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Abstract 
Modification of rigid body angular momentum permits controlled rotational maneuvers, and one common momentum-
exchange actuator contains challenging mathematical singularities that occur when the actuator geometrically aligns 
perpendicularly to the commanded torque direction. Substantial research has arisen toward singularity avoidance, 
singularity escape (when avoidance fails), and singularity penetration which permits safe flight through regions of 
singularity. The latter two in particular, singularity escape and penetration require mathematical calculations of 
singular and near-singular quantities (very large numbers) using constituent numbers that are sometimes very small. 
This dichotomy leads to interesting peculiarities in some specific geometries. This short communication critically 
evaluates three often spoke postulates for defining singularity and the axioms that accompany the postulates. 
Researchers using disparate postulates arrive at contradictory conclusions about singularities, and we examine these 
peculiarities, leading to a few conclusions. Singular conditions must never be declared in the abstract without 
consideration for the commanded maneuver (e.g. the claim “the CMG system is singular”). Seeking the true angular 
momentum capability at near-planar skew angles, this research concludes that performance prediction is difficult 
installations at low skew angles should be avoided whenever permissible to enhance abilities of mathematical 
calculations. It will be shown that maximum momentum performance is easily predicted at very high and very low 
skew angles, and performance will be shown to be lowest at mid-values of skew angle. Meanwhile, maximum 
singularity-free performance remains elusive at even modestly low skew-angles. 
Keywords: actuators; attitude control; control theory; guidance, navigation, and control; system design; spacecraft 
dynamics 
1. Introduction 
Control moment gyroscope actuators accomplish the (designed) commanded change in angular momentum by using 
a steering law, and this steering law is the topic of considerable research in the literature (Agrawal, Kim, & Sands, 
2017; Kim, Sands, & Agrawal, 2007; Lewis et al., 2019; Sands, Kim, & Agrawal, 2009; Sands, 2007; Sands, Kim, & 
Agrawal, 2006, 2007, 2012, 2016, 2018; Sands, Lu, Chu, & Cheng, 2018) particular in the case of control moment 
gyroscopes. The steering law contains mathematical singularities, i.e. instances where the correctly derived 
mathematical expression for the torque command to a gyro (or combination) contains zero(s) in the denominator 
derived from zero-valued sinusoidal functions that happen to appear in the denominator of the matrix inverse equation 
(i.e. the determinant). One way to express the steering laws for each gyro actuator is matrix expressions, and these 
singular instances express themselves as loss of rank in the system matrix, which is particularly troublesome since the 
steering law requires inversion of the matrix. The steering law matrix contains the gyro gimbal angles, and the skew 
angles representing the geometric installation of the gyros.  
In the voluminous literature, several disparate definitions of singularity arise. Mathematically inclined authors define 
singularity as instances where the steering law matrix is not invertible (i.e. the matrix has become rank deficient). 
Systems engineers often refer to singularity as instances with an inability to produce an arbitrary torque, while 
spacecraft attitude control engineers would more strictly define singularities as instances with an inability to produce 
the commanded torque. These later two interpretations avoid the strictly mathematical definition of the singular 
condition in favor of the physics-based illustration of one (or more) gyro that becomes perpendicularly aligned with 
the direction of torque and is therefore unable to generate the commanded torque. The mathematical connection is the 
expression of the gyro’s angular position vis-à-vis sines and cosines in the steering law.  
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These disparate definitions of singularities give rise to seemingly conflicting analysis throughout the literature 
(Agrawal, Kim, & Sands, 2017; Kim, Sands, & Agrawal, 2007; Sands, Kim, & Agrawal, 2009; Sands, 2007; Sands, 
Kim, & Agrawal, 2006, 2007, 2012, 2016, 2018; Sands, Lu, Chu, & Cheng, 2018) where investigations of low skew 
angles are ubiquitously notorious. This short communication illustrates typical analysis techniques leading to disparate 
results by deriving each definition for singularity and illustrating the results for side-by-side comparison. It will be 
shown that high skew angles lead to matching results, while low skew angles lead to widely varying results. The 
generic explanation is believable if the reader considers how well computers can use variables valued near zero to 
calculate something divided by zero, an extraordinarily large number. This generic explanation is illustrated easily by 
performing identical analyses in several iterations of computational parameters (e.g. integration methods, integration 
step sizes, and node spacing where nodes are points of analysis in discretized versions of the continuous mathematical 
relationships. 
2. Method 
This study will be limited to non-redundant, constant speed, single gimbaled control moment gyroscopes. Well 
established methods are described first to elaborate typical skewed arrays of gyros (ubiquitous “benchmark” geometry 
(Sands, Kim, & Agrawal, 2006)), inverse steering laws, and the gyro system matrix (referred to as [A] in the literature). 
We introduce the three competing definitions of singularity and elaborate them in terms of the benchmark geometry, 
emphasizing analytic approaches to determining singularity-free conditions. Next are introduced new discrete 
numerical methods of determining singularity. The new methods prove dramatically inferior to the normal analytical 
approaches, but the strength of the new numerical methods is their exposure of the peculiarities of near-planar 
momentum generation when low skew angles predominate, and illustration that these peculiarities exist in analytic 
methods of analysis as well emphasizing the importance of having the correct paradigm for strictly defining 
singularity.  
2.1 Non-redundant, constant speed, single-gimbaled control moment gyroscopes (SGCMG) 
The torque vector direction (𝜏 ) of rotation for a gyro is also the axis around which the spacecraft maneuver is 
produced by that particular gyro, albeit in an opposite direction. The torque and the orthogonal relationship between 
the gyro’s gimbal rotation (𝛿) and angular momentum  ℎ . These relationships provide intuition behind singularity 
generation. Gimballing rotates the angular momentum vectors ℎ ∀𝑖 = 1,2,3 in planes perpendicular to the gimbal 
axis, and these planes contain the respective torque vectors in a right-hand arrangement: angular momentum, torque, 
and gimbal axis. Notice in figure (1) all directions defined by the angular momentum vector are orthogonal to the 
commanded torque direction, so any torque command that aligns with a gyros current angular momentum vector is 
impossible for fixed-speed gyros (a mathematically singular condition results).  
The change in angular momentum is the product of the gimbal rates and a matrix containing gimbal angles and skew 
angles referred to in the literature as [A]. The relationship must be inverted, since the control 𝑢 is known (defined as 
the negative of the desired spacecraft torque: 𝐻 ≡ 𝐻), and the current known gimbal positions define the [A] 
matrix, while the necessary gimbal commands 𝛿 are unknown. The [A] matrix is the spatial gradient matrix of 
angular momentum (normalized by one gyro’s value of angular momentum) normalized by one gyro’s momentum 
capability (i.e. 1h, 2h, and 3h). One method of expressing a matrix inverse is particularly useful to highlight the 
connection between disparate understandings of singular matrix inverse (to be defined in the next section of this short 
communication). One method of finding a matrix inverse involves using the matrix cofactor in the numerator with the 
matrix determinant in the denominator. Any instance where the determinant equals zero results in the need to calculate 
a quantity divided by zero. The physical interpretation follows. Instances where the combination of gimbal and skew 
angles (in the [A] matrix) align such that the net gyro commanded torque direction aligns with its orthogonal angular 
momentum vector, that gyro is physically unable to generate torque in the orthogonal direction, and that alignment 
mathematically expresses itself as a loss of matrix rank resulting in singular matrix inverse. These simultaneous 
physical and mathematical expressions of singular conditions have given rise to adoption of disparate definitions of 
gyro singularity. 
2.2. Postulates of SGCMG singularity. 
In the voluminous literature, several disparate definitions of singularity arise. Mathematically inclined authors define 
singularity as instances where the steering law matrix is not invertible (i.e. the matrix has become rank deficient). 
Systems engineers often refer to singularity as instances with an inability to produce an arbitrary torque, while attitude 
control engineers would more strictly define singularities as instances with an inability to produce the commanded 
torque. These later two interpretations avoid the strictly mathematical definition of the singular condition in favor of 
the physics-based illustration of one (or more) gyro that becomes perpendicularly aligned with the direction of torque 
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and is therefore unable to generate the commanded torque. The mathematical connection is the expression of the 
gyro’s angular position vis-à-vis sines and cosines in the steering law expressed in equations (1)-(4). 
Postulate 1. Singularities occur in instances of impossibility to generate an arbitrary torque 

Axiom 1. Instances when det[A]=0, angular momentum generation is impossible 
Postulate 2. Singularities occur in instances of impossibility to generate the commanded torque 

Axiom 2. Instances when det[A]=0, angular momentum generation is impossible when the commanded torque 
aligns with a singular direction. Thus, angular momentum generation is possible (up to 2h) in instances where a 
single gyro is aligned in a singular direction while the other two gyros are not.  

Postulate 3. Singularities occur in instances of rank-deficient [A] matrix 
Axiom 3. Instances when det[A]=0, angular momentum generation is impossible 

Another method of graphic display of singular conditions predominant in the literature is the plot of maximum 
singularity free momentum capability. This method normally examines each of the analytic expressions of singular 
conditions that result in singular matrix inversion, which comes from det[A]=0, the problematic condition. Next, for 
any iterated skew angle, the minimum singularity free value from the analytic expressions is plotted to reveal a usable 
inner zone of the momentum space that contains no singularities. Attitude control engineers can safely design 
maneuvers in this singularity-free zone without fear of loss of attitude control. The case of skew angle equal to zero 
highlights the difference in three Postulates of gyro singularity. Often neglected in plots is the case of β=0, yet it is 
one of the equations that necessarily leads to a rank-deficient [A] matrix.  
In accordance with Postulate 1, the first singular case represented in equation (6) implies that angular momentum 
generation is impossible per Axiom 1. Consider near-planar momentum generation where nearly all skew angles are 
set to near-zero degrees. All three gyros would operate in plane aligned with zero skew angle (the “CMG Platform” 
plane depicted in figure (2). Thus, very high (maximal) torque could be produced by all three CMGs if the commanded 
torque lies in this plane. This invalidates Postulate 1, thus we must not claim that momentum generation is impossible 
when det[A]=0. This statement is untrue.  
In accordance with Postulate 2, both the commanded torque direction and the condition of the [A] matrix are involved 
in defining singularity, thus we avoid ever saying the CMG system is singular, without mentioning the commanded 
direction.  
In accordance with Postulate 3, all instances when det[A]=0 are singular. The accompanying Axiom is identical to 
that of Postulate 1 and has the same fallacy. Exactly as the case of equation (6) disproved Postulate 1, it also disproves 
Postulate 3.  
Any geometric installation with low skew angles lead to near-planar momentum generation (contemplatable when 
looking at figures 1 and 2b), and necessitates singular and near-singular computations (very large numbers) using 
constituent numbers that are very small (near zero), thus bringing about peculiarities of near-planar momentum 
generation. This one mathematical condition (𝛽 = 0) implies impossibility to generate arbitrary torques, implying 
Postulate 1 and Postulate 3 coincide, yet Postulate 2 implies that any torque commanded in the plane could be 
achieved with as much as two gyros worth of angular momentum, referred to in the literature as 2h normalized angular 
momentum. Thus, according to Postulate 2 the symmetric condition β=0 is not necessarily singular, while Postulates 
1 and 3 assert singularity. 
3. Results 
This section provides a concise and precise description of the experimental results, their interpretation as compared to 
the predominant literature, as well as the experimental conclusions that can be drawn. 
3.1 Analytics results for maximal singularity-free momentum  
The analytical results already in the literature indicate consistency at skew angles above 25 degrees, but inconsistency 
at lower, near-planar skew angles. The appendix in Sands, Kim, and Agrawal (2007) graphically depicts the singularity 
hypersurfaces for symmetric skew angles iterated for every five degrees revealing the singularities coalesce as skew 
angle increases towards ninety degrees. This justifies the consistency in the literature, in that fewer unique singularities 
exist as the skew angle is iterated higher and higher amidst the hypothesis that inconsistencies in the literature arise 
from singularities being missed (skipped over) in discretization. The literature’s inconsistency is the key evaluation 
in this research, and the newly introduced numerical method illustrates the difficulty by exasperating the weakness of 
discretized analysis of continuous analytic expressions. The key discovery is that computers have a difficult time 
dealing with singular values (a quantity divided by zero…necessary very large numbers), and the difficulty is 
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compounded when the constituent calculations are using numbers that are near-zero. Figures in the literature 
ubiquitously ignore the case of zero degree skew angle, but nonetheless indicates a sloped-increase to near 0.4 with 
decreasing skew angle. Meanwhile Sands (2007) illustrates a curved decrease to zero at zero skew angle (accepting 
the definition that the determinant is zero at zero skew angle, and ignoring the definition of singularity that refers to 
inability to produce toque or alternatively inability to produce the commanded/desired torque), Postulate 1 and 
Postulate 2 respectively.  
Sands, Kim, and Agrawal (2006) where near-zero skew angles are neglected is consistent with the interpretation in 
Postulate 3. On the other hand, Sands (2007) is consistent with the interpretation in Postulate 2 necessitating zero 
angular momentum generation when the symmetric skew angles are zero. These two works were generated by the 
same author using different integration schemes, but went through peer review in two different publications, 
highlighting the presence of at least these two disparate interpretations of singularity. Seeking to elaborate the 
disparate interpretations, new research is presented here where the analytic expressions for det [A] were not used. 
Instead, inspired by the singularity mapping of the heuristic numerical approach, the three-dimensional momentum 
space was discretized at iterated intervals, and momentum generation was only calculated at these discrete points and 
then subsequently minimized and plotted. 
3.2 Numeric results for maximal singularity-free momentum  
Using the heuristic numerical approach, the discretized (at iterated intervals) three-dimensional momentum space 
produced nodes to calculate momentum generation subsequently minimized and plotted in Figures 1 and 2. 
 

 

(a) Numerical solution skew angle on abscissa, 
singularity-free momentum magnitude on ordinant 

where numerical analysis uses an isotropic discretized 
grid of nodes spaced 0.1 degrees. Notice zero skew 

angle is nearly captured. 

 

(b) Numerical solution skew angle on abscissa, 
singularity-free momentum magnitude on ordinant 

where numerical analysis uses an isotropic discretized 
grid of nodes spaced 0.25 degrees. Notice zero skew 

angle is nearly captured. 

 
(c) Numerical solution skew angle on abscissa, 

singularity-free momentum magnitude on ordinant 
where numerical analysis uses an isotropic discretized 
grid of nodes spaced 1 degree. Notice zero skew angle 

is not captured. 

 
(d) Numerical solution skew angle on abscissa, 

singularity-free momentum magnitude on ordinant 
where numerical analysis uses an isotropic discretized 

grid of nodes spaced 2 degrees. Notice zero skew 
angle is not captured. 

Figure 1. Numerical solution approaches: skew angle on the abscissa with singularity-free momentum magnitude 
on the ordinant for various integration schemes and discretization. 
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(a) Analytic and numerical solutions numerically 
calculated and presented with skew angle on 

abscissa, singularity-free momentum magnitude on 
ordinant where a discretized grid of nodes spaced 1 

degree is used. Notice zero skew angle is not 
captured. 

 

(b) Analytic solution numerically calculated and presented 
with skew angle on abscissa, singularity-free momentum 

magnitude on ordinant Notice zero skew angle is now 
captured. 

 

(c) Analytic solution reinvestigated with skew angle 
on abscissa, singularity-free momentum magnitude 

on ordinant. Notice zero skew angle is still not 
captured. 

 

(d) Increased focus on very small (near zero) skew angles 
(near planar momentum generation) with symmetric skew 

angle on the abscissa and singularity-free angular 
momentum on the ordinant. 

Figure 2. Analytic solution comparison: skew angle on abscissa, singularity-free momentum. 
 
The goal (not reached) of the discrete approach was to reproduce results akin the analytic approach. While the goal 
was not explicated reached, the method highlighted the weakness of digital computation by computer and laid bare 
the glaring ease of contradictory results. In the newly executed discrete numerical approach inspired by the heuristic 
method, we see in Figure 1 the discretized approach to analysis misses (skips over) some singular conditions (and 
seems to find others) for each iterated case of node spacing for discrete analysis. While this fallacy is instinctive, there 
are some non-instinctive attributes. The plotted data has “chattering” attributes to be expected of discrete calculations 
where some singular surfaces are missed at some nodes yet not missed at neighboring nodes. Despite this attribute, 
the generation of momentum at high skew angles very closely matches the analytic approach in the literature. To see 
this, compare the results at skew angles of 60-90 degrees in references Sands (2007) and Sands, Kim, and Agrawal 
(2018). On the other hand, closely examine the results at skew angles lower than 60 degrees. These results indicate a 
consistency in incorrectly identifying minimum singular conditions for momentum generation. This consistency is 
theorized to reside in the consistency of numerical approaches (i.e. consistency of integration methods, integration 
step size, consistency of node spacing within each iteration etc.). With this inspiration, closely examine both the 
original analytical results and the new numerical results at low skew angles, where computation is ubiquitously 
challenging due to the need to perform calculations of singular momentum using very low variable values. One aspect 
to highlight is the different values of singularity-free momentum generation. Another is the nature of singularity-free 
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momentum generation found very close to zero skew angle when small discretization and integration step-size is used. 
Contemplate the three Postulates introduced earlier in this short communication. As the symmetric skew angle 
approaches zero, Postulate 1 and Postulate 3 indicate no angular momentum generation is possible singularity-free, 
while Postulate 2 permits one single gyro to be singular yet torque production remains possible (up to 2h) if maneuvers 
are not commanded out-of-plane. 
Inspired by the illumination of the computational difficultly, we expand the approach to utilize numerical computation 
of the analytic expressions of matrix inverse to produce non-instinctive results. Figure 2 iterates various integration 
parameters and discretization. Figure 2a profoundly illustrates the weakness of using too large of discretization, while 
Figure 2b depicts a comparison of increasingly small discretization to be elaborated in the next section of this short 
communication. This is very instinct to anyone who has encountered the tradeoff between faster computations (and 
less accurate results) at larger discretization. Again notice in figures 2a and 2b, both produce accurate analysis at high 
skew angles (where “accurate” implies close resemblance to the nominal literature).  
Figures 1 and 2 uses modestly small discretization such that the results nearly appear continuous, yet even so…the 
results at low values of skew angles are not consistent with the analytical approaches in the literature. These two 
figures, in particular reveal the inappropriateness of the new computational method, but nonetheless illustrates the 
peculiarities of near-planar momentum generation that exacerbate the differences in statements espoused by engineers 
and scientists (presented here as Postulates) who hold each of the stated Postulates as correct. 
3.3. Peculiarities of near-planar and non near-planar minimum singularity-free momentum 
Statistical evaluation by means and standard deviations of numerical error for iterated skew angles listed in table 1 
clearly illustrate numerical results are more accurate at high values of skew angle, yet diverge for low skew angles 
where near-planar momentum generation is attempted. This clearly illustrates the consistency in the literature for high 
skew angles and inconsistency for low values of skew angles. It is noteworthy to mention that whilst 56.73 degrees 
was taken as the benchmark decades ago, box and roof configurations with 90 degree skew angles currently dominate.  
 
Table 1. Analysis of numerical error for iterated skew angles1 

 1°-38° 39°-60° 61°-90° Total 
Mean, 𝜎 0.033 0.084 3.69*10-5 0.053 

Standard deviation, 𝜇 0.039 0.071 6.86*10-5 0.035 
1 Notice this results is exactly the opposite of what the benchmark solution (Wie, 2008) would indicate. 
 
4. Discussion 
When control moment gyroscopes geometrically align perpendicularly to the commanded torque direction, well 
known singularities in the angular momentum space arise. Substantial research has aligned along three principle 
disciplines of study: singularity avoidance, singularity escape (when avoidance fails), and singularity penetration 
which permits safe flight through regions of singularity. Singularity escape and penetration require mathematical 
calculations of singular and near-singular quantities (very large numbers) using constituent numbers that are 
sometimes very small. This dichotomy leads to interesting peculiarities in some specific geometries, and this short 
communication analyzed these peculiarities to the conclusion that geometric installations of gyros at low skew angles 
is highly undesirable due to these mathematical peculiarities. Install gyros at high skew angles to not only increase 
singularity-free performance, but also increase confidence in mathematical analyses absent of peculiarities associated 
with near-planar momentum generation. Utilization of high values of skew angles simultaneously bestows high 
maximum (saturation) capability, high singularity-free capability, and well-conditioned mathematical computations.  
This short communication presented three disparate paradigms for the definition of singularity from the substantial 
literature arising from perspectives in math, physics, and systems engineering respectively, and these three definitions 
explain discrepancies seen in the literature, and illustration of these discrepancies is a key novelty in this article. 
Disparate definitions of singularities give rise to seemingly conflicting analysis throughout the literature where 
investigations of low skew angles are ubiquitously notorious. The conclusions are confirmed by identical analyses 
with several iterations of computational parameters (e.g. integration methods, integration step sizes, and node spacing 
where nodes are points of analysis in discretized versions of the continuous mathematical relationships. Singularities 
occur in instances of impossibility to generate the commanded torque, with emphasis added to “the commanded”, 
highlighting a key feature of the definition of singularity includes alignment of the angular momentum vector with 
the commanded torque. Thus, angular momentum generation is possible (up to 2h for the systems studied here) in 
instances where a single gyro is aligned in a singular direction while the other two gyros are not. This short 
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communication restricted analysis to symmetric installations of gyros with identical skew angles. Sequel research will 
investigate the performance of many (from an infinite combinations) asymmetric skew angle geometries following 
the recent results published by Lewis, et al. 
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