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Abstract 

We present here an extension of our finite element model of the Drosophila embryo to consider the 
interdependence of successive morphogenetic movements. A novel approach is used, which couples the Arbitrary 
Lagrangian Eulerian formulation with the harmonicparametrization. The combination of the two techniques 
allows to constantly update the deforming embryo geometry and simultaneously build an associated system of 
curvilinear coordinates. Thus, we are able to exactly describe the elementary cell deformations responsible for 
each biological event that are then defined with respect to the dynamic middle surface of the embryonic tissue 
and to their relative reference configuration. Both the active and the passive deformations occurring to the cells 
are considered through the deformation gradient decomposition. We develop a concurrent simulation of three 
morphogenetic movements: the ventral furrow invagination, the cephalic furrow formation and the germ band 
extension. The results show a consistent similarity with respect to the physical phenomena. More generally, the 
numerical approach that we propose could constitute a powerful tool to rigorously describe and simulate 
complex shape changes in biological systems. 

Keywords: Shell-like cell deformations, Concurrent cell deformations, Drosophila embryo, Finite Element 
method, ALE method 

1. Introduction 

Biological tissues are heterogeneous materials whose constituents, and therefore structure, are continually 
changing due to growth and response of the tissue to its physical and chemical environment.   

Multicellular organisms are fascinating in a double way. During the whole process of embryogenesis, cells play a 
major role at both the individual and the collective levels to guarantee the perfect synchronization necessary for a 
successful development. An error in this process may cause serious consequences for the adult animal. A 
multiscale approach is very appropriate in order to better understand the series of morphogenetic movements that 
determine the final shape of the embryo. Each one of these biological events stands up for specific elementary 
deformations involving groups of cells located at different regions of the system. Very often, some of these 
movements may occur simultaneously or successively, so that cells undergo more than one change in shape over 
the other. Therefore, cell strains that trigger later morphogenetic movements occur over a highly deformed shape 
created by previous movements, which causes a strong interdependence between all the events. 

Among the large number of biological organisms often studied, Drosophila embryo, apart from its relevant 
molecular and genetics characteristics (Brouzés and Farge, 2004; Campos-Ortega and Hartenstein, 1985; Farge, 
2003), is an interesting biomechanical system. In our previous paper (Allena et al., 2010a), we introduced a finite 
element model of it, which allowed us to simulate three individual movements occurring during the gastrulation 
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phase of the development: the ventral furrow invagination (VFI), the cephalic furrow (CF) formation and the 
germ band extension (GBE). The three movements were independently described with respect to the same initial 
configuration without taking into account the chronology of the biological events. This was actually the main 
limitation of the work leading then to an only partially realistic simulation of the GBE, which in fact takes place 
after the furrows formation over a complete different shape of the embryo. To overcome this issue, we present 
here a major extension of our preceding model in order to describe each movement and its associated elementary 
deformations with respect to its specific and thus different initial configuration. We obtain then a concurrent 
simulation of the three morphogenetic movements. 

Two advanced techniques are combined. Firstly, we use the Arbitrary Lagrangian-Eulerian (ALE) formulation to 
track the deforming biological tissue. In doing so, we constantly update the relative reference configuration with 
respect to which the shell-like cell deformations have to be described. Secondly, onto the ALE framework, we 
introduce the harmonicparametrization (Allena and Aubry, 2010b) to describe cell movements relative to the 
middle surface of the embryonic tissue. Similar developments have been proposed in literature by Marchandise 
(Marchandise et al., 2011) to properly and continuously define a deforming membrane middle surface and an 
off-distance variable. Besides, the authors use the term harmonic which we find now more appropriate than 
electric in our previous work (Allena and Aubry, 2010b). This novel approach allows building a special system 
of curvilinear coordinates to efficiently illustrate shell-like deformations of geometrically complex and 
three-dimensional thick membrane such as the Drosophila embryo. Furthemore, the approach may have a large 
range of applications in the domain of the computational system biology because it allows reproducing a series 
of consecutive and/or simultaneous cell shape changes within organisms with complex geometries. 

The paper is divided into three main sections. In the first one, we provide a detailed description of the ALE 
formulation, of the harmonic parametrization of the Drosophila embryo and of the mechanics of the biological 
system. In the second one, we briefly describe the active deformations responsible for each morphogenetic 
movement that will be introduced into the finite element formulation through the decomposition of the 
deformation gradient. Finally, in the third section, the results of the work are presented. 

2. Kinematical and Mechanical Framework 

At the beginning of gastrulation, the geometry of the Drosophila embryo is simple and very similar to the one 
represented in Fig. 1.It has an approximated ellipsoidal shape with major axis AB equal to 500m, while the 
minor axes CE and DF are respectively 175m and 165m long (see Table 1). It is composed of a single layer of 
columnar epithelial cells (thickness h = 15m), the blastoderm, which contains a slightly compressible fluid, the 
yolk, and it is surrounded by a semi-rigid shell, the vitelline membrane. The blastoderm forms a closed array of 
columnar cells having their apical surfaces facing outwards, the apico-basal axis is aligned along the axis of 
radial symmetry and each cell is in lateral contact with its neighbors (see Fig. 2 in Allena et al., 2010a).  

2.1 The arbitrary Lagrangian-Eulerian formulation  

In the embryo, cells cooperate together in order to guarantee the correct development of the organism. Therefore, 
very often the collective tissue deformations (macroscale) overcome the individual cells deformations 
(microscale). However, cells maintain their own orientation within the biological system. This means that at 
different regions of the embryo, the same strain may provide a complete different configuration. Thus, to be 
coherent regarding the biophysical phenomenon, cells shape changes have to be described with respect to a local 
and deforming coordinates system.  

From a kinematical point of view, there are mostly three approaches to deal with such large deformations. In the 
Lagrangian or material description, every quantity is referenced only with respect to the initial configuration Ω0. 
In the Eulerian or spatial description, the unknowns are defined within the current configuration Ωt. Although the 
two techniques are very useful, the first one does not allow to easily reproduce deformations occurring with 
reference to an intermediary configuration, while the second one does not enable to easily take into account 
deforming boundaries. However, in the Arbitrary Lagrange Eulerian (ALE) description (Donéa, 1983; Donéa and 
Huerta, 2003), a moving deformable reference configuration Ωξ is introduced so that the position y of a particle 
initially identified by p is tracked at any time t by the composition of the function fALE  

                             (1) 

and the moving reference ξ is defined itself by its own kinematics as 

                                (2) 
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fALE must obiouvsly follow the compatibility condition 

                          (3) 

with fL being the classical Lagrange description, which means that by composing the movement of the 
intermediate configuration with Ԅ and fALE, the material movement can be recovered. fALE will be computed from 
the mechanical equilibrium and the material response. 

In order to determine the ALE placement, Ԅሺp,tሻ which is the only undefined function, we have chosen a very 
classical Laplace smoothing (Donéa, 1983). This means that Ԅሺp,tሻ  must satisfy the following equation and 
boundary conditions  

                                 (4) 
where ∂Ω0 is the external boundary of the domain at the initial configuration. This equation is solved using the 
finite element method so that the nodes of the deformed mesh follow the fL placement on the boundaries and the 
Laplace smoothing inside. Obviously, this choice does not imply any particular assumptions regarding cell 
deformations, but it just provides an intermediary frame with respect to which further elementary cell strains 
may be described. 

Now that we have built the framework to describe the embryo large deformations, we have to consider the fact 
that the elementary cell strains (i.e. elongation, shortening, bending…) are in fact typical shell-like local 
deformations. This means that we have to define a special curvilinear system of coordinates adapted to the 
biological system with an associated middle surface of the embryonic tissue, so that relative movements with 
respect to it may be described. In order to do this, we employ the harmonic technique that we have already 
presented in our previous work (Allena and Aubry, 2010b), but this time combined with the ALE formulation. 

2.2 The harmonic parametrization of the embryo geometry 

The elementary cell deformations observed during the gastrulation occur locally with respect to the deforming 
embryonic tissue, following a shell-like behavior. Thus, we need to build a specific curvilinear coordinates 
system adapted to the irregular geometry of the Drosophila embryo and formed by three parameters θξ, φξ and ζξ 
which indeed will generalize spherical coordinates. Each one of them is computed using solutions of Laplace’s 
equation on the given domain, with the appropriate boundary conditions and the proper geometry of the same 
domain (Allena and Aubry, 2010b). 

Let be ∂Ωξe and ∂Ωξi respectively the outer and the inner surfaces of the embryo at any ALE relative intermediate 
configuration Ωξ. If   is the Laplacian operator, then we define first the variable ζξ within the thickness of the 
membrane through the Laplace’s equation and Dirichlet’s boundary conditions as follows 

                 (5) 

where h is the thickness of the embryonic tissue. As in our previous paper (Allena and Aubry, 2010b), ζξ=0 is 
assumed to be a good approximation of the middle surface ∑ξ0 (Fig. 2a), as long as the embryonic tissue is 
rather thin with respect to its largest diameter. 

Then, from ζξ, an estimated normal vector n0ξ to the shell middle surface ζξ=0 can be computed as follows (Fig. 3a) 

                                 (6) 

Now, we need to define two other parameters, θξ and φξ, complementary to ζξ, which will serve both as surface 
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coordinates. Unfortunately, the previous technique cannot be easily extended to the tangential boundaries, since 
the embryonic membrane is not a simply connected domain and it has only two boundaries. The clue is to 
introduce two slit surfaces across the thickness of the embryo (one for θξ and one for φξ) so that, following a loop 
inside the membrane, the two coordinates undergo a discontinuity when crossing their respective slit surfaces. θξ 
is chosen to be the solution of the following Laplace’s equation and boundary conditions, with    standing for 
the jump of the quantity across the slit 

                       (7) 

where nξ is the geometrical normal vector and ∂Ωθξ is the slit surface defined by {z=0, y<0}. To insure the 
uniqueness of θξ, its average value is also prescribed to vanish. The last parameter φξ can be similarly obtained 
through the slit surface ∂Ωφξ defined by {z=0, x>0}. In Fig. 2b and 2c, the isovalues of the two tangential 
parameters are represented. The associated vectors ׏θξ (Fig. 3b) and ׏φξ (Fig. 3c), that complete the curvilinear 
system, are calculated as similarly as the normal vector n0ξ (Eq. [6]). Obviously, for the real embryo this 
cooordinates system cannot be built by hand. Consequently, it is here computed using the same finite element 
mesh adopted to solve the mechanics of the system itself on the ALE configuration. 

At this point, we have all the required kinematical tools to describe the particular mechanics of the biological 
system driven by the elementary cell deformations. 

2.3 Mechanics of the embryo 

Let us consider the sketch in Fig. 4, which represents the successive configurations of our framework. Let p and 
x be respectively the initial and the actual position of any material particle. Given the ALE formulation proposed 
above and the ALE position ξ defined in Eq. [2], the ALE deformation gradient fALE is equal to 

                               (8) 

where 

                               (9a) 

                                 (9b) 

                                  (9c) 

The next step is to compute the stresses that develop inside the mechanical system. When the morphogenetic 
movements take place, we observe what can be called either the active or the individual deformation of the cells, 
which would be unconstrained if the cells were completely free. However, since the cells are in contact with one 
another and with the boundary components of the embryo (the yolk and the vitelline membrane), such 
deformations may lead to incompatibilities with respect to the continuity of the system, for instance overlapping 
or interstice formations. Thus, the passive deformation takes place and the cells react and rearrange themselves 
by an elastic response of the tissue. In order to consider both deformations, we use the deformation gradient 
decomposition (Smith, 1993; Rodriguez et al., 1994; Taber, 2007; Barret et al., 2007; Conte et al., 2007; Allena 
et al., 2010a). Alternative approaches based on active stresses have also been considered (Nobile et al., 2010). 
However, the deformation gradient decomposition employed here is simultaneously simpler, more robust and it 
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has been extensively used for years in many other areas such as, for instance, crystal plasticity.  

According to this method, the ALE deformation fALE of each particle of the system is then splitted into two parts: 
a non-stress generating deformation Fa  (the active deformation) and a stress-generating deformation Fm (the 
passive deformation) 

                                  (10) 

Let us define first the active deformation Fa. 

Similarly to shell-like kinematics and using the full curvilinear coordinates system (θξ, φξ, ζξ) computed above by 
the harmonic parametrization (Sec. 2.2), let ξ0ξ(θξ, φξ, ) be a point on the middle surface of the embryo such that 
ζξ=0.. Then, we can define any point ξ(θξ, φξ, ζξ) through the thickness of the embryonic tissue at the relative 
reference configuration Ωξ as  

                  (11) 

Thus, when the elementary active deformations take place (i.e. apical constriction, extension, shortening,…), any 
point ξ moves to an intermediate configuration x , different for each morphogenetic movement. Deriving x  
will yield the expression of the active deformation gradient Fa, which is defined as follows (Smith, 1993) in the 
chosen curviliner system (θξ, φξ, ζξ). 

                 (12) 

The covariant and the contravariant bases necessary to compute Eq. [12] are calculated as shown in (Allena and 
Aubry, 2010b). 

Now, Fa being known, we can compute Fm from Eq. [10] and therefore the Second Piola-Kirchhoff tensor Sm on 
the intermediary configuration Ωഥ, which is obtained through the constitutive law of a Neo-Hookean material as 
follows (Allena, 2009; Ciarlet, 1988) 

                          (13) 

where ߙ଴, ,ଵߙ ଶߙ  are the invariants of the Green-Lagrange strain tensor Em=
ଵ

ଶ
(Cm-I), with Cmൌ ௠ܨ௠்ܨ ൌ

ܨ௔ି்ܨ
௔ܨܨ் , measures the elastic passive deformation. TheYoung’s modulusE and Poisson’s ratio have been 

chosen equal to 100Pa (Wiebe and Brodland, 2005) and 0.45 respectively (at the limit of small strains).By using 
a purely elastic model we are disregarding any viscous dissipative phenomenon. We are aware that the presence 
of cytoplasm or potential remodeling processes within the cell may require more realistic visco-elastic models, 
and therefore we are inducing some errors in the resulting stresses of our model. However, from the ablation 
experiments shown in (Supatto et al., 2005), it can be concluded that the elastic deformations cannot be 
disregarded. Furthermore, the aim of the present work is to analyze the plausibility of the interdependence of 
successive morphogenetic movements which constitutes a fundamental aspect during embryogenesis, regardless 
of the values of the stresses. Since no measurements of the stress field during Drosophila embryo development 
have been reported so far, the inclusion of more sophisticated constitutive models would require guessing some 
of their material parameters. We have instead decided to resort to simpler models, but using material parameters 
that can be experimentally estimated.  

To compute the weak form of the system, we need to calculate the First Piola-Kirchhoff tensor πξ with respect to 
the ALE configuration Ωξ as follows 

                               (14) 

where Ja=Det[Fa]. Consequently, by the constitutive equation (Eq. [13]), πξ is a coupled function of Fa and FALE. 

Finally, the weak form reads as 

                (15) 

FALE  Fm Fa

Sm 0I +1Em 2 Em
2
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where (a, b) is the dot product between two vectors a and b and . 

fs indicates the surface forces, wξ is any displacement test function and Jξ=Det[Fξ]. It has to be remembered that 
simultaneously to the mechanical weak form described above, we also solve the weak forms relative to the three 
parameters (θξ, φξ, ζξ) and to the ALE position Ԅξ as follows 

                           (16) 

                           (17) 

                     (18) 

 

                           (19) 

Where θ෠ξ φෝξ, and Ԅ෡ξ are the test functions associated with each parameter. This tightly non-linear coupled 
problem is computed at each step of the parameter t with the following staggered scheme: 

(1) from the current updated geometry Ωξ compute the parameters θξ, φξ and ζξ , 

(2) compute the active deformations from the curvilinear frame; 

(3) compute the displacements of the embryonic tissue; 

(4) eventually re-update the current geometry through the ALE weak form. 

Even though they are not geometrically modeled here, the vitelline membrane and the internal yolk and their 
relative boundary conditions are taken into account during step 3, as similarly as for our previous work (Allena 
et al., 2010a), respectively by contact and global volume boundary conditions. 

In the previous sections, the three main ingredients of our work (the ALE formulation (Sec. 2.1), the 
harmonicparametrization (Sec. 2.2) and the deformation gradient method) have been presented and we have 
shown how they interplay. In the next part of the manuscript, we detail the active cell deformations responsible 
for each morphogenetic movement and we deduce the associated active deformation gradients Fa. 

3. Morphogenetic Movements 

We focus here on the concurrent simulation of three morphogenetic movements: the VFI, the CF formation and 
the GBE. The first two take place simultaneously, while the GBE starts almost at the end of the VFI. The active 
deformations responsible for the VFI and the CF occur thus on the undeformed embryo, while those responsible 
for the GBE involve cells that have already undergone significant changes in shape. The concurrent simulation 
can then be divided into two phases: the first one including the VFI and the CF formation and the second one 
including the GBE. In the next paragraphs, we briefly describe the biological events and the associated cellular 
movements that are necessary to analytically express the intermediary position ݔҧ (Sec. 2.3) and therefore the 
active deformation gradient Fa by derivation. 

3.1 First phase: the ventral and the cephalic furrow 

The VFI is one of the most studied morphogenetic movements occurring during Drosophila gastrulation. Several 
numerical models have been proposed in literature during the last decades (Alberch et al., 1981; Clausi and 
Brodland, 1994; Davidson et al., 1995; Pouille and Farge, 2007; Barret et al., 2007; Ramasubramamian and 
Taber, 2008; Conte et al., 2007; Allena et al., 2010a). All these works, whether they are two or three dimensional, 
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only focus on the individual simulation of the VFI per se. Here however, we correctly simulate it as a required 
stage for further movements such as the GBE. 

As we have amply discussed in our previous work (Allena et al., 2010a), many experimental observations and 
studies show that the VFI is triggered by a series of changes in shapeof individual cells in the areas of active 
movements (Alberch et al., 1981; Brouzés and Farge, 2004; Costa et al., 1993; Leptin and Grunewald, 1990; 
Leptin, 1999; Sweeton et al., 1991). Practically, the cells change their shape from a cylindrical to a more 
trapezoidal form, inducing the curvature necessary for the invagination of the mesoderm into the yolk. 
Accordingly to this and to our previous results (Allena et al., 2010a), here we consider the apical constriction 
along θξ as the only responsible of morphogenetic movement. 

Thus, we can analytically translate such a bending mode and write the intermediate position ݔҧ௏ிூ൫ߠక, ߮క, ζஞ൯ in 
the specific curvilinear coordinates system as follows 

                     (20) 

with 

                        (21) 

Where αVFI(t)=αVFI··t is the amplitude of the active deformation, with αVFI a constant and t the evolution 
parameter. m(θξ) is a periodic function that mimics the cell boundaries by appropriately modulating the intensity 
of the active deformation (see (Allena et al., 2010a) for an explicit expression). The active deformation is 
introduced in a restrained region of the embryo, the active region, where therefore αVFI≠0. In the specific case of 
the VFI, the active region covers almost 70% of the ventral embryo as it is observed in reality (Fig. 5). A 
characteristic function (Allena and Aubry, 2010c) built from a smooth and regularized Heaviside function is used 
to define the region. 

The CF formation takes place simultaneously with the VFI and it is regulated by the same elementary cell 
deformations (Allena et al., 2010a; Allena et al., 2010c; Vincent et al., 1997). Nevertheless, two main differences 
can be noticed. First, this time the apical constriction of the cells occurs along the anterior-posterior axis rather 
than along the section of the embryo. Second, the invagination is smaller than for the ventral furrow, thus a 
smaller number of cells is involved in the process. 

To reproduce the movement, we consider again the apical constriction the unique active deformation in control 
of the movement (Allena et al., 2010c), but this time it takes place along φξ. 

Therefore, the intermediate position ݔҧ஼ி൫ߠక, ߮క, ζஞ൯ can be written as 

                     (22) 

where 

                        (23) 

with αCF(t)=αCF·t, with αCF a constant, and m(φξ) is again a periodic function (Allena and Aubry, 2010c). In order 
to reproduce the movement of the furrow towards the anterior pole, we use, as in our previous work (Allena and 
Aubry, 2010c), a dynamic active region which allows to take into account the rotation of the cells with respect to 
the vertical axis of the embryo. At the initial configuration Ω0, the active region appears as in Fig. 5. 

The active deformation gradient that combines the two concurrent morphogenetic movements is then equal to the 
composition of the two individual active deformation gradients, Fa

VFI and Fa
CF, that are obtained according to 

Eq. [12]. 

Once the two furrows have formed, the germ band starts to extend. At this stage of the embryogenesis, the 
embryo has a completely different geometry (Fig. 6) from the initial one that we have previously considered for 
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the VFI and the CF formation (Fig. 1). Then, this is the relative reference configuration with respect to which the 
elementary deformations responsible for the GBE have to be described.  

3.2 Second phase: the GBE 

The germ band, located at the ventral region of the embryo, starts to extend almost at the end of the ventral 
furrow formation. The elongation of the tissues is due to a convergent-extension movement of a population of 
cells at the centro-lateral region of the embryo that intercalate and interpose themselves between their dorsal or 
ventral neighbors(Weliky and Oster, 1990).This results in a decrease of the number of cells along the 
dorsal-ventral axis and in an increase of the number of cells along the anterior-posterior axis (Keller et al., 2000). 
As for the previous work (Allena et al., 2010a), we do not simulate the intercalation at the cellular scale, since 
the cells are not here geometrically modeled. We propose a uniform movement of compression-extension 
tangential to the middle surface of the embryonic tissue. Such a movement is described with respect to the 
relative reference configuration Ωξ at the end of the formation of the two furrows (cephalic and ventral) (Fig. 6) 
that has been tracked by the ALE formulation. Furthermore, the system of curvilinear coordinates (θξ, φξ, ζξ) has 
been updated as shown in Fig. 7together with the three associated vectors (Fig. 8).   

Thus, the intermediate position ݔҧீ஻ா൫ߠక, ߮క, ζஞ൯ is equal this time to 

                      (24) 

where 

                             (25) 

                           (26) 

With ߙఏ഍
ீ஻ா(t)=αGBE_θξ·t and ߙఝ഍

ீ஻ா(t)=αGBE_φξ·t the amplitudes, respectively, of the shortening from the dorsal to 

the ventral region of the embryo and of the lengthening along the anterior-posterior axis (αGBE_θξ and αGBE_φξ· are 
two constants). The active region where the active deformations take place is represented in red in Fig 9.As for 
the previous movements, Fa

GBE is computed according to Eq. [12].  

4. Results 

The present model and the special weak forms associated to it have been developed using the finite element 
program COMSOL Multiphysics (v. 3.5a, Comsol Inc.). 

To discuss the results of the simulation, we propose a set of pictures that show the embryo from different 
view-points: from the rear (Fig. 10), from the bottom (Fig. 11a :e) and cross sections (Fig. 11f:l), from the front 
(Fig. 12). As we can observe from Fig. 11a and 12a, the three active regions intersect at different zones of the 
embryo and such overlap lasts all along the simulation. In our opinion, this should not be an issue, except for the 
presence of further strains occurring to the tissue and in particular at the intersection region between the VFI and 
the CF where an additional invagination takes place. The formation of the two furrows is clearly evident during 
the first phase of the simulation, from t=0 to t=0.012 (Fig. 10a :c, 11a :c, 12a :c). Also, the rotation of the 
cephalic furrow with respect to the vertical axis of the embryo is evident. According to Eq. [21] and [23], we 
have calculated the maximal active deformations which would occur to the cells if they were completely free. 
We found a maximal apical constriction along φξ of 4.5m for the CF and a maximal apical constriction along θξ 
of 7.2m for the VFI. These values are of the order of magnitude of the individual simulations shown in our 
previous work (Allena et al., 2010a) and they lead to invaginations very similar to the ones experimentally 
observed (see Fig.1 and 3 in (Allena et al., 2010a)). The second phase, corresponding to the extension of the 
GBE, runs from t=0.012 to t=0.214. The lengthening of the tissue towards the posterior pole of the embryo is 
distinctly visible in Fig. 10d,e; 12d,e. With respect to the individual simulation of the GBE proposed in (Allena 
et al., 2010a), the movement is more pronounced and therefore more similar to the real morphogenetic 
movement. The extension is not symmetric anymore (Allena et al., 2010a) given the gradient of the deformation 
introduced above (Eq. [26]). Therefore, there is an elongation of about 35m towards the posterior pole and of 
about 15m towards the anterior pole. Even though the posterior extension is still inhibited by the sharpened 
posterior pole, it is found that the tissue tends to overtake the posterior pole (Fig. 12e). The next step would be to 

  1
GBE t  

  1  1

GBE t  
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push forward the posterior extension in order to be able to observe the series of small invaginations on the dorsal 
part of the embryo, which seem to start here (Fig. 12e to compare with Fig. 3 in (Allena et al., 2010a)). 
Nevertheless, the present results match much better than the ones for the individual simulation (Allena et al., 
2010a) when compared to experimental images. This certainly prooves the main advantage of the novel approach 
introduced here that allows to precisely describe the convergent-extension movement responsible for the GBE 
with respect to the specific reference configuration produced by the VFI and the CF formation. 

As in our previous work (Allena et al., 2010a), we estimate the induced pressures within the tissue in the 
non-active region of the embryo during the simulation. In particular, we want to evaluate the pressure variation 
during the GBE in order to compare such stress to the ones experimentally observed that seem to be responsible 
of a mechanotransduction phenomenon at the anterior pole of the embryo. At t=0.012 we find that the pressures 
in the non-active region are between –313Pa and 146Pa and at the anterior and the posterior poles we have 
respectively 0.14Pa and 0.21Pa. At t=0.226, at the end of the second phase, the induced pressures are between 
–133Pa and 289Pa, while at the anterior and the posterior pole the pressure is equal respectively to -2.33Pa and 
1.33Pa.These last values are in the order of the ones found in our previous work (Allena et al., 2010a). 
Furthermore, we oberve a compression of the cells at the anterior pole (-2.33Pa) which confirms the conclusions 
pointed out by Supatto (Supatto et al., 2005). 

The stress state at the end of the VFI could be the main cause of the cell shape changes triggering the early first 
phase of the GBE, as pointed out by Butler and co-workers (Butler et al., 2009). Actually, in support of a direct 
role for the invaginating mesoderm, they found that the germ band extends faster closest to the midline during 
the first 20mn of the biological event, suggesting an axial pull. Therefore, they suggest a possible mechanism by 
which the mesoderm, once invaginated, undergoes convergence and extension, elongating the tube along the 
antero-posterior axis of the embryo. The convergence-extension could drag the midline cells and the adjacent 
tissue through an anterior-posterior tensile force. In order to find some evidence of this mechanical phenomenon, 

we have calculated the normal stress to the embryonic tissue at the end of the first phase of our 

simulation (once both the VFI and CF have completely formed). To do that, we compute the Cauchy stress 
according to Fig. 4 and the following equation  

                             (27) 

where Jm is the determinant of the passive deformation gradient Fm and Sm is the associated second 

Piola-Kirchhoff stress. Then,  is obtained by projecting σ along the tangential vector to the embryonic 

membrane ׏φξ as follows 

                         (28) 

The computation of is possible thanks to the special parametrization of the embryonic system. This 

confirms the efficiency and the adaptability of the proposed technique. 

From Fig. 13, we notice that  is positive over the first phase of the concurrent simulation (0<t<0.012) 

within the active region of the VFI, which means that a tensile force occurs (Butler et al., 2009). At t=0.012, 

varies between 33Pa and 125Pa and it is greater at the left end side of the region. If the stress state that 

we find corresponds to the real one, we can confirm the hypothesis pointed out by Butler (Butler et al., 2009), 
according to which cell shape changes during the early fast phase of the GBE is a passive response to an 
antero-posterior force occurring during the VFI.  

5. Conclusions 

We have presented a major extension of our numerical model of the Drosophila embryo to take into account the 
interdependence of successive morphogenetic movements, which constitutes a fundamental aspect in 
embryogenesis. We have developed a concurrent simulation of three morphogenetic movements during the early 
gastrulation phase of the development: the ventral furrow invagination, the cephalic furrow formation and the 
germ band extension. The main novelty of the approach used here lays in coupling the ALE formulation and the 
harmonicparametrization of the embryo geometry. The first technique allows us to constantly update the 
deforming geometry of the embryo and therefore the correlated finite elements mesh. The second technique 










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enables to build the associated system of curvilinear coordinates at each step of the simulation. Doing so, we are 
able to exactly describe the shell-like cell deformations responsible for each morphogenetic movement with 
respect to the moving reference configuration. Additionally, we take into account the fact that same populations 
of cells may undergo successive active strains during embryogenesis.  

Here, we show that the three biological events correctly occur. In particular, the germ band extension simulation 
is much more realistic than in our previous work (Allena et al., 2010a) thanks to the precise description of the 
elementary cell deformation responsible for it. Therefore, we are convinced that our work could be very useful to 
confirm, even qualitatively, specific hypotheses according to which early morphogenetic movements may be the 
direct cause of later ones (Butler et al., 2009). This type of scenario would suggest then a straight 
interdependence between biological events, an aspect which has been so far little considered. 

Even though the numerical approach has been here applied to the specific case of the Drosophila embryo, it 
could be adopted and adapted to rigorouslymodel any other type of concurrent or successive cell deformations 
within complex and dynamic multicellular organisms. 

References 

Alberch O. et al. (1981). The mechanical basis of morphogenesis. Epithelial folding and invagination. Dev. 
Biology, 75, 446-462. 

Allena R. (2009). Numerical simulation of morphogenetic movements in Drosophila embryo. PhD Thesis, 
http://hal.archives-ouvertes.fr/tel-00429691/ 

Allena R., Mouronval A.-S., & Aubry D. (2010a). Simulation of multiple morphogenetic movements in 
Drosophila embryo by a single 3D Finite Elements model. Journal of the Mechanical Behavior of Biomedical 
Materials. http://dx.doi.org/10.1016/j.jmbbm.2010.01.001 

Allena R., & Aubry D. (2010b). A novel technique to parametrize shell-like deformations inside biological 
membranes. Computational Mechanics, http://dx.doi.org/10.1007/s00466-010-0551-8 

Allena R., & Aubry D. (2010c). An extensive numerical simulation of cephalic furrow formation in Drosophila 
embryo. Computer methods in biomechanics and biomedical engineering. 
http://dx.doi.org/10.1080/10255842.2010.539564 

Barret K. et al. (2007). A deformation gradient decomposition method for the analysis of the mechanics of 
morphogenesis. Journal of Biomechanics, 40, 1372-1380. http://dx.doi.org/10.1016/j.jbiomech.2006.05.006 

Brouzés E., & Farge E. (2004). Interplay of mechanical deformation and patterned gene expression in 
developing embryo. Curr. Opin. Genet. Dev., 14, 367-74. http://dx.doi.org/10.1016/j.gde.2004.06.005 

Butler L. C. et al. (2009). Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band 
extension. Nature Cell Biology. http://dx.doi.org/10.1038/ncb1894 

Campos-Ortega, J. A., & Hartenstein, V. (1985). The Embryonic development of Drosophila melanogaster. 
Springer-Verlag, Berlin.  

Ciarlet P. G. (1988). Mathematical elasticity, volume I: Three-dimensional elasticity. Acta Applicandae 
Mathematicae, 18(2), 190-195. 

Clausi D. A., & Brodland G. W. (1994). Embryonic tissue morphogenesis modeled by FEM. J. Biomech. Engin., 
116, 146-156. http://dx.doi.org/10.1115/1.2895713 

Conte V. et al. (2007). A 3D finite element model of ventral furrow invagination in the Drosophila Melanogaster 
embryo. J. of the mechanical behavior of biomedical materials, 1, 188-198. 
http://dx.doi.org/10.1016/j.jmbbm.2007.10.002 

Costa M. et al. (1993). Gastrulation in Drosophila: cellular mechanisms of morphogenetic movements in: Bate 
M., Martinez-Arias A. (eds), The Development of Drosophila. Cold Spring Harbor Laboratory Press, New York, 
pp. 425–466. 

Davidson L. et al. (1995). How do sea urchins invaginate? Using biomechanics to distinguish between 
mechanisms of primary invagination. Development, 121, 2005-2018. 

Donéa J. (1983). Arbitrary Lagrangian–Eulerian finite element methods, in: T. Belytschko, T.J.R. Hughes (Eds.), 
Computational Methods for Transient Analysis, Elsevier, pp. 474–516 (Chapter 10). 

Donéa J., & Huerta A. (2003). Finite element method for flow problems. Wiley & Sons, England. 

Farge E. (2003). Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Current Biology, 



www.ccsenet.org/mer                Mechanical Engineering Research                Vol. 1, No. 1; December 2011 

Published by Canadian Center of Science and Education 57

13, 1365-1377. http://dx.doi.org/10.1016/S0960-9822(03)00576-1 

Keller R. et al. (2000). Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. 
Lond. B. Biol. Sci., 355(1399), 897-922. http://dx.doi.org/10.1098/rstb.2000.0626 

Leptin M. & Grunewald B. (1990). Cell shape changes during gastrulation in Drosophila. Development, 110: 
73-84.  

Leptin M. (1995). Drosophila gastrulation: from pattern formation to morphogenesis. Annu. Rev. Cell Dev., 11: 
189-212. http://dx.doi.org/10.1146/annurev.cb.11.110195.001201 

Leptin M. (1999). Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J, 18: 3187-3192. 
http://dx.doi.org/10.1093/emboj/18.12.3187 

Marchandise E., Carton de Wiart C., Vos W.G., Geuzaine C., & Remacle J.-F. (2011). High-quality remeshing 
using harmonic maps Part II : Surfaces with high genus and of large aspect ratio. IJNME. 
http://dx.doi.org/10.1002/nme.3099 

Nobile F., Quarteroni A., & Ruiz-Baier R. (2010). Numerical solution of an active strain formulation for the 
electromechanical activity in the heart. MOX–Report No. 20/2010.  

Pouille P. A., Farge E. (2007). Hydrodynamic simulation of multicellular embryo invagination. Phys. Biol., 
5/015005.  

Ramasubramamian A. & Taber L. A. (2008). Computational modeling of morphogenesis regulated by mechanical 
feedback. Biomechan. Model. Mechanobiol., 7, 77-91. http://dx.doi.org/10.1007/s10237-007-0077-y 

Rodriguez EK, Hoger A, and McCulloch AD. (1994). Stress-dependent finite growth in soft elastic tissues. 
J.Biomechanics, 27, 455-46. http://dx.doi.org/10.1016/0021-9290(94)90021-3 

Smith D. R. (1993). An introduction to continuum mechanics. Kluwer Academic Publishers, The Netherlands.  

Supatto W. et al. (2005). In vivo modulation of morphogenetic movements in Drosophila embryos with 
femtosecond laser pulses. PNAS, 102, 1047-1052. http://dx.doi.org/10.1073/pnas.0405316102 

Sweeton D. et al. (1991). Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut 
invaginations. Development, 112, 775-789. 

Taber L. A. (2007). Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of 
morphogenesis. Biomechan. Model. Mechanobiol., 7(6), 727-41. 

Vincent A., Blankenship J. T., & Wieshaus E. (1997). Integration of the head and trunk segmentation systems 
controls cephalic furrow formation in Drosophila. Development, 124, 3747-3754. 

Weliky M., & Oster G. (1990). The mechanical basis of cell rearrangement. Development, 106, 372-386. 

Wiebe C. & Brodland G. W. (2005). Tensile properties of embryonic epithelia measured using a novel instrument. 
J. Biomech., 38, 2087-2094. http://dx.doi.org/10.1016/j.jbiomech.2004.09.005 

  



www.ccsenet.org/mer                Mechanical Engineering Research                Vol. 1, No. 1; December 2011 

                                                          ISSN 1927-0607   E-ISSN 1927-0615 58

Table 1. Principal variables of the model. 

Variable Notation Value 

Ellipsoid major axis AB 500 m 

Ellipsoid minor axis CE 175 m 

Ellipsoid minor axis DF 165 m 

Ellipsoid thickness h 15 m 

Young’s modulus E 100 Pa 

Poisson’s ratio  0.45 

Maximal active apical constriction along φξ (CF) - 4.5 m 

Maximal active apical constriction along θξ (VFI) - 7.2 m 

Extension towards PP (GBE) - 35 m 

Extension towards AP (GBE) - 15 m 

Pressure at t=0.012 in the non active region p1st –313 Pa < p1st<146 Pa 

Pressure at t=0.012 at the anterior pole p1st_AP 0.14 Pa 

Pressure at t=0.012 at the posterior pole p1st_PP 0.21 Pa 

Pressure at t=0.226 in the non active region p2nd –133 Pa < p2nd< 289 Pa 

Pressure at t=0.226 at the anterior pole (at t=0.012) p2nd_AP -2.33 Pa 

Pressure at t=0.226 at the posteriorr pole (at t=0.012) p2nd_PP 1.33 Pa 

Normal stress 
 33Pa < < 125Pa 

 



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Figure 1. The geometry of the Drosophila embryo, which has been built from an anterior and an exterior ellipsoid 
retrieved from real embryo images. The major axis AB is 500μm, while the cross axes CE and DF are respectively 

175μm and 165μm. The thickness of the embryo h is equal to 15μm 
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Figure 2. The isovalues of the threeparameters obtained by the harmonic parametrization of the geometry at the 

initial configuration Ω0: ζξ (a), θξ (b) and φξ (c) (AP = anterior pole, PP = posterior pole) 
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Figure 3. The associated vectors to the three parameters at the initial configuration Ω0: n0ξ (a), ߘθξ (b) and ߘφξ 

(c) (for sake of clarity only half of the embryo geometry has been represented) 

 

 
Figure 4. The diagram represents the successive configurations of the concurrent simulation. Ω0 the initial 

configuration, Ωξ the ALE configuration, Ωഥ the intermediate configuration and Ω the final configuration 
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Figure 5. In red the active regions of the cephalic and the ventral furrows (the colors bar indicates the value of 
the characteristic fonction defining the active region (Allena et al, 2010a)). (a) Frontal view of the embryo. (b) 

Bottom view of the embryo 

 

 

Figure 6. The embryo geometry at the end of the formation of the cephalic and the ventral furrows. This is the 
reference configuration with respect to which the elementary deformations responsible for the GBE are 

described 



www.ccsenet.org/mer                Mechanical Engineering Research                Vol. 1, No. 1; December 2011 

Published by Canadian Center of Science and Education 63

 

Figure 7. The isovalues of the three parameters obtained by the harmonic parametrization of the geometry at the 

particular intermediate configuration Ωξ[t=0.012].: ζξ (a), θξ (b) and φξ (c) 
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Figure 8. The associated vectors to the three parameters at the particular intermediate configuration Ωξ[t=0.012]: 
n0ξ (a), ߘθξ (b) and ߘφξ (c)  

 

Figure 9. In red the active region for the GBE (the colors bar indicates the value of the characteristic fonction 
defining the active region (Allena et al, 2010a)). (a) Frontal view of the embryo. (b) Bottom view of the embryo 
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Figure 10. Successive steps of the concurrent simulation from the rear point of view of the embryo. It is possible 
to observe the elongation of the GBE active region (red) towards the upper posterior pole (c :e) (the colors bar 

indicates the value of the characteristic fonction defining the active region (Allena et al, 2010a)) 
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Figure 11. Successive steps of the concurrent simulation from the bottom point of view (a :e) and as cross 
sections (f :l) of the embryo. The CF and the VFI active regions (red) are represented until the two furrows have 
completely formed (a :c, f :h). The GBE active region (red) is represented all over the simulation (a :e, f :l) and 
the elongation of the ventral tissue towards the posterior pole is observed in (d) and (e) (the colors bar indicates 

the value of the characteristic fonction defining the active region (Allena et al, 2010a)) 
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Figure 12. Successive steps of the concurrent simulation from the frontal point of view of the embryo. Again, the 
CF and the VFI active regions are represented in red until the complete formation of the two furrows. However, 

the GBE active region (red) is represented all over the simulation (the colors bar indicates the value of the 
characteristic fonction defining the active region (Allena et al, 2010a)) 
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Figure 13. Variation of σφξφξ within the VFI active region over the first phase of the concurrent simulation 

(0<t<0.012). We have evaluated σφξφξ at both the anterior and the posterior frontiers of the VFI active region 

(Fig. 5b). In particular, we have considered the four boundaries of the area: the anterior outside (blue), the 

posterior outside (red), the anterior inside (purple) and the posterior inside (green) boundaries 

 

  


