A Hybrid Methodology for Automation the Diagnosis of Leukemia Based on Quantitative and Morphological Feature Analysis

Hussam N. Fakhouri, Saleh H. Al-Sharaeh


Recent year’s witnessed a huge revolution for developing an automated diagnosis for different disease such as cancer using medical image processing. Many researches have been dedicated to achieve this goal. Analyzing medical microscopic histology images provide us with large information about the status of patient and the progress of diseases, help to determine if the tissue have any pathological changes. Automation of the diagnosis of these images will lead to better, faster and enhanced diagnosis for different hematological and histological tissue images such as cancer. This paper propose an automated methodology for analyzing cancer histology and hematology microscopic images to detect leukemia using image processing by combining two diagnosis procedures initial and advance; the initial diagnosis depend on the percentage of the white blood cells in microscopic images affected by leukemia as indicator for the existence of leukemia in the blood smear sample. Whereas, the advance diagnosis classifying the leukemia according into different types using feature bag classifier. The experimental results showed that the proposed methodology initial diagnosis is able to detect leukemia images and differentiate it from samples that do not have leukemia. While, advance diagnosis it is able to detect and classify most leukemia types and differentiate between acute and chronic, but in some cases in the chronic leukemia where the percent of blast cells and shape are similar; it gave a diagnosis of the type of leukemia to the most similar type.

Full Text:


DOI: https://doi.org/10.5539/mas.v12n3p56

Copyright (c) 2018 hussam fakhouri

License URL: http://creativecommons.org/licenses/by/4.0

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)  Email: mas@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.