot pluggage and to prevent tube 
damage. The results are published in the future. 
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Appendix 1. Stresses Obtained by the Surrogate and FEM Model and Fatigue Dimensioning 

One goal of surrogate modeling was to get reasonably accurate dynamic behavior predictions at the lowest 
eigenfrequancies. The second goal is to convert the surrogate stresses to approximate the true stress obtained by 
an accurate FEM model using a conversion factor. 

First a short review of beam basic modeling is presented. Long plate is like a long beam. 

 

 

 

 

 

 

(a)                      (b)                            (c) 
Figure A1-1: a) Deck model; b) Beam model and free body model; c) Steel unit cross section 

 

First the free body balance of beam elements gives the internal force resultants N, T and M depending on the line 
load q, q = pB,B is width of the beam and p is pressure on it 

Loads on the beam are calculated using equations, (Case, 1999)  

dN

dx

dT

dx
q

dM

dx
T   0 , ,                            (A1-1) 

The sign assumptions are that positive forces act down.  

Now the same bending stiffness is assumed in axial (1) direction. The width dimension is B.   
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From this one obtains 
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The steel model bending stiffness for axial (1) direction is  
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A. The steel model actual bending stress 
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B. The surrogate model bending stress  
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Using these stress models the conversion factors between stresses may be derived. The same moment M is 
applied first in direction (1) and then in direction (2).                              
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The ratio of bending stresses is in direction 1 becomes using the dimensions in Figure 3 and h= 65mm 
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Ratio of bending stresses in transverse (2) direction 
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Fatigue Design  

There are several methods for fatigue dimensioning.  One method is to use fatigue diagrams based on 
assumption that fatigue cracks have not yet initiated. One simple and conservative diagram is by (Meyer, 1985). 
Many others can be used. 

 

 

 

 

 

 

 

 

 

Figure A1-2. Fatigue diagram 

  
The mean stress is due to self weight is of a heat transfer plate of length L = 23 m is.  
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The stress amplitude is the maximum bending stress 
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Thus the stress ratio p is large and the bending stress is the dominant stress. 

The endurance condition may be expressed using the margin of safety  

R S S C R MPaa e( ) , . . .1 0 0 5 0 4 0 5 400 40         a m            (A1-11) 

Dynamic simulation gave the stress amplitude as 30MPa.  
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