The Identification of Gas-liquid Co-current Two Phase Flow Pattern in a Horizontal Pipe Using the Power Spectral Density and the Artificial Neural Network (ANN)

Budi Santoso, Indarto Indarto, Deendarlianto Deendarlianto, Thomas S. W.

Abstract


This paper presents a new method of the flow pattern identification on the basis of the analysis of Power Spectral Density (PSD) from the pressure difference data of horizontal flow. Seven parameters of PSD curve such as mean (K1), variance (K2), mean at 1-3 Hz (K3), mean at 3-8 Hz (K4), mean at 8-13 Hz (K5), mean at 13-25 Hz (K6) and mean at 25-30 Hz (K7) were used as training vector input of Artificial Neural Networks (ANN) in order to identify the flow patterns. From the obtained experimental of 123 operating conditions consisting of stratified flow, plug and slug, ANN was trained by using 100 data operation and 23 tested data. The results showed that the new method has a capability to identify the flow patterns of gas-liquid two phase flow with a high accuracy.


Full Text: PDF DOI: 10.5539/mas.v6n9p56

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.