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Abstract   

Auxiliary bearings are used in magnetic bearing systemsto protect bearings from damage. These bearings are in 
contact with rotor temporarily. This contact associated with intermittent contact forces which change the system 
dynamic behavior. These include vibration instability and thermal stresses. The system is simulated to clarify the 
role of two different control methods in synchronous and asynchronous responses.This is carried out using linear 
PD controller and time varying stiffness. Rotor whirl orbit and power spectrum in magneticbearing with time 
varying stiffness reveals better behavior in some cases. Rotational speed range with synchronous response 
increases. A delay in the onset of bifurcation depicts an improved rotor dynamic performance. 
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1. Introduction 

Auxiliary bearings are integral feature of magnetic bearing systems. They are used to protect magnetic bearing 
specifically during operation. Because of its importance many researches were carried out on this subject 
especially in recent years. There are two different relative motions for rotor in auxiliary bearing. Contact mode 
when rotor is in contact with the auxiliary bearing. Contact free mode when the rotor is not in contact.During 
contact time significant normal and tangential contact forces may impose to rotor. This result load sharing 
between magnetic bearings and auxiliary bearings. This would affect system dynamic response significantly. 

The focus of research by several authors was dynamics of rotor drop onto auxiliary bearings (Zeng, 2002). They 
obtained transient responses of AMB rotor during rotor drop in different cases. A number of researchers have 
neglected magnetic bearing force (Wang, 1998). They studied steady state analysis of the dynamic behavior of 
interactions of the landing rotor with its auxiliary bearings. They have stated that a possible loss of the AMB 
function, and subsequent interactionsthrough a clearance with the auxiliary bearingof a magnetically supported 
rotor, lead to a highly nonlinearevent. However some authors considered magnetic force and also rotor flexibility 
(Jang & Chen, 2001). The effect of rotor imbalance stiffness on bifurcations response was investigated in their 
research. But they have neglected geometriccoupling effects in their investigation. They have used linear PD 
controller in their work. But they have neglected geometric coupling effects in their investigation. However 
geometric coupling between the two orthogonal axes of motion is an important cause of nonlinearity especially 
when large rotor displacement is involved. Inayat-Hussain (2010, 2011) has developed a model for rigid rotor 
supported by auxiliary bearings. He considered geometric coupling in his model. He investigated the effect of 
auxiliary bearing stiffness and friction and rotor imbalance on rotor response. He concluded that imbalance is 
more significant among thoseparameters. He has used linear PD controller in his work. Cade, Iain et al. carried 
out an active auxiliary bearing design to reduce contact force (2008). This bearing induces a desirable rotor orbit 
during and after a contact event. Therefore the dynamic behavior of rotor in clearance circle would be improved. 
They stated that the contact forces may lead to localized thermal stresses. They also stated that the non-linear 
nature of contact mechanics due to the auxiliary bearing may cause rotor instability after a contact event. 
Ghazavi and Sun have used time varying stiffness in magnetic bearing simulation, but they have not considered 
auxiliary bearings (2011). 

In present research a rigid rotor response in magnetic bearing supported by auxiliary bearings are investigated. 
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Non linear rotor responses were investigated for a range of speeds. Periodic quasi periodic and chaotic responses 
are depicted for different speeds. Time varying stiffness is used in this investigation. These induce a better rotor 
whirl orbit before contact event .The rotor response is compared with that of linear PD controller. 

2. Governing Equations 

Magnetic forces are provided by two sets of electro-magnets. These forces are used to position the rotor. 

 

Figure 1. A magnetic bearing and rotor (Ghazavi & Sun) 

 
A pair of magnets is used in x-direction. The y-direction equations can be arrived by substituting subscript x with 
y. Magnetic bearing force for each magnet is calculated using the following equations. 
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To control the bearing force, the controller generates commands that determine the current flowing through the 
bearing coils. A common control strategy is proportional-derivative (PD): 

)( xKxKi dpx                                 (3) 

Where Kp 
and Kd are controller proportional and derivative gain constants respectively. We use the same gain 

values for current command in y direction for a reason that is obvious later, that is, )( yKyKi dpy  .  

This controller is physically similar to linear spring and damper elements in mechanical systems. Since 
proportional gain acts as stiffness coefficient replacing it with the following terms called time varying stiffness. 
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Figure 2. Auxiliary bearing contact forces 

 
Considering geometric coupling the total magnetic forces in x and y directions are: 
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Where α is geometric coupling. Therefore, application of Newton's second law of motion yields rotor dynamics 
equations: 

tmuFFxm axx  cos2                             (6a) 

mgtmuFFym ayy   sin2                           (6b) 

where m is half of the rotor mass, u is eccentricity, ω is the rotor angular speed, Fax and Fay arethe auxiliary 
contact forces in X and Y directions respectively. Unbalance mass is assumed in the middle of rotor.Fax and Fay 
are calculated as follows:  

Fax= -Fn cos ψ+Ft  sin ψ                                (7a) 

Fax= -Fn sin ψ - Ft cos ψ                                (7b) 
Where Fn and Ft are normal and tangential contact forces respectively. ψ is the rotor relative position vector 
angle with x axis. These contact parameters can be calculated as follows:  

In contact free mode penetration depth (e) is not positive F n=Ft=0 for e <=0 

In contact mode penetration depth is positive. 

Fn=ke  for e >0        (8a) 

Ft=μke  for e >0        (8b) 

e=(x2+y2)1/2- 0.5g0 and ψ=arc tan(y/x) 

where k is contact stiffness and μ is sliding friction coefficient. The stiffness is assumed linear. In other words 
Hertzian’s Theory is used to calculate normal forces. Friction forces are considered to be proportional to the 
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normal forces (Coulomb friction).Dividing both side of the dynamic Equation (6) by mωn
2g0 and substituting 
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then on dimensional forms of theequations 

will be as follows: 

 cos2UFFx axx
                           (9a) 

wUFFy ayy  sin2                       (9b) 

Where: 

2 2
0 0/ ;   /  , j=x,y j j n aj aj nF F m g F F m g    

Dividing contact forces in Equation (8) by mωn
2g0 and defining non dimensional contact stiffness and 

penetration depth as K=k/ mωn
2 and ε=e/g0 respectively equation (6) in non dimensional form is as follows: 

axF =Fax /mωn
2g0 = -Kε cos ψ+ μKε sin ψ     (10a) 

ayF =Fax /mωn
2g0 = -Kε sin ψ- μKε cos ψ     (10b) 

Time varying stiffnessin non dimensional form is as follows: 

pK = 1P + 2P cos Ωτ       (11) 
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Where P1 and P2 are constant coefficients. Substituting Kp in Equation (3) and expanding Equation (9) about 
equilibrium position (x,y) = (0,0) using Taylor series leads to Mathieu’s equations. The stability of the system 
with the selected coefficients confirmed for contact free mod. As aresult time variable stiffness decrease rotor 
displacement in contact free mode with smooth rotor whirl orbit. This prevents rotor contact with the auxiliary 
bearing. This causes more synchronous responses. 

3. Resuts and Discussions 

Simulation is carried out for a rigid rotor supported by two magnetic bearings and two auxiliary bearings. Two 
modes of motion are considered contact mode and contact free mode.The results are obtained for systems with 
linear PD controller and for systems with time varying stiffness. They are compared to each others for similar 
cases. System dynamics behaviorare depicted in periodic, quasi periodic and chaotic forms. Figures 3a-c 
illustrate bifurcation diagram for magnetic bearing with auxiliary bearing using linear PD controller. There is 
synchronous response for Ω<0.42. It is period-2 when 0.42<Ω<0.46 and period-5 when 0.41<Ω<0.56. By 
increasing speed to Ω=1.7 the rotor response will be synchronous. This is confirmed by Figures 4, 5 and 6. 
Figure 4 is rotor whirl orbit and Figure 5 is system power spectrum. All these three figures reveal 5 different 
frequency for Ω=0.55. Figure 6 is Poincare map. Whentime varying stiffness is used the rotor response is 
synchronous in speed range Ω <0.7 (Figure 7). 

The response will be non synchronous by increasing speed. It is period-3 when Ω>1.7. 

This illustrates a delay in bifurcation onset. The delay is around 0.28 which is significant. The rotor whirl orbit 
and power spectrum signal for Ω=0.55 reveal one dominant frequency which confirm the synchronous response 
in this region (Figures 8-9). 

It is observed from the results that at lower speed in contact free mode time varying stiffnessachieve better rotor 
whirl orbit and therefore smaller rotor displacement. Smaller rotor displacement prevents contact and therefore 
continues motion in contact free mode. This causesa delay in bifurcation onset. This means delay in 
asynchronous and chaos motion. This result in a better system dynamic performance. 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 2; 2012 

92 
 

 

Figure 3a. Bifurcation diagram for auxiliary bearing using PD controller U=0.2, K=0.2, μ=0.3, W=0 
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Figure 3b. Bifurcation diagram for auxiliary bearing using PD controller U=0.2, K=0.2, μ=0.3,W=0 
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Figure 3c. Bifurcation diagram for auxiliary bearing using PD controller U=0.2, K=0.2, μ=0.3, W=0 
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Figure 4. Rotor whirl orbit for auxiliary bearing using PD controller U=0.2, Ω=0.55, μ=0.3 K=0.2, W=0 
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Figure 5. Power spectrum for auxiliary bearing using PD controller U=0.2, Ω=0.55, μ=0.3 K=0.2, W=0 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
-1

-0.8

-0.6

-0.4

-0.2

0 

0.2

0.4

0.6

0.8

1 

Xj

Yj

  

 
Figure 6. Poincare map for auxiliary bearing using PD controller U=0.2,Ω=0.55, μ=0.3 K=0.2, W=0 
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Figure 7. Bifurcation diagram for auxiliary bearing using time varying stiffness U=0.2, K=0.2, μ=0.3, W=0 
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Figure 8. Rotor whirl orbit for auxiliary bearing using time varying stiffness 

U=0.2, Ω=0.55, μ=0.3 K=0.2, W=0 
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Figure 9. Power spectrum for auxiliary bearing using time varying stiffness 

U=0.2, Ω=0.55, μ=0.3 K=0.2, W=0 

 
4. Conclusion 

In magnetic bearing system with auxiliary bearing time varying stiffness modify the rotor response at low speed. 
The rotating speed range with synchronous response increases. This is revealed by delaying bifurcation onset, 
since non-synchronous vibrations resulting stress fluctuation and failure. When unbalance is high and machinery 
speed is less than first natural frequency (Ω <1) time varying stiffness is preferable.  

References 

Cade Iain, S. M., Sahinkaya, N., Burrows, Clifford, R., & Keough Patrick, S. (2008). On the design of an active 
magnetic bearing systems. 11th International symposium on Magnetic Bearings, August 26-29, Nara, Japan. 

Ghazavi, M. R., & Sun, Q. (2012). Nonlinear Dynamics Behaviors in Magnetic Bearing Systems. (In Process) 

Inayat-Hussain, J. I. (2010). Nonlinear dynamics of a magnetically supported rigid rotor inauxiliary bearings. 
Mechanism and Machine Theory, 45, 1651-1667. http://dx.doi.org/10.1016/j.mechmachtheory.2010.06.006 

Inayat-Hussain, J. I. (2011). Bifurcations in the response of a rigid rotor supportedby load sharing between 
magnetic and auxiliary bearings. Meccanica, 46(6), 1341-1351. 
http://dx.doi.org/10.1007/s11012-010-9395-8 

Jang, M. J., & Chen, C. K. (2001). Bifurcation analysis in flexible rotor supported by active magnetic bearings. 
Int. J. Bifurcat. Chaos, 11, 2163-2178. http://dx.doi.org/10.1142/S0218127401003437 

Wang, X., & Noah, S. (1998). Nonlinear dynamics of a magnetically supported rotor on safety auxiliary bearings. 
ASME J. Vib. Acoust., 120, 596-606. http://dx.doi.org/10.1115/1.2893869 

Zeng, S. (2002). Motion of AMB rotor in backup bearings. ASME J. Vib. Acoust., 124, 460-464. 
http://dx.doi.org/10.1115/1.1476382 

 

 


