Modeling of Soil Cation Exchange Capacity Based on Fuzzy Table Look-up Scheme and Artificial Neural Network Approach

Ali Keshavarzi, Fereydoon Sarmadian, Reza Labbafi, Majid Rajabi Vandechali

Abstract


In this study, a new approach is proposed as a modification to a standard fuzzy modeling method based on the table look-up scheme. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, neural network model (feed-forward back propagation network) and fuzzy table look-up scheme were employed to develop a pedotransfer function for predicting soil CEC using easily measurable characteristics of clay and organic carbon. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for fuzzy table look-up scheme were 0.33 and 0.98 respectively. Results showed that fuzzy table look-up scheme had better performance in predicting and modeling of soil cation exchange capacity than artificial neural network.


Full Text: PDF DOI: 10.5539/mas.v5n1p153

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.