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Abstract 

In this study the basic mechanics and engineering principles are applied find out possible reasons for the optimality 
of a typical spider web. Physical models are formulated connecting the external loads to internal loads and with 
geometry and materials. Then optimum design methodology using fuzzy goal of maximising the product of 
satisfactions on chosen decision variables is applied to design a web. The decision variables are three. The first is 
web material volume which is defined using the FSD principle, the second is catch area, and the third is desirability 
to maintain only tensile forces. The optimal analytical and FEM model results agree well with experimental data in 
large side frame forces and less well in inner guy forces. Some industrial application possibilities are discussed.  

Keywords: web design, optimum fuzzy design, biomimetics, industrial applications 

1. Introduction 

Nature is full of hierarchical and symbiotic structures which are optimally designed in all design aspects. Ingenious 
solutions in nature are transmitted by genetic codes. Human information is not transferable genetically but has to 
be studied, stored to design codes and transmitted by education.  

In this study the object is a deceptively simple spider web construction. The web material is extremely ingenious; 
it is intrinsically very strong, ductile with very high heat conductivity.  

A general outline of spiders and biomechanics is discussed by (Wainwright, Biggs, Currey, & Gosline, 1976). The 
physical properties of spider’s silk and their role in the design of orb-webs are analysed in by (Denny, 1976). 
(Cranford, Tarkova, Pugno, & Buehler, 2012) discuss the non-linear material behaviour of spider silk and reasons 
why it yields a robust web. They have observed that a nonlinear stress response results in superior resistance to 
structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. They have 
also shown (Cranford et al., 2012) that under distributed loads the stiff behaviour of silk under small deformation, 
before the yield point, is essential in maintaining the web’s structural integrity. The superior performance of silk in 
webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear 
response of silk threads to strain and their geometrical arrangement in a web (Cranford et al., 2012). 

Optimum design of mechanical and biological machine structures can be done in many ways. A survey of 
engineering optimization is discussed by Rao (1996). Diaz (1988) has presents basics of fuzzy goals formulation 
in engineering tasks. This method has proved to be effective in several small highly non-linear design tasks. The 
method is applied to multi-objective and heuristic application optimum design by Martikka and Pöllänen (2009) 
and to optimum design of helical springs by Pöllänen and Martikka (2010) and to design of composite sandwich 
beams by Martikka and Taitokari (2011).  

Engineering mechanics and heuristics rely on the prescient power of mathematics and natural laws which give 
finalistic guidance for inventing structures. Good theory guarantees good machines and webs too. Thus the spider 
must have a very ingenious theory programmed to its genes.  
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(Wood et al., 2003) show that uncertainty in engineering analysis usually pertains to stochastic uncertainty but 
other forma also exist. This shows that realistic engineering functions can be used in imprecision calculations, with 
reasonable computational performance 

Wang and Terpenny (2003) consider the imprecision inherent in the early design stages. They combine an 
agent-based hierarchical design representation, set-based design generation; fuzzy design trade-off strategy and 
interactive design adaptations to reduce the search space while maintaining solution diversity. They use fitness 
function incorporating multi-criteria evaluation with constraint satisfaction. 

In the present study many simplifications are made to test some design principles and bio mimicry. 

The decisive properties of machines and creatures are determined by pre programmed instruction in machines and 
in genetics of the biological creatures. These determine their geometry, material selection and functioning and 
fitness for service.  

The present approach of innovation and optimum design is based on basic mechanics with fuzzy goal formulations 
and heuristics. These models are combined synergically to formulate the desired properties of structures like the 
web.  

Geometrically each web structure is conceptually triangular; it has a function, or its purpose, materials and 
geometry. These are defined by design variables, like dimensions and strength. These are combined to decision 
variables, like cost and reliability. The design goal of this re-invented web is to maximise the satisfaction on 
decision variables using a product or weakest-link link formulation. Still higher level decision variables can be 
defined like the basic needs of livelihood and reproduction. The geometry of the web is simplified and the principle 
of fully stressed design is too used to obtain the optimal solution by using this design methodology many optimal 
industrial web type structures can be designed and made. Geometrically and materially complex webs can be 
effectively analysed using FEM (Finite Element Method, NX Nastran). 

2. Basic Mechanics of a Simplified Spider Web  

The aim is to find out the basic principles of web design used by the spider. The approach is to use basic mechanics 
of engineering. The assumption is that the spider works as a sort of skilled engineering designer and manufacturer 
at the same time. According to studies (Cranford et al., 2012), the real strength of the web is not the silk but how its 
mechanical properties change as loads strain it, which is a very ingenious inbuilt feature which could be used in 
many areas of life to contain damage to a small area. They found the silk itself has an ability to soften or stiffen to 
withstand different types of loads - unlike any other natural or man-made fibres.  

2.1 Model Geometry and Strength Assumptions  

An idealisation of a typical spider’s web is shown in Figure 1. According to (Denny, 1976) the spider Araneus 
spins strands of diameter ds=3µm, with area As. The number of strands in threads is changed as needed.  

The area of radius (r) has Nr = 2 strands, Ar= 2As, force Fr = 0.11…0.17, stress r = Fr/Ar = 0.08/As. The area of 
frame has Nf=10 strands, Af = Nf As = 10 As, force Ff ≈ 1, stress f = 0.1/As,  

The area of guy has Ng=20 strands, Ag= Ng As= 20As, force Fg = 2, stress g= 0.1 /As. The web is thus evenly 
stressed. For the web of A.Sericatus (Denny, 1976) gives the data  

Strand diameter ds=1.5µm, Nr= 2, Nf = 4…8, Ng = 8…10. Their topologies may differ. 

Parkes (1965) has proposed the Maxwell lemma as criterion to check whether some plane truss is a minimum 
volume structure for resisting forces in the plane of the web. The lemma is 

(1) All members are either in tension or compression 

(2) All members are equally stressed near their breaking stress. 
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a)                           b ) 
Figure 1. Simplified model for the web of Araneus spider 

a) Principal features of the web with notations radii, frame and guy threads contain about 4, 10 and 20 strands 
respectively. b) Simplification of the web showing only the main support threads and the distribution of the thread 

forces when the force of 2 units is pulling one guy 

 

Model geometry is shown in Figure 2. This model is based on assumptions derived from observation of simple 
spider webs by (Denny, 1976).  

 

 
Figure 2. Part of a web with geometry and force vectors  

 
Some simplifying assumptions are useful in this conceptual study.  

First assumption is that external geometry is close to an ideal equilateral triangle. 

Thus, by using symmetry only a sixth part of the whole structure needs to be analysed.  

The second assumption is that the strength of all threads is constant. The cross section area for each thread is thus 
thread force divided by allowed stress assuming validity of FSD (Fully Stressed Design) 
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3. Forces in the Web 

3.1 Model Geometry and Forces Constrained by Symmetry  

Three design variables are sufficient. They can be chosen as the angles 1, 2 and 3. Some angles are obtained 
directly by symmetry connections from Figure 2  

31423131121 ,,,30                          (2) 
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1

5 ,,,,                        (3) 

Some forces are obtained by symmetry. The force F1=2 as by (Denny, 1976). 

2,,,, 1273931548  FFFFFFFFF                          (4) 

3.2 Force Equilibrium at Nodes 

Force equilibrium at node A in Figure 2 gives  
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Substituting here the geometrical relationships from equations (2) and (3)  
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Whence 
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Force equilibrium at Node B gives 

0432  FFF                               (11) 
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The thread vector direction angles depend on the three design variables as  
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Substitution of these into the equilibrium equation gives in matrix form 
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 
 

 
  12

1

11
1211

1

11
11 cos2

sin
,

cos2

cos
FfFhFfFh 











                     (15) 

Using these symbols the equilibrium equation becomes  
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From this the two unknown forces can be solved using Cramer’s rule 
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The determinant of the equation system matrix is  
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The forces are thus  
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Whence the two forces are solved as 
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Force equilibrium at node C in Figure 2 gives 

01553  FFF                                    (21) 
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Substituting here from equation (4)  
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From this one may solve 
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Force equilibrium at node D gives 
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Whence both give the same solution  
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     34616314 cos2coscoscos2   FFFF                      (30) 

Summary of forces expressed as function of the known guy force F1 
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4. Position Vectors from Loops 

Position vectors are needed for the total solution. They can be found using the closures condition of position vector 
loops.  

4.1 Web Loop Vector Equations  

The first loop in Figure 1 gives the following equation in vector and component forms  
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The second loop equation in vector and component forms is 
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Substituting here the angles as function of known and independent design variables  
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Using these one to transform equation (33) to  
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The goal is to obtain position angles and position vectors as function of the four chosen design variables 

   2321kk2321kk ,,,,,,, ZZZZ                           (36) 

4.2 Assembly of Loop Equations for Solution  

Now there are 5 unknowns and 5 equations, considering angles as known 
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This equation system may be written in matrix form 
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This may be written more compactly as  
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4.3 Solution of the Assembled Loop Equations for Loop Vector Lengths 

From this linear system of equations one may solve the unknowns.  

First the Z2 is chosen a design variable which varied as independent design variable  

The Z3 is a dependent variable and may be solved as function of Z2 

2
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
                                  (40) 

Using this one obtains 

 32222125 ZAZAKZ                                (41) 

Using these models one obtains equation system for the next variables  
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From this linear equation system the two variables may be solved  
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Whence 

   43334364353454
1

,
1

HAHA
DetA

ZHAHA
DetA

Z                   (44) 

5. Decision Variables  

The desired range for decision variable sk is R(sk) = skmin < sk < skmax and satisfaction on it, called P(sk). 

The satisfaction function selection can be made as the customer wishes.  

5.1 The Decision Variable of Minimising Volume of Thread Used  

The first goal is to obtain maximum satisfaction on the magnitude of the volume of the web threads. Only one sixth 
parts is needed for modelling only  

 66552
1

443322 AZAZAZAZAZVol                      (45) 

Here the cross section areas are obtained as a function of thread forces and allowed stress using the fully stressed 
principle. The scaling stress is set to all =1MPa. 

1k1
allall

k
kallkk

1
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F
AAF


                              (46) 

Relative volume based to FSD is the first goal variable  

  66552
1

443322
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1
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
                   (47) 

Thus  

     
all

1max1
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1
4,1,1


LFVsPP

V

Vol
s                       (48) 

5.2 The Decision Variable of Catching Area 

The second goal is to obtain maximal catching area. Now it is made dimensionless using a scaling area.  
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5.3 The Decision Variable of Obtaining a Reasonably Triangular Form for the Web  

One may add all kinds of wishes into the algorithm. The spider need not worry about choose negative angles 3. 
But some algorithms are free to choose negative values unless restricted. This is redundant with s4. Calculations 
showed that same optimum was robustly achieved when it was set to constant value of full satisfaction to any 3 

value, P(3)=1 all the time.  

     ,3,03 33 sPPs                                (50) 

5.4 The Decision Variable Requiring All Thread Forces to Be Tensile 

When the largest of all thread forces is kept as positive then all other forces are also positive. 

This means that the force F6 should be positive, tensile and not negative. This requirement was justified since by 
the FSD approach the force F6 is proportional to the volume of threads. 

      ,4,04 46 sPPFs                               (51) 

5.5 Maximisation of Total Satisfaction as Goal  

The total satisfaction PG is the product of partial goals  

 )4(1)2()1()4()3()2()1( PPPPPPPPG                      (52) 

The goal is maximization of total satisfaction. Now it is the product of satisfaction functions of each goal. The 
method of exhaustive search is used. Now only geometry is varied.  

The advantage of this formulation is that the conventional goals and constraints are treated in a unified manner. 
Design variables are discrete and in the ranges 1=10...33deg, 2=45...60deg, 1=16...30deg, Z2=0.17...0.35deg.  

6. Results of Analytical Optimum Design  

Some results are shown in Tables 1 and 2. The goal was to maximise the total satisfaction.  

Table 1. Results for parameters in Figure 2. Here Pi are satisfactions on decision variables si 

Volume : 

Catch area: 

angle 3>0: 

Force F6>0: 

Total sat:  

P1=0.848 P2=0.141 

P3=0.888 

P4=0.98 

PG=0.104 

1 = 28 

2 = 42 

3 = 13 

Z1 1 F1= 0.01, 30, 2.0 

Z2 2 F2 = 0.015, 3, 1.13 

Z3 3 F3 = 0.072, 1, 1.11 

  

Z4 4 F4 = 0.031, 43, 0.03 

Z5 5 F5 = 0.05, 90, 0.04 

Z6 6 F6 = 0.056, 30, 0.06 

 
Table 2 shows the presently obtained optimal values and comparisons with experimental data and FEM results.  

Table 2. Optimal values and comparisons with experimental data and FEM results  

 Length Zk  

(m) 

Angles  

(deg)  

Forces Fk  

present opt. 

Forces Fk 

in ref. (Denny, 1976) 

Forces Fk 

FEM (Martikka & 

Pöllänen, 2009) 

Z1 = 0.01 1 = 30 (const) F1 = 2.00  2.00(const) 2.00(const) 

Z2 = 0.01(ind.var) 2 = 3 (dep var)  F2 = 1.13 1.06 1.06 

Z3 = 0.072 3 = 1  F3 = 1.11 1.03 1.06 

Z4 = 0.031 4 = 43 F4 = 0.031 0.13 0.06 

Z5 = 0.05 5 = 90 F5 = 0.05 0.11 0.24 

Z6 = 0.056 6 = 1 = 30 F6 = 0.056 0.17 0.13 

L = 0.1 (const) a1 = 28 (ind.var.) Z7 = F2   

  a2 = 42 (ind.var.)     

  a9 = 13 (ind.var.)     
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In Table 2 the calculated results are shown using the optimum design and FEM methods. These agree fairly closely 
with the experimental data by (Denny, 1976). The three large side forces agree well and the inner guy forces agree 
less well. Figure 3 shows the measured forces and the optimised forces. 

The chosen three decision variables were enough to give a good semblance of the spider web. But complex 
nonlinear hardening and softening behaviour at dynamical loads was not feasible to use in analytical models. But it 
can be done with FEM. Also use of the FSD design to get optimum may be only one part of the ingenuous design 
idea of the spider. 

Most differences in forces occur at the radial force F5. The analytical model emphasis more load bearing to the 
outer frame threads and less to the inner threads. The measured and FEM results agree better.  

 
Figure 3. Comparison of thread forces. a) Experimental study of Araneus. b) Fuzzy optimum design results 

 
7. Results of FEM Design of Web  

FEM models were made using NX Nastran. Some results are shown in Figure 4a and 4b. 

This is now a three-dimensional model. Elastic modulus E =4000MPa, Poisson’s ratio =0.3. 

The topology is the same as with the fuzzy optimum model. Non-linear solution method was used due to large 
deformations. An insect of mass 2g has impacted the web causing a mid normal displacement of 0.38L.  

 

 
 

Figure 4a. FEM model results: Web with axial stresses 
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Figure 4b. FEM model results: Deformed form by an impact of an insect of mass 0.002kg at mid 

 causing a normal displacement of 0.38 L 

 
Figure 4c. FEM model results: Deformed model 

 

8. Possibilities of Industrial Utilisation 

Web like products are used in macro, micro and nano networks and also in reinforcements in composites and in 
safety textiles. The material of spider web would be ideal in strength to weight properties but the manufacturing is 
problematical. Possibilities of utilisation can be explored by using the basic design principles and materials science 
and creative optimum design methodology. First a basic idea for an innovation utilising the web ideas is needed. 
Then this concept may be optimised using a feasibility study. The fine-tuning and detail checking is done using 
FEM. Then prototypes may be manufactured.  

9. Conclusions 

 There is a rising a global needs to obtain new sustainable ecological product concepts. 
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 Nature is full of optimal sustainable products. They have innately programme mathematics to work optimally. 
We can obtain new product concepts by using biomimicry, provided we understand how to design and 
manufacture them.  

 One example to test our design understanding of nature is the deceptively simple spider’s web. The test goal 
was to find out reasons for its optimality. The other goals were to test the feasibility of optimum design with fuzzy 
satisfaction goals to find out reasons.  

 What are the goals of the spider in web construction; we can guess them by considering how the spider 
constructs and uses the web. The design goals are probably web mass minimisation based on fully stressed design 
and to maximise the catch area.  

 These design goals were expressed as maximisation of user satisfactions on these decisions variables resulting 
in a web resembling the actual spider’s web.  

 The behaviour of the web should be understood better to produce new technical innovations by biomimicry. It 
is rewarding to study its ingenious design to get industrial applications.  

 There are two main engineering approaches to get new innovations. One is to start from basic principles and 
combine them innovatively and optimally. The second is to rely more on the use of accepted case study canon of 
examples and modify them somewhat to get predictable results. In the web case the real web was available and the 
method of ‘back to basics’ was also available. Some estimations show that the first approach leads more probably 
to unforeseen useful innovations than the second one.  
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Appendix 1. Formulation of Goals in Fuzzy Form  

In engineering tasks the optimal definition of goals and constraints is essential to get customer satisfaction on the 
result. In the concept stage the essential design variables are few, discrete and their relationships are highly 
non-linear. As humans see it, the main goal of a spider in designing and producing a web is to catch the prey. Thus 
the web functions as an essential survival means. 

A fast enough search method is exhaustive learning search. Now all goals and constraints are formulated 
consistently by one flexible fuzzy function. This is illustrated in Figure A1.1. 

 

Figure A1.1. Principle of modelling of the general satisfaction functions. Its position and skewness can be varied 

 
In the design algorithm the satisfaction function is defined for each decision variable s by inputting the left and 
right limits and two bias parameters p. The left skewed option a is useful to get low cost designs. Flat shape allows 
indifferent choice of s. The location of maximum can be shifted. The call is CALL pzz(smin, smax, p1, p2, s, P(s)). 
The output is the satisfaction function P(s). The decision variables s are changed to an internal dimensionless 
variable x1 
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                              (A1.1) 

The satisfaction function depends on one internal variable x1 and two bias parameters  
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Here 

    sHsHH 2112 1                                (A1.3) 

Two step functions are used to define the desired range of the decision variable 

         max2
1

2min2
1

1 sgn1,sgn1 sssHsssH                      (A1.4) 

The total event s is intersection of separate events. 

654321 sssssss                           (A1.5) 

Satisfaction on this event s is the probabilistic product intersection 

         n21 ..... sPsPsPsPsP                          (A1.6) 

The design goal is to maximise this product. The results are a trade-off between conflicting desires. 

A Simple Example of a Tensile Web Thread Design to Clarify the Principles 

The fuzzy design following approach is principle is illustrated using a single web thread. 

Design variables (x(i) = DesV)  

These are defined in geometry, materials and function.  
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 Geometrical DesV’s are cross sectional area A = x1 and length L =x2 

 Material DesV’s are material classes im including strength R(im), unit cost c(im).  

Now x3 = im. Now im =1 for frame material and im = 2 for viscid material. Now im=1 

 Functional DesV’s are those which are related to load bearing function , now load force x4= F , The design 
variable vector is 

    TT FimLAxxxx  4321x                     (A1.7) 

Decision variables, DecV’s  

These depend on the design variable, they are arrayed into a vector is s =f(x) = DecV’s 

   TT NKss  21s                               (A1.8) 

Now for the sake of illustration only two are chosen. This decision is made in cooperation of the designer and the 
customer. In the case of the web the spider is designer, manufacturers and user of the web and some insect is 
customer. 

Cost K = s1 is the first DecV. Now it is only material cost. 

   ALimimcKs 1                               (A1.9) 

Factor of safety N = s2 is the second DecV. Now it is based on mean values. 

 
A

FimR
Ns  


,2                              (A1.10) 

Fuzzy satisfaction of the chosen decision variable is the third level 

The goal of the spider is maximise its satisfaction on all thread parts of the web. Satisfaction on cost K is biased to 
small values which gives high satisfaction. The range is s1 = 0… to some K value. Satisfaction on the N is largest 
within the safe range N = 2…4 and small outside. 

Now the conjunction I operation and probabilistic product intersection is chosen as appropriate in most design goal 
formulations. 

      ik xsPPPssIP  2121,s                          (A1.11) 

Fully stressed design 

This FSD principle may be chosen if one is satisfied when all parts break simultaneously. But the FSD may a 
dominant goal but not the only one since the web is very tolerant to overloads and damage. Thus the spider may 
aim at desired reliability by some other approach. Using FSD one gets 
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min1min2 ,1 KsA
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F
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
                 (A1.12) 

This choice gives minimal material volume but high web users’ risk. 

Conventional non fuzzy goal formulation 

The conventional goal formulation with one goal and several constraints gives 
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               (A1.13) 

This conventional approach gives more safe design by factor Nave. With non-fuzzy formulation of one goal and two 
separate constraint formulations are needed and some more explanation. With fuzzy formulation one can easily 
define any kind of goals and any kind of constraints with then same standard formulation. The optimum is final and 
needs no more explaining. 
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Algorithm as Pseudocode  

Total Satisfaction is First Initialised to a Low Value  

Pgbest = .0000001,  

Loop FOR each material class design variable indices  

Loop FOR each geometrical design variable indices  

Loop FOR each Functional design variable indices  

Calculate each decision variable sk .Calculate each satisfaction function P(s) is obtained by a call 

CALL pzz (s1, s2, p1, p2, s, P(s)). The output is and it varies in the range 0... 

The total satisfaction is product of partial satisfactions.  

Ps = 1, the initialisation first, before the loop 

FOR i = 1 TO N, all decision variables are activated  

Ps = Ps · Ps(i) 

NEXT i 

Pg = Ps total satisfaction is obtains as product of partial ones  

IF Pg > Pgbest THEN ‘estimation of progress  

'new optimum is found better than previous 

ELSE search is continued. END IF 

NEXT design variable indices  

Summary of the Present Approach 

 Design variables x(i) (DesV’s) are first defined  

 Decision variables sk (x(i)) (DecV’s) are defined depending on the design variables. 

 Satisfaction on each decision variable sk are calculated as satisfaction function P(sk(x) on sk 

 The total goal is maximisation of their product P = P(s1(x) ·P(s2(x)·…·P(sN(x) 

The goal value ranges in a psychological scale from 0 (no good) to 1 (good)  

 The optimum is with sufficient probability in the near neighbourhood of the exact optimum since grids of 
the discrete design variables are dense enough and also since exhaustive search is used. 

Other Approaches 

Fuzzy definition is defined by Liang-Hsuan Chen& Ming-Chu Weng, (2004) in analogy with the present approach. 

The Formulations of Liang et al. (2004)  

They study Quality function deployment (QFD) as a product development process used to achieve higher customer 
satisfaction:  

This comparison of these methodologies is presented in Table A1.1  
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Table A1.1. Comparison of a QFD methodology and the present fuzzy methodology 

The QFD methodology by Liang-Hsuan & al 
(2004) 

Present fuzzy methodology 

the engineering characteristics (EC) affecting 
the product performance are designed to match 
the customer requirements 

These EC’s may correspond to the verbal selection of 
desires. Customer desires “safety” and engineers 
specify it as “factors of safety” 

---- Design variable definition here---  The design variables x(i) are chosen 

fuzzy approaches are applied to formulate 

customer requirements (CRs) and 

engineering design requirements (DRs), 

The set CR’s and DR’s are in this method combined to 
decision variables (DecV = sk(xi) ).  

the cost (K=s1) and technical difficulty 
(TD=N=s2) of DR’s are also considered as the 
other two goals 

The cost K = s1 and the factor of safety N = s2. Now s1 
and s2 are not goals but satisfaction on them are the 
partial goals are P1 and P2 

The proposed approach can attain the maximal 
sum of satisfaction degrees of all goals (PG) 
under each confidence degree.  

The sum of satisfaction function means some 
ambivalence which is not as useful as “weakest link” 
model to get most optimal design 

The PP’s seem to express use is union or 

disjunction which is measured fuzzily as 

    
   434321

4321 )

PPPPPPsP

ssssPsP


  

The goal is defined as maximisation of satisfaction on 
event s as probabilistic product intersection of partial 
goals 

      ik xsPPPssIP  2121,s  

 
Appendix 2. Fuzzy Design Background Theory 

At the present design case fuzzy multiobjective optimization principles are used. This methodology is one of many 
similar ones but somewhat little known. Therefore some of its basic principles are reviewed. This methodology is 
based on results by Diaz (1988).  

Definition of the Design Optimum 

Generally an optimum may be defined as the best, but not unique, compromise, to fulfil a number of stated criteria 
under given constraints. In technical problems it is desired that the optima are robustly with high enough 
probability within the goal area.  

The Total Design Event as a Set 

The total design event is defined as a set s or the generalized goal set 

 321 ,, sssHs                                       (A2.1) 

Here s1,s2,.. are partial design event sets ,like cost or volume capacity. These are formulated as fuzzy sets. The 
symbol H indicates a known combination of operations on the argument sets s1.  

Operations on Sets 

The two basic binary operations on the sets are utilized in design goal definitions. 

First, if H is a non cooperative or intersection type binary operation rule to join two fuzzy sets, then its use gives the 
result  

    212121 AND, ssssssHs                           (A2.2) 

Second, if H is a cooperative or union type binary operation rule to two join fuzzy sets, then its use gives the result  

    212121 O, sssRsssHs                            (A2.3) 

Third, if H is a non symmetric operation rule to join three fuzzy sets, then  

     321321321 ANDO,, sssssRssssHs                   (A2.4) 

Satisfaction Measurements on Design Sets  

Satisfaction on the fuzzy event set s is measured by some of the binary operations. The total satisfaction depends 
on partial satisfactions  
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                           (A2.5) 

Where P1 and P2 are membership functions or now partial satisfaction functions ranging from 0 to 1.  

Conjunction I  

     1,0,,min, 212121  PPPPPPI                           (A2.6) 

Examples of conjunction operators are Zadeh intersection 

     2121 ,min, PPPPIsP                              (A2.7) 

and probabilistic product intersection 

     2121, PPPPIsP                                 (A2.8) 

and  

      1,0max, 2121  PPPPIsP                           (A2.9) 

Now the goal is to maximise the probabilistic product intersection of equation (A2.8). 

Appendix 3. Strength Models of Webs 

A3.1 Strength Models  

The silk threads of spider’s web are made of two main material types frame silk and viscid silk according to Danny 
(1976). Threads are made of respective material by using integer number of strand to form a thread. 

 
Figure A3.1. Cyclic loading of threads of A.seriacus according to Denny (1976) showing stress vs. stretch ratio for 

frame threads and for viscid threads 

 
The spider apportions its material to its maximum advantage Viscid silk is used in the spiral catching orb. It has a 
low initial strength and allows large extension with only small elastic modulus. The prey can be catched softly with 
low impact. The frame silk is stiffer and takes main loads. 

 

Figure A3.2. Web basics. a) Force equilibrium when a thread is stretched by a force. b) The theoretical sustainable 
force for a thread is product of breaking strength f and cross sectional area A0 as a function of stretch ratio f. This 

model is based on data by (Denny, 1976) 
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A3.2 Thread Tension 

Stretch ratio and deformation angle are  
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Whence the strain is  
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The deformation angle is  
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Thread specimen volume is constant under tension 

ff000 LALAALVV                            (A3.5) 

The tension force is 
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The maximum force is 
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This design idea can be illustrated by applying it to a thread system shown in Figure 5 modified from (Denny, 
1976) 

 

 

Figure 5. Tension free body system of four viscid threads connection two parallel radial threads  
 

From these free body models one obtains for Nv viscid threads connecting two radial threads 

vvTNF sin2 vtot                                  (A3.8) 

The left radial thread force is sum of Nv parallel threads forces 

rrv TTN sin2v                                   (A3.9) 

Whence the connection of the total force Ftot and the tension Tr at the radial thread is  

vrrTF  sinsin4tot                              (A3.10) 

The advantage of the design is that the sine factor increases with deformation of the threads. The ductility is large 
so that the tension does not grow excessively large. 

A3.3 Use of Web for Catching Desired Projectiles 

The projectiles are edible insects. One is the house fly musca domestica with mass m = 1.210-5 kg and impact 
velocity v’ = 2.61 m/s, according to Denny (1976). Kinetic energy is 

       NmkgmvW
s
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Volume of a typical basic strand is 
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Fracture energy stored in the volume of one typical strand is 
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A3.4 Energy Storage before Breaking 

The energy storage using a power law model for tensile stress strain relationship is 
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For a viscid thread the power law exponent n = nv = 5 
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For a nearly elastic frame thread the power law exponent is nframe= 1. True fracture strain is  
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The volumes can be related to viscid volume Vv consisting of Nv strands 

sssv vNLdNV v
2

4v                             (A3.17) 

Thus the fracture energy of one viscid thread is  

vvv VUW                                   (A3.18) 

Frame volume Vf with Nf strands in a frame bundle is  

UfVfWfvNLdNV sssf  ,f
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4f
                     (A3.19) 

The goal is that the energy absorbed without damage is large than the largest feasible projectile energy 

kWWW fv                               (A3.20) 

Now experimental data supports the rough equality, Denny (1976) 

vf UU                                (A3.21) 

Thus 

  kf WNNvU vs                            (A3.22) 

Substituting typical values gives 
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The number Nv of basic strand volumes vs can be estimated roughly. Values for two spiders are: 

For Araneous Nf =10, for A. Sericatus Nf = 4…8. One may assume an average 8f N . This gives  

881616 vf  NNNv                        (A3.24) 

A3.5 Tensile Test Data 

Tensile tests of typical silk threads, based on data by Denny (1976) are shown in Figure 6.  
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Figure 6. Tensile tests of typical silk threads, based on data by (Denny ,1976)  

 
A3.5.1 Frame Silk 

Frame silk is nearly linear elastic. The fracture (f) strain may be written as  
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Thus the true (t) strain is  

     25.1lnln1ln ffft                          (A3.26) 

Linear elastic model is feasible 
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Some typical numerical values give 
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According to Denny (1976) the elastic modulus is in the range  

MPaE 4630....2570final   

General simple model for nominal stress  as function of true strain 
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Energy stored in deformation per unit volume is 
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For frame silk, n = 1 
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A3.5.2 Viscid Silk 

Nominal (n) and true (t) strain are  
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    ln1ln1 ntn                           (A3.33) 

Nominal stress vs. true strain is 
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Fracture strain is 

    3lnln1ln1 ffftff                       (A3.35) 

The two parameters for the nominal stress vs. true strain models are obtained by data fitting to two chosen points  
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From this the exponent n may be solved 
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The unit energy stored in viscid thread is  
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(Denny, 1976) proposes that the viscous energy Uf, viscid is about that same as with frame silk. 

 


