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Abstract  

In this study, experimental and analytical investigations are carried out on an overhanging cylindrical shaft 
carrying a propeller at the cantilever end, in order to identify the crack existence in shafts using the mechanical 
impedance approach. Also the experimental study uses the modal analysis software, LMS Test LabTM, for 
measuring and analyzing the response results from un-cracked and cracked shafts. In the numerical study, both 
the un-cracked and the cracked shafts (with varying crack depths) are modeled by finite element procedure. 3-D 
iso-parametric elements (element types 186 and 187), available in the ANSYS FEM program, are utilized to 
model the system. The impedance and velocity frequency response functions are used to identify the crack depth 
in the shaft system. Impedance and mobility were measured and simulated in the vertical direction for the 
resonant frequencies and anti-resonant frequencies. The experimental results are used to validate the numerical 
results. A better crack detection procedure was obtained by the plot of the slope of the non-dimensional 
frequency ratio (in the resonant and anti-resonant regimes) vs. the non-dimensional crack depth ratio. By this 
method crack presence could be definite detected when the non-dimensional crack ratio is greater than 0.20 to 
0.25. In addition monitoring of the lower torsional frequency indicated the crack presence even from the 
beginning stages.    

Keywords: experimental and numerical investigation, cracked shaft, mechanical impedance, finite element 
method, modal analysis, ANSYS 

1. Introduction 

The appearance of a transverse crack in a shaft brings with it a greater risk of collapse. Even though the presence of 
a crack may not lead to sudden failure, it will affect considerably its dynamic behavior. The primary reason for the 
difficulty in detecting the presence of a crack in rotating shafts with an overhang seems to be due to the very small 
changes that occur in the system frequencies unless the crack depth is nearly 50% of the of the shaft diameter; the 
rotor shaft system will be in a state of sudden failure beyond this crack depth. In the last four decades, many 
numerical and experimental studies have been carried out to identify the effects of different type of cracks, such as 
transverse, longitudinal, slant, breathing cracks and notches. In these studies the researchers have used different 
methods to identify crack presence in structures. One of these methods is detection and monitoring of cracks using 
mechanical impedance. 

Manley (1941) mentioned that the concept of mechanical impedance has been used since 1939. It was used for the 
analysis of vibrational problems in engine systems. In this paper, the resonant frequencies were determined by 
developing equations for damped linear systems. The author stated that the method of impedance can be applied to 
the case of torsional vibration of rotating shafts. Kane and McGoldrick (1949) discussed the longitudinal 
vibrations of marine propulsion-shafting systems. The purpose was to: (i) estimate the longitudinal critical speeds, 
and (ii) calculate with more precision which elements were critically affecting the longitudinal vibration. This 
study was mainly concerned with the types of vibrations that occur in the electric-drive propulsion system of a 
marine vessel. It was concluded that the longitudinal vibrations were less affected than the torsional vibrations. 
The vibratory system was limited to the rotating elements in the torsional vibrations. The longitudinal vibrations, 
however, were affected by the machinery masses and their foundations. The authors used three methods to 
estimate the natural frequencies, viz., (i) fixed end approximation method; (ii) Two body approximation method; 
and (iii) mechanical impedance method. The authors concluded that this paper provided guidance for deciding 
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whether the thrust bearing, mounting, machinery foundations, and propeller clearances need to be included in the 
rotor modelling procedure. Also, they found an agreement between the computed values of natural frequencies for 
all the models, as well as for the experimental results. 

Chenea (1952) used the concept of impedance to analyze an elastic bar, a tapered and stepped shaft, and a string in 
longitudinal, torsional and lateral oscillations respectively. He applied the models as continuous systems, and 
considered both the free and forced vibration. He assumed that the cross-sectional area of an elastic bar changed 
gradually and that there were internal and external dampings in the system. The model consisted of a spring 
connected with damping in a series and then connected to another damping in parallel. By the same technique, he 
used this model for torsional oscillation. In both cases, he found the natural frequencies of the systems. 

On (1967) used experimental and analytical procedures for determining mechanical impedance and to find its 
effects on dynamic response. He developed the concept of mechanical impedance in terms of point and transfer 
impedance parameters. He developed two DOF (degree-of-freedom) and three DOF lumped mass models, for 
theoretically representing, complex aerospace structures, as large inter-connected matrix systems. He compared 
his theoretical results with experimental results on such aerospace structures and found them to be reasonably good. 
He mentioned that this approach could be extended to many systems subjected to steady state, transient and 
random excitations.   

Hamidi, Piaud and Massoud (1992) developed two mathematical models (using three-dimensional stress intensity 
factors at the crack region) to determine the bending natural frequencies of a single span rotor. They used natural 
frequencies, mode shapes and frequency response functions to identify the crack presence. The analytical methods 
were compared with the results of experimental measurements. The following conclusions were made: (i) When 
crack depth was more than 30% of the shaft radius, the rate of change of natural frequencies was very high; and (ii) 
The speed of rotating shaft did not affect the values of natural frequencies; this was probably due to the fact that the 
stiffness of the shafts were not reduced significantly by the rotating speed effects on the shaft. 

Bamnios and Trochidis (1995) investigated the influence of a transverse open crack on the mechanical impedance 
experimentally and analytically. Cantilever beams were used to obtain the change of the mechanical impedance at 
different locations and sizes of the crack under the effect of longitudinal and bending vibrations. From vibration 
results they found that the changes of mechanical impedance were more in the lateral directions than in the 
longitudinal direction. Zakhezin and Malysheva (2001) used a numerical finite element based crack detection 
technique and modal tests on a single span shaft. They included system damping in their model and calculated the 
system’s natural frequencies, eigen-values, and eigen-vectors up to a frequency of 1,100 Hz. These values were 
calculated for a rotor with and without cracks at varying locations and depths. The method was tested and results 
verified to demonstrate the good quality of results obtained. 

Prabhakar, Sekhar and Mohanty (2001) investigated experimentally the influence of a transverse surface crack on 
the mechanical impedance of a rotor bearing system, supported between two bearings. This system consisted of 
rigid disks, distributed parameter finite shaft elements, and discrete bearings. The experimental work was done to 
validate their previous numerical analysis results. They tried to use the concept of mobility for detecting and 
monitoring the crack using different crack parameters and force locations. The authors did this experiment for an 
un-cracked and a cracked shaft. They used different depths (20% and 40% of diameter to represent the crack depth) 
at the location. Also, they measured the mobility in two directions, horizontal and vertical, at the bearing locations. 
This measurement was taken at different rotor speeds. They found that the mobility was directly proportional to the 
depth of the crack, as well as to the rate of change of mobility at the running frequency. Moreover, since the crack 
depth was assumed to grow vertically, the rate of change of mobility in the vertical direction was greater than that 
in the horizontal direction. There was considerable agreement between experimental results and numerical 
simulations. Therefore, the authors suggested using this method to detect the crack, while monitoring a 
rotor-bearing system. 

Bamnios, Douka and Trochidis (2002) carried out analytical and experimental studies on cracked beams to 
investigate the effect of a transverse open crack on the mechanical impedance under various boundary conditions. 
They used a spring connecting the two segments of the cantilever beam as a model of the crack. The beam had a 
uniform rectangular cross-section and the crack was assumed open and had a uniform depth. Additionally, bending 
vibrations were considered and the bending spring constant 

TK was given by: 

,
1

c
K T  )()346.5( waJEIwc   

where, w was the depth of the beam, E the modulus of elasticity of the beam, I the area moment of inertia for the 
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beam cross-section and J (a/w) is the dimensionless local compliance function. They found that the impedance and 
natural frequencies changed with the presence of a crack, as well as by its size and location. Also, the natural 
frequencies of the cracked beam were reduced when compared with the un-cracked beam. As seen from the 
numerical results, the crack had a strong effect on the mechanical impedance and this effect depended on the 
crack’s location. The changes of the mechanical impedance and the natural frequencies can be used as indicators 
for the presence of a crack. There was agreement between analytical and experimental studies in all cases. 

Prabhakar, Mohanty and Sekhar (2002) investigated the influence of a transverse surface crack for open and 
breathing cases (depending on the rotor deflection) by continuing their earlier studies on a rotor bearing system 
supported between two bearings. They used FEM analysis to show this influence on the mechanical impedance of 
a rotor-bearing system. They attempted to use the concept of mobility (inverse of the impedance) to detect the 
crack by using different crack parameters and force locations. They found that the mechanical impedance changed 
and was quite sensitive to the presence of crack; it decreased (in an open crack) as the crack depth increased; and it 
decreased more when the location of the crack moved toward the disk. For the case of a breathing crack the 
mechanical impedance decreased as the crack depth increased. The sensitivity was more apparent in the breathing 
crack case. Additionally, when the running frequency for the breathing crack was doubled the sudden change in 
mechanical impedance was easily observed. For a breathing crack, the mechanical impedance was sensitive to 
small or large crack depths, even if the crack depth ratio was less than 0.1 (ratio between crack depth and shaft 
diameter). Finally, the authors recommended that the measurement of mechanical impedance can be used as a good 
indicator for the presence of cracks. 

Sekhar and Srinivas (2003) used shell elements with 4 nodes using CQUAD4 elements available in commercial 
finite element analysis software NASTRAN and FEMAP to model hollow cracked composite shafts, fabricated 
using stacking sequences of boron-epoxy, carbon-epoxy and graphite-epoxy materials. The finite element 
formulation was based on first order shear deformation theory. They generated crack on the shaft by using bullion 
operations. Also spring elements were used to represent the effect of the bearings. They have stated that the 
stacking sequences such as 90/0/90/0 and 90//90/0/0 produced a higher frequency than other sequences of stacking. 
They also found that for all the three materials, the eigen-frequencies decreased with increase in crack depth. They 
also observed that the carbon-epoxy shaft had a higher frequency than the other two materials for the same crack. 
Sinou and Lees (2007) analyzed the influence of a breathing transverse crack on the dynamic response of an 
on-line rotating shaft. Also they investigated the development of the orbit of the cracked rotor at half and one-third 
of the first critical speed. They used Harmonic Balance Method to obtain shaft response parameters by considering 
the effects of different crack depths and locations. Li, Yao, Ren and Wen (2008) used FE-based simulation 
(through ANSYS) to model the dynamic characteristics of a faulty multi-span rotor system. This system was 
connected together by axial membrane coupling, considering each span to be elastic and supporting a rigid rotor at 
the free end. They examined in detail the bending-torsion coupling vibration of a single-span rotor and the whole 
rotor system; they analyzed four cases for the occurrence of cracks and rubbing faults (crack location was in the 
middle of the span and the crack depths were 0.0, 0.2D, 0.4D, and 0.6D). They examined: (i) The nonlinear 
dynamic characteristics, (ii) Responses of the rotor system, (iii) The influences of membrane coupling, and (iv) 
Effect of gearing on the rotor system. They concluded that detailed examination of both coupling and gear 
response would help one to properly diagnose the cracks occurring in the span. 

Citarella and Cricri (2010) investigated a complex 3D fatigue crack growth due to torsion loading using two 
different methods, viz., the dual boundary element method and the finite element method. They adopted a number 
of different criteria for the crack path assessment, using minimum strain energy density, maximum principal stress, 
approximate energy release rate and various approaches formulated for stress intensity factor estimation. Also, 
they modeled crack surfaces with discontinuous quadratic quadrilateral elements while the surfaces intersecting a 
crack were modeled with edge-discontinuous quadrilateral elements. It was found that the computational results 
obtained using the finite element method and dual boundary element method gave a very good agreement. 
Additionally, the stress intensity factors and the crack paths estimated by different method were pretty well 
consistent.  

2.  Shaft-propeller-bearing Test Rig and Experimental Setup 

In this part of the present study, the characteristics of the vibrating un-cracked and cracked shafts were 
investigated through modal testing. Manually-made saw cuts (0.65 mm wide) were used as cracks for different 
depths. The main objective of this experimental study was to study the effect of cracks on the lateral vibrations 
of a shaft. The experimental results were used to validate the numerical models. For the experimental portion of 
the study, the Engineering Innovation (LMS Test LabTM) software package with two measurement channels was 
used. The first input channel consisted of the time history output from the modal hammer used in the study. The 
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number designation of the impact hammer type was 8206-002 and the maximum force (non-destructive) that it 
can deliver was 4448N (for a steel tipped impact hammer). The head of the hammer could use different tip 
materials, viz., aluminum, plastic, rubber, and stainless steel. In this study, plastic tip (DB-3991-002) material 
was used. The second channel consisted of the time history output from the accelerometer device. 

As shown in the Figure 1, a continuous shaft with an overhang was used in this study. The propeller was attached to 
the free end of the overhang. In the experimental aspects of this study, LMS Test Lab TM was used to acquire and 
process the vibration test results. During modal tests the shaft, with the overhang, was locked (or fixed) to the 
bearing support (bearing 1) as shown in Figure 2(a). 

The fixed rotor shaft of 16 mm diameter and 1220 mm length was supported on two bearings with greased fittings, 
and deep-grooved ball-bearing inserts. Set screws were used to fix the shaft at bearing 1. The experimental 
program was carried out to identify the shaft characteristics with and without the presence of crack; a crack (of 
width 0.65mm) having different depths was made at 2.0 cm to the right of bearing number 2, as shown in Figure 
2(b). 

 

 

Figure 1. The shaft-propeller system with bearing and the LMS Test Lab during modal tests 

 

 

Figure 2. (a) Clamped end of the cylindrical shaft at bearing 1; (b) Saw-cut crack with 70% crack depth ratio 

 

3. Relationship between Input and Output in Dynamic Response of the Rotating Shaft 

This section illustrates the relationship that exists between the input and output obtained from a vibrating system 
(in this case, a rotating shaft). The relationship can be expressed by the block diagram given in Figure 3, which 
relates the input and the output in a direct manner. The inverse of the relationship shown in Figure 3 can be 
shown in Figure 4 (Schwarz & Richardson, 1999). In the direct forward manner, the input and output shown in 
Figure 3 can be related as 
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In the indirect inverse manner, the input and output shown in Figure 4 can be related as 
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The transfer functions Hdisp. (w) are called receptance (or dynamic compliance) for displacement or, mobility for 
velocities or accelerance for acceleration matrices. The inverse transfer functions, inv.Hdisp. (w) are called dynamic 
stiffness (for displacement input) or mechanical impedance (for velocity input) or apparent mass (for 
acceleration input) matrices. 

The properties of these matrix functions can be suitably utilized to monitor and detect cracks (or damages) in 
structures. If the system frequencies are very low (in the case of massive structures), better sensitivity will be 
obtained for monitoring and detection by the use of displacement response function Hdisp. (w) or its inverse 
inv.Hdisp. (w). If the frequencies are in the intermediate range, the use of velocity response function Hvel. (w) or its 
inverse inv.Hvel. (w) (or mechanical impedance) will give better sensitivity for monitoring cracks (or damages) in 
the structural system. For higher frequencies (in the case of very stiff structures) the use of acceleration-related 
response functions Haccl. (w) or its inverse inv.Haccl. (w) (or apparent mass) will give better sensitivity in 
monitoring cracks (or damages) in the structural system. In the present study, attention will be focused more on 
deriving information from velocity-related impedance response functions. 

4. Multi-degree-of-freedom System  

The matrix equation for a multi-degree-of-freedom system can be expressed as  
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where [m], [c] and [k] are the mass, damping and stiffness matrices of the system, X(t) is the response of the 
system in terms of the system displacement and F(t) is the external force applied to the system at various degrees of 
freedom. Expressing Equation (3) in a summation form (On, 1967)   
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where N represents the degrees of freedom of the system. In the mechanical impedance approach, the Fourier 
transform of the force and the excitation leads to, 
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where Vβ(w) is the Fourier transform of velocity (= dx/dt) and Fα(w)  is the Fourier transform of the excitation 
force. If the term within the bracket can be expressed as 
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which characterizes the frequency dependent properties of the system, then Eq. (5) may be expressed as  

  FVZ
N

 1
                           (7) 

In a proper matrix format, Eq. (7) can be rewritten as 

     FVZ                           (8) 
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In Eq. (8), Zαβ are termed as the point impedance parameter of the system (when α = β). When α ≠ β it is termed 
as transfer impedance parameter. Equation (8) will give results in terms of mechanical impedances of the 
vibrating system. Once the impedances (or mobility) are known, the corresponding complements of dynamic 
stiffness (or displacements) and apparent mass (or accelerations) can be obtained by the use of proper numerical 
integration or differentiation of the impedances function. Figure 5 shows the impact testing and analysis 
procedures used in this study. In the present study the accelerometer was located at point 9 (see Figure 6) and the 
impacting model hammer was moved to various points in obtaining the response parameters in the experiment. 

 

 
 
 
 

Output response 

Displacement X (w) 
Velocity  V (w) 
Acceleration  A (w) 

Input force 

F (w) 

Transfer function 

H displacement (w) 
H velocity       (w) 
H acceleration   (w)  

Figure 3. Block diagram for input-output relationship 

 

 

 

Output force 

Displacement X (w) 
Velocity  V (w) 
Acceleration  A (w) 

Input response 

F (w) 

Transfer function 

inv H displacement (w) 

inv H velocity       (w) 

inv H acceleration   (w) 
 

Figure 4. Block diagram for the inverse input-output relationship 
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Figure 5. Experimental procedure for impact testing of the rotor shaft 

 

 
Figure 6. Schematic diagram of measurement and impact location 

 
 

Accelerometer at point 9

9

Accelerometer device-monitors 
horizontal motion 

Frequency response function 
obtained through the LMS system 

Frequency, Damping, and 
Mode shape 

Model 

Input by using hammer

Measure the frequency 
response functions 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 2; 2012 

17 
 

5. Computer Simulation with ANSYS Workbench (Solid Works) 

The shaft was supported over two roller bearings supported by two fixed steel supports; the fixed steel supports 
were fixed-welded to the large steel base plate as shown in Figure 7(a). The steel base plate was fixed to the 
table at bottom. The bearing used in this study was a Flange Mounted McMaster-Carr Ball bearing (5967k81) 
(2011) shown in Figure 7(b). It contained two main parts, viz., the inner and outer housing bearing surfaces 
connected together through some balls; two tight screws connected the shaft to the inner bearing. 

 

 

 
 

 

Figure 7. Schematic diagram of; a) cylindrical shaft-propeller and mounted ball bearing; b) details of bearing 
support; and c) propeller, Aluminum loading arm, big and small nuts 

 
5.1 Elements, Mesh Convergence, Contact Behavior and Materials Used in Analysis 

In this paper, the Finite element ANSYS Workbench 13, software program was used to create 3-D analytical 
models of the circular shaft-bearing-propeller system. The element types used for the 3-D model were chosen 
automatically, as stated by (Huei, 2011) according to the types of the structural parts used in the analysis. It used 
two types of elements, viz., (i) Solid 186, 20-node element; and (ii) Solid 187, 10-node element. A mesh 
convergence study was carried out so as to ensure that the numerical values of frequencies for transverse and 
torsional vibrations were convergent with experimental natural frequencies. 

 

(a) 

(b) 

(c) 

Bottom steel 

plate support 

Test frame 

support 1 and 

Test frame 

support 2 and 
Arm for applying  

impact torque
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Crack region in shaft 
Figure 8. a) Finite Element mesh used for the various components of the rotating shaft system; and b) Mesh 

around the crack region 

 
Several mesh sizes (varying from 0.7cm to 2.0cm) of the model were utilized in this study. The shaft-propeller 
-bearing mesh generation are shown in Figure 8(a). The mesh convergent study carried out showed that the 
frequency responses were almost convergent with the experimental results for a mesh size of 1.0 cm for the shaft 
system. The model had 39731 elements and 78580 nodes for the un-cracked shaft. For the cracked shaft the same 
mesh was used with refinement of the mesh around the crack front. The mesh around the crack region is shown in 
Figure 8(b).  

Bottom steel Shaft

Inner bearing 
Housing bearing 

Propeller

Aluminum arm
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In ANSYS Workbench the contact between two bodies were represented by two contact surfaces, one specified as 
a contact surface and the other as a target surface. In the present shaft-propeller system, three types of contact 
(bonded, frictional, frictionless) were used. It can be indicated as follows: (i) The parts which were bonded 
together are, viz., two tight screws to inner bearing and to shaft, housing bearing to inner connection (a part that is 
made to fill the space between the bearing surfaces and the steel supports, to avoid unwanted zero modes), housing 
bearing to balls, shaft to small nut, shaft to big nut, shaft to fixed aluminum, propeller to small nut, small nut to big 
nut, and fixed aluminum to support 1; (ii) The parts which had frictional contacts were, viz., aluminum loading arm 
to shaft (friction coefficient is 0.2), aluminum loading arm to propeller (friction coefficient is 0.1), inner 
connection to support (friction coefficient is 0.001), and shaft to propeller (friction coefficient is 0.1); and (iii) The 
parts which had frictionless contacts were, viz., balls to inner bearing, balls to inner connections, inner bearing to 
inner connections, inner bearing to shaft, inner connections to shaft and fixed aluminum plate to support. The 
frictional coefficients became important in determining the correct torsional frequency since the propeller was not 
welded to the shaft, but joined rigidly through a slotted keyway system. The frictional coefficients that gave the 
frequency close to the experimental values were used to get the correct numerical values. The same consideration 
was used in identifying the frictional coefficient for the torque arm. 

The model contained different type of materials. As mentioned in the previous section the model had several parts 
such as shaft, propeller, bearings, nuts, tight screws, aluminum loading arm, fixed aluminum, support, and inner 
connection. The material properties of these parts used in the analysis are summarized in Table 1. 

 

Table 1. Material properties used for the numerical model  

Type Material 
Density  

Kg/m3 

Modulus of 

elasticity     Pa 

Poisson’s 

ratio 

Bulk  Modulus   

Pa 

Shear Modulus  

Pa 

shaft Steel 7850 2e+11 0.3 1.67e+11 7.69e+10 

Propeller Bronze 8800 1.14e+11 0.34 1.19e+11 4.25e+10 

Support steel 7850 2e+11 0.3 1.67e+11 7.69e+10 

Housing bearing Gray cast iron 7200 1.1e+11 0.28 8.33e+10 4.29e+10 

Inner bearing Structural steel 7850 2e+11 0.3 1.67e+11 7.69e+09 

Fixed aluminum plate Aluminum Alloy 2770 7.1e+10 0.33 6.96e+10 2.67e+10 

Aluminum loading arm Aluminum Alloy 2770 7.1e+10 0.33 6.96e+10 2.67e+10 

Inner connection Artificial polyethylene 50 1.1e+05 0.42 2.29e+05 38732 

Tight screws steel 7850 2e+11 0.3 1.67e+11 7.69e+10 

 

6. Presentation of Results and Discussion 

Using the experimental and numerical results obtained from the previous sub-sections the displacement /velocity 
/acceleration response functions and their inverses such as dynamic stiffness, impedance and dynamic mass 
response functions were determined for the circular shaft-bearing-propeller system for lateral and torsional 
vibrations. 

The results in Table 2 show the first eight natural bending frequencies (four vertical and four horizontal); it also 
gives the computed torsional frequency. This table gives the experimental and numerical results obtained for the 
above (un-cracked and cracked) shaft. These results were repeated for three different shaft-bearing systems, viz., 
shaft No. 1, shaft No.2 and shaft No. 3. The three shafts were of almost of the same diameter (measured a verage 
values were 0.01588 m, 0.01586 m, 0.01589 m respectively). For each crack depth three separate tests were 
carried out and the results processed through the LMS Test Lab system. Then the results were added and 
averaged to get the final result reported herein. The experimental and numerical results seem to be agreeing very 
well (on an average) with one another as the crack depth increases in the shaft-propeller-bearing system; in both 
experimental and numerical results, the frequencies of the cracked shaft clearly decrease as the crack depth 
increases. Also the estimated numerical values of frequencies have been observed to be higher than the measured 
experimental ones for the fundamental frequency. For all the other frequencies, the estimated numerical values 
are lower than the measured experimental ones. The probable reason may be that the overhanging shaft is more 
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flexible in the fundamental experimental mode (than the first numerical mode) and vice verse for all the other 
modes. 

 

Table 2. (a) Experimental and numerical values of natural frequencies for various crack dept ratios (V - vertical 
and H - horizontal and torsional) 

 

Frequency 

Crack depth ratios 

0.0% 10% 20% 30% 

V H V H V H V H 

First 

Exp. Shaft 1 * 34.768 41.344 34.417 41.544 34.119 41.182 34.325 41.196 

Exp. Shaft 2 * 36.395 42.980 36.315 42.959 36.262 42.904 36.212 42.91 

Exp. Shaft 3 * 33.855 40.629 33.774 40.656 33.751 40.615 33.736 40.550 

Num. Comp. 35.577 41.182 35.594 41.113 35.551 41.173 35.471 41.107 

Second 

Exp. Shaft 1 * 76.78167 78.279 76.413 78.57567 76.05867 78.31 75.205 78.02033 

Exp. Shaft 2 * 75.975 80.034 76.056 79.985 75.852 79.903 75.617 79.309 

Exp. Shaft 3 * 74.614 79.914 74.593 79.809 74.487 79.844 74.215 79.826 

Num. Comp. 75.247 78.245 75.113 78.102 75.021 78.017 74.933 78.129 

Third 

Exp. Shaft 1 * 190.634 199.089 190.757 197.944 189.998 197.769 189.865 197.829 

Exp. Shaft 2 * 196.119 199.544 195.849 199.462 195.667 199.503 195.398 199.424 

Exp. Shaft 3 * 192.190 197.813 191.962 197.817 191.742 197.771 191.298 197.652 

Num. Comp. 187.880 199.22 187.51 198.97 187.43 198.82 187.4 199.4 

Fourth 

Exp. Shaft 1 * 365.8 335.241 364.3547 335.2313 362.3233 335.7223 365.426 336.0583 

Exp. Shaft 2 * 367.423 369.148 366.861 368.992 366.391 368.896 365.457 368.605 

Exp. Shaft 3 * 352.959 355.931 353.392 355.628 352.642 355.315 349.39 353.132 

Num. Comp. 360.1 381.49 358.72 380.75 358.99 380.58 362.09 383.3 

First natural 

frequency for 

torsion 

Exp. Shaft 1 43.716 43.213 42.826 42.628 

Num. Comp. 43.453 43.422 43.111 42.92 

Frequency 

Crack depth ratios 

0.40% 50% 60% 70% 

V H V H V H V H 

First 

Exp. Shaft 1 * 33.80933 41.09267 33.79633 40.815 32.64033 40.52267 30.60033 39.84867 

Exp. Shaft 2 * 36.02723 42.77933 35.791 42.70067 35.21133 42.23533 33.98633 41.728 

Exp. Shaft 3 * 33.54967 40.47867 33.335 40.339 32.80367 40.03433 31.67467 39.535 

Num. Comp. 35.402 41.575 34.922 41.002 34.23 40.497 33.706 40.583 

Second 

Exp. Shaft 1 * 75.48633 77.35933 74.19133 76.54333 72.79567 76.23 67.299 74.95233 

Exp. Shaft 2 * 74.99833 79.09533 74.20733 79.09067 72.38067 79.03467 69.24733 77.91233 

Exp. Shaft 3 * 73.44333 79.603 72.554 79.372 70.73833 78.92633 67.54433 77.9527 

Num. Comp. 74.27 77.997 73.48 77.79 71.832 76.594 69.705 76.879 

Third 

Exp. Shaft 1 * 189.449 197.708 188.0927 197.1897 186.1117 196.4363 178.986 195.956 

Exp. Shaft 2 * 194.5687 199.3333 193.421 199.0703 190.7537 198.4617 185.5763 197.3003 

Exp. Shaft 3 * 190.0337 197.4143 188.644 197.0687 185.412 196.3743 180.0857 195.0663 

Num. Comp. 186.4 198.66 185.56 198.76 183.36 197.05 179.87 196.46 

Fourth 

Exp. Shaft 1 * 358.8217 335.4333 355.349 333.2633 345.0703 331.14 327.8163 321.8417 

Exp. Shaft 2 * 362.876 367.6683 359.1237 366.059 349.9673 362.3057 333.337 354.9043 

Exp. Shaft 3 * 344.4017 350.252 339.052 347.5507 328.8137 343.1973 315.164 336.204 

Num. Comp. 379.14 360.66 360.66 380.83 341.77 376.87 338.83 366.55 

First natural 

frequency for 

torsion 

Exp. Shaft 1 42.292        41.864          41.723          41.497         

Num. Comp. 42.739 42.599 42.353 41.877 

* Average of three independent measurements  
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Figure 9 shows the responses of the system under test (impact excitation) and the corresponding responses 
(velocity FRFs) for experimental and numerical results. All figures illustrate the frequency shifts that occur due 
to the increased cracking in the shaft. It is also observed for all cases (experimental and numerical), reasonable 
agreements exist between numerical and experimental results. It can be seen from these figures, that the velocity 
response functions (VRFs) can also be used as a good tool for crack identification. Also Figure 10 shows 
individual comparisons for some cases (intact VRFs, cracked 20% VRFs, cracked 40% VRFs, and cracked 70% 
VRFs.) for response functions of experimental and numerical computations. It can be seen more clearly that the 
shift of velocity response peaks is dependent on the change in natural frequencies and is directly proportional to 
the severity of the crack. 

It is essential to point out two limitations in all the numerical computations reported in this: (i) It can be seen 
from the curves given in Figure 9 in this study there is an extra frequency observable in the experimental results, 
which is not observed in the numerical computations. This extra frequency was determined to be due to the 
presence of the effect of torsional frequency in the measurement of vertical displacements. In the numerical 
computations, the torsional and bending frequencies (as well as their response functions) could not be computed 
in a single numerical computation for the indeterminate shaft. It had to be computed in two separate 
computations where the shaft was permitted to either bend or rotate freely (over the support near the overhang) 
by the provision of zero friction (boundary condition for torsion) at the support near the overhang; this led to two 
different systems. The torsional frequencies were obtained correctly, when zero friction was provided at bearing 
support 2; and (ii) Also in the numerical computation for response functions the desired accuracy for 
computations could not be achieved with the provided computer memory size in the computing system. The 
accuracy with which the researcher could obtain response results was 0.25Hz (one could solve results up to 1000 
steps for the frequency range of zero to 250Hz). These two restrictions prevented better comparison to be 
obtained between experimental and numerical computations. 
 

   

Figure 9. Responses of the system for; a) experimental; and b) numerical computations of velocity response 
functions (VRFs) for shaft #2 

 

(a) (b) 
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Figure 10. Comparison of velocity responses functions (VRF) in experimental and numerical computations a) 
Intact VRFs; b) Cracked 20% VRFs; c) Cracked 40% VRFs; and d) Cracked 70% VRFs; for shaft # 2 

 
Figures 11 and 12 give the experimental and numerical plots obtained by LMS Test Laboratory software and 
ANSYS Workbench software, respectively; the plots show the mechanical impedances of cylindrical 
shaft-propeller-bearing system obtained for vertical vibrations. Figure 11 shows the computed mechanical 
impedances of the cylindrical shaft for the various crack depth ratios (0.0 to 0.7). The impedance values peak 
when the cylindrical shaft system has almost a zero velocity response. These impedance peaks are obtained at 
what are traditionally called as anti-resonant frequencies (where the velocity responses are almost zero) of the 
vibrating system. In this case the experimental anti-resonant frequencies for the un-cracked experimental rotor 
shaft are located at 49.51 Hz and 207.5 Hz for the first and third anti-resonances (the second anti-resonance was 
missing); the corresponding numerical values were 39.0 Hz and 194.0 Hz (the large differences are due to the 
difficulties in modeling and the limitations in the provided computational memory size). In contrast the 
impedance values are almost zero at the resonant frequencies. The near-zero anti-resonance frequency observed 
in the experimental results (see Figure 11 (a)) are probably due to the vibration of the foundation support to 
which the steel base plate of the experimental test setup is attached. 

(a) (b) 

(c) (d) 
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(a)                                        (b) 

Figure 11. Change of the impedances with crack depth for both experimental and numerical results for shaft # 2 
 

 

 

 Figure 12. Variation of experimental and numerical impedance for different crack depths for shaft # 2  
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Figure 13. Changes in the a) mobility and b) impedance between intact and 70% crack depth ratio for 

experimental and numerical results for shaft # 2 

 

Figure 13 shows experimental and numerical changes in impedance and mobility for intact and 70% crack 
depths. Impedance and mobility were measured and simulated in the vertical direction. It can be observed from 
the mobility curves of Figure 13(a) that the amplitudes of all the mobility increases for the resonant frequencies 
for increasing crack depths. In contrast, the amplitudes of impedance at all the anti-resonant frequencies either 
decrease (at the first anti-resonance) or increase (at the third anti-resonance) as crack depth increases. The trend 
of agreement between experimental and numerical values is very good; however only a small change occurs in 
mobility amplitudes at the first resonant frequency. 

Figure 14(a) to (c) show the changes that occur in the resonant frequencies (experimental and numerical results) 
as the crack depth ratio increases from 0.0 to 0.7. Figure 14(a) shows the changes that occur in the 
non-dimensional frequency ratios (ωcracked/ωun-cracked) for the first four vertical bending frequencies as the crack 
depth ratio increases. It is observed that the changes in non-dimensional frequency ratios are not appreciable for 
a crack depth ratio less than 0.5 (in this range the non-dimensional frequency ratio is greater than 0.98). This 
crack depth ratio is quite large for crack detection since the structure may tend to fail catastrophically beyond 
this crack depth. Hence for these types of shafts, we need to obtain another type of measure that could indicate 
the crack presence much earlier. Figure 14(b) shows the relationships that exist between experimental 
measurements and numerical computations of non-dimensional frequency ratios for all crack depths. At lower 
crack depth ratios (<0.4) the relationship is almost linear; as crack depth increases beyond this, the relation-ship 
tends to become slightly nonlinear. This seems to imply that the nonlinear effect on the resonant frequencies is 
marginal at crack depth ratios less than 0.4; even beyond this crack depth ratio the nonlinear effect is not 
significant. 

A better crack detection measure is obtained when the slope of the frequency ratio vs. crack depth ratio curve is 
plotted against the crack depth ratio, as shown in Figure 14(c). The whole process of determining the slope of the 
non-dimensional curve vs. crack depth ratio was cast in a mathematical format. First the curves shown in Figure 
14(a) were curve-fitted and the algebraic equations that relate very closely the non-dimensional frequency ratio 
(y) to crack depth ratio (x = d/D) is determined for all the four modes. Then these equations were differentiated 
with respect to crack depth ratio (= x) to obtain the slope equation for the curve. These relationships are 

(b) 

(a) 
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indicated in Table 3, given below. From the slope curves shown in Figure 14(c), it can be observed that when the 
crack depth ratio is greater than 0.2 to 0.25, one can definitely say that there is a well-defined crack that is 
existing in the structure from the large changes that occur in the slopes of the curves (for both experimental and 
numerical results). Thus this gives a better indicator of crack presence in the rotor shaft. Incidentally, the 
mathematical equations given in Table 3 can also be used to estimate the unknown crack depth ratio, if the 
different experimental frequency ratios are known for different modes.  

 

Table 3. Mathematical equations obtained for the frequency ratio curve and its slope as a function of crack depth 
ratio [y = (ωcracked/ωun-cracked); x = (d/D)] 

Mode # Non-dimensional frequency ratio curve Slop of non-dimensional frequency ratio curve 

Mode 1  y1 = -0.519x3 + 0.330x2 - 0.070x + 1.000 dy1/dx = -1.557x^2+0.66x-0.07 

Mode 2  y2 =-0.555x3 + 0.280x2 - 0.050x + 1.000  dy2/dx = -1.665x^2+0.56x-0.05 

Mode 3  y3 =-0.387x3 + 0.229x2 - 0.046x + 1.000  dy3/dx = -1.161x^2+0.458X-0.046 

Mode 4 y4 =-0.656x3 + 0.371x2 - 0.070x + 1.000  dy4/dx = -1.968x^2+0.742x-0.070 

 

In a similar manner, the relationships that exist between the non-dimensional anti-resonant frequencies and crack 
depth ratio are shown in Figure 15(a), (b) and (c). Anti-resonant frequency is the frequency at which the 
impedance has the largest magnitude (or the mobility has the lowest magnitude). It can be observed from the 
plots given in Figure 12, the maximum impedance magnitudes are obtained at frequencies other than the 
resonant frequencies; these frequencies are called the anti-resonant frequencies. It could be seen from Figure 12 
that the second anti-resonant frequency is almost non-existent (except for a small hump, where it should be); 
only the first and third anti-resonant frequencies are dominantly seen. The observations that could be derived 
from these curves are almost similar to the ones that were made for the resonant frequencies shown in Figure 
14(a), (b) and (c). 

These results do not seem to support the conclusions made by (Afolabi, 1987) that anti-resonant frequency could 
be used to better indicate the presence of the crack. The conclusions seem to be almost the same for the 
anti-resonant and resonant regimes, as shown in Figures 14 and 15.       

Figure 16(a) shows the plot of the torsional frequency ratio and crack depth ratio for experimental and numerical 
analysis. It shows that the change in the frequency ratio gives a much better indication of the crack presence 
even from the beginning stages of the crack. Figure 16(b) shows the slope of the torsional frequency ratio for 
first experimental and numerical mode. Figure 16 shows that beyond a crack depth ratio of 0.2 (for torsion), it 
shows a definitive presence of the crack. More studies need to be carried out to confirm this conclusion in a 
definite manner (only one shaft – shaft # 1 was strain-gagged to measure the torsional frequency). 

Figure 17 gives the experimental impedance amplitude ratio [(maximum impedance amplitude at zero crack)/ 
(maximum impedance amplitude at different crack depths)] plots and slope of impedance as a function of crack 
depth ratio at resonant frequency. It is seen from Figures 17(a) and (b) that the identifier of the mode shape 
change due to crack is shown better by the second mode shape than the first mode. It should also be noticed that 
the changes in second mode amplitudes shown in Figure 17(b) are higher than that for the second modal 
amplitude shown in Figure 17(a); it is also much higher than the frequency ratio changes shown in Figures 14, 
15 and 16. Consequently the uses of impedance amplitudes seem to give more sensitive indications regarding the 
presence and severity of crack. Also from Figure 17(b) the definitive presence of a crack is indicated beyond a 
crack depth ratio of 0.25 or more.  
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(a) 

 

(b) 

 

(c) 

Figure 14. Comparison of experimental and numerical results of shaft # 2 for (four modes): a) experimental and 
numerical frequency ratio versus crack depth ratio; b) relationship between numerical and experimental results 
of frequency ratio; and c) experimental and numerical slope of the frequency ratio vs. crack depth ratio curves 
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(a) 

 

   

 
Figure 15. Comparison of experimental and numerical results for (first and third modes): a) experimental and 

numerical ant-resonant frequency ratio versus crack depth ratio; b) the relationship between numerical and 
experimental results of anti-resonant frequency ratio and c) experimental and numerical slope of the frequency 

ratio vs. crack depth ratio 

 

(b) 

(c) 
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Figure 16. Comparison of experimental and numerical results for: a) experimental and numerical torsional 
frequency ratio versus crack depth ratio; and b) experimental and numerical torsional slope of the frequency ratio 

for first mode 

  

Figure 17. Comparison of experimental and numerical results for: a) amplitude ratio versus crack depth ratio; 
and b) slope of impedance amplitude versus crack depth ratio  

 
7. Conclusion 

From the above results, the following conclusions can be presented: 

1) The experimental and numerical results seem to be agreeing very well with one another as the crack depth 
increases in the shaft-propeller-bearing system; in both the experimental and numerical results, the 
frequencies of the cracked shaft decrease as the crack depth increases. 

2) Impedance and mobility were measured and simulated in the vertical direction. The amplitudes of all the 
mobility curves increase for the resonant frequencies for increasing crack depth. In contrast, the amplitudes 
of impedance at all the anti-resonant frequencies either decrease (at the first anti-resonance) or increase (at 
the third anti-resonance). The trend of agreement between experimental and numerical values is very good; 
however only a small change occurs in mobility at the first response frequency. 

3) Changes occur in the non-dimensional frequency ratios (ωcracked/ωun-cracked) for the first four vertical bending 
frequencies as the crack depth ratio increases. It is observed that the changes in non-dimensional frequency 
ratios are not appreciable for a crack depth ratio less than 0.5 (in this range the non-dimensional frequency 
ratio is greater than 0.98). This crack depth ratio is quite large for crack detection since the structure may 
tend to fail catastrophically beyond this crack depth.  

4) At lower crack depth ratios (<0.4) the relationship between experimental and numerical non-dimensional 
frequencies is almost linear; as crack depth increases beyond this, the frequency ratio tends to become 
slightly nonlinear. This seems to imply that the nonlinear effect on the resonant frequencies is marginal at 
crack depth ratios less than 0.4; even beyond this crack depth ratio the effect is not significant. 

(a) (b) 

(a) (b) 
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5) A better crack detection measure is obtained when the slope of the frequency ratio vs. crack depth ratio 
curve is plotted against the crack depth ratio. In this case it can be observed that when the crack depth ratio 
is greater than 0.2 to 0.25, one can definitely say that there is a well-defined crack that is existing in the 
structure from the large changes that occur in the slopes of the curves (for both experimental and numerical 
results. 

6) Conclusions derived for anti-resonant frequencies are almost similar to the ones that were made for the 
resonant frequencies.  

7) The torsional frequency ratio vs. crack depth ratio for experimental and numerical analysis show that the 
change in the frequency ratio gives a much better indication of the crack presence even from the beginning 
stages of the crack. 

8) The uses of impedance amplitudes seem to give more sensitive indications regarding the presence and 
severity of crack. 
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