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Abstract 

Medical investigations nowadays allow the incorporation of cure individuals in the analysis, especially for chronic 
diseases such as cancer. Therefore, survival models that incorporate the cured patients in the analysis are called 
cure rate models.  In this paper, we propose an analytical approach for parametric estimation of the cure fraction 
in cancer clinical trials based on the bounded cumulative hazard (BCH) model with covariates involved in the data 
set. The analysis is constructed by means of the exponential distribution in the case of left censoring and within the 
framework of the expectation maximization (EM) algorithm. The analysis provided the analytical solution and a 
simulation study for the cure rate parameter. 
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1. Introduction 

In cancer clinical trials, the population of patients is considered as a heterogeneous population since it is eventually 
divided into two categories. One group consists of patients who will never experience the event of concern and 
who are hence considered as cured while the other group comprises patients who remain uncured. However, the 
main interest of cancer trials is estimating the proportion of cured patients which stands an important criterion for 
elucidating the trends in the survival of cancer patients. Therefore, the survival models which incorporate the cure 
fractions in the analysis are called cure rate models.  

The first created cure model, which is still widely used in survival analysis, is the model constructed by Boag in 
1949 and later developed by Berkson and Gage in 1952. This model is called the mixture cure model since it can 
estimate the proportion of patients cured as well as the survival function of the uncured patients. According to 
this model, the survival distribution function can be written in terms of the ‘mixture’ of the cured, plus the uncured, 
patients such that: 

          1   .                                               (1) 
This model is described as parametric or semi-parametric model, depending on whether standard probability 
distributions are, or are not, employed. If a standard probability distribution like the exponential, Weibull, 
Gompertz negative binomial, or the generalized F distribution is used, then the model is parametric. If, on the other 
hand, the mixture model is used without any standard probability distribution, then the model is described as 
semi-parametric model.   

An elaborate literature on the mixture, also known as the standard cure rate model, is found in the works of 
Goldman (1984), Farewell (1986), Gamel et al. (1990), Kuk and Chen (1992), Taylor (1995), Peng and Dear 
(2000), Sy and Taylor (2000), Peng and Carriere (2003), Mohamad Tajuddin et al. (2006), and Abu Bakar et al. 
(2009), amongst others. 
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In model (1), 1 , where  is the cumulative distribution function. Furthermore, 0 0 
and ∞ 1, so that 0 1 and ∞  , corresponding to the plateau value. Moreover, the hazard 
function concomitant to this model is  

   , 

where  is the density function attendant to . 

Hence, even mixture cure models fit cancer data well and they usually cannot be viewed literally as describing a 
mixture of both cured and uncured individuals. However, it should be highlighted that the literal interpretation of 
the cure model is meaningful in some non-cancer applications, e.g., Hauek et al. (1997).  

Despite the vast volume of literature on the mixture cure rate model, it has some drawbacks as was illustrated by 
Chen (Chen et al., 1999). The main drawback is that when a set of covariates is included through, then this model 
will lack a proportional hazard structure. Therefore, Chen proposed an alternative model which overcomes the 
drawbacks of the mixture cure model. This alternative model is the “Bounded Cumulative Hazard (BCH)” model 
which was initially developed by Yakovlev and co-wrkers in 1993 (Yakovlev et al., 1993).  

2. Materials and Methods 

2.1 The BCH model 

The milestone of the ( BCH ) model is the assumption of an individual in the population left with  cancer cells 
after the initial treatment. The cancer cells (often called clonogens) grow rapidly and produce a detectable cancer 
mass later on. The variable  is not observed and has the Poisson, Bernoulli or negative binomial distribution 
(Rodrigues et al., 2009). Chen et al. (1999) considered the Poisson distribution for  with a mean of θ, and in this 
paper we adopt Chen’s assumption.  

Given , let , 1,2, …  be independent random variables with a common distribution function 
1  that is independent of . The variable   denotes the time which the  clonogen takes to 

produce a detectable cancer mass. Then, the time it takes cancer to relapse can be defined by the random variable T 
where min , 0 , such that ∞ 1 , the  are independent and 
identically-distributed (i.i.d), and  is independent of the sequence , , … , . Therefore, the survival 
function for , and hence for the population, is given by (Aljawadi et al., 2011): 
 
                       (Probability of no cancer by the time t). 
              0  , … , , 1        

              exp ∑
!

                                    

              exp exp  
              exp  .                                            (2) 
Since ∞ exp  and ∞ 1, then model (2) is an improper survival function. The study defines 
the cure fraction ( ) as follows: 

∞ 0 exp  .                                                       (3) 
As ∞ , 0, whereas as 0 , 1,   i.e.,    0 1. 
It should be underlined that the first partial derivative of  with respect to  is  

         exp  . 

Since 1 , and accordingly – , then   is an improper survival function , and therefore 

 is an improper probability distribution function (p.d.f), as well.  

2.2 The likelihood Function 

In this analysis, the likelihood function is considered using the left censoring type of input data. In order to 

analyze such data, let  be the indicator of left censoring and  be a cure indicator where for the   patient  

                   
  0   

  1
      and      

  0          

  1
    . 

If 1, then 1, but if 0, then  is not observed and it can be either one or zero, assuming that 
censoring is independent of failure times.  
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Suppose that T is a random variable with probability density function ; ,   to be estimated and 
, , … . . ,  is a random sample of size n, then the joint probability density function is given as ; 

, , … . . , ;  ∏ ; .                                               (4) 
In parametric maximum likelihood estimation of the cumulative distribution function, both .  and the 
probability density function .  for the entire population are known. This study employs the exponential 
distribution for   and  such that: 

   and    . 
However, in the case of left censoring the survival function of the uncured patients becomes 
                                                                    1 . 
Given  and  (i.e. the complete data are available), then the complete log likelihood function is 
 

log 1 1   

where  and  are the p.d.f and the survival function for the uncured patients, respectively. 
Consequently, the log-likelihood function becomes: 

 log ∏ 1 1 1   .   (5) 

When covariates are involved in the analysis, the scale parameter of the exponential distribution ( ) given the th 
covariates can be expressed as: 

exp , where  and  are the covariates and coefficients vectors, respectively; 1, … , ; and 
1, … , .  

Therefore, the log-likelihood function defined in equation (5) becomes: 

log ∏ exp 1   

                                        1 1   

  ∑   ∑  exp log 1 ∑    
           

∑ 1 1 log 1 ∑ 1  
 

                           ∑ 1 log 1    
 

  ∑ 1 ∑ 1 1 log 1 ∑   
         

∑ 1 log 1   .  (6) 
           

The solutions of   0 and   0, … ,  0 are our desired estimates of   and , where 

1 1
∑

1
0 

       1 1
∑

1
0 

        θ log
∑

∑
1  .                                                            (7) 

    

∑ 1 ∑ 1
  

 
0

.

.

.

 ∑ 1 ∑ 1
  

 
0

 .              (8) 

As the cure status  is not fully observed, the EM algorithm will be used. Before employment of the EM 
algorithm,  is defined as the expected value of the  patient to be uncured under the conditions of current 
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estimates of  and the survival function of uncured patients,  , and its value is drawn from the equation 
(Peng and Dear, 2000): 

                          1
 

  
 . 

 
For censored individuals 0 and hence the equation giving  can be re-written as follows: 

                          
1  

 1  
 

 

             
 

  
 .                                               (9) 

For simplicity, we can define  as the probability of cured individuals such that 
          1 1   , 
 

             1
 

  
 

            
 

  .     

                                                                                       (10) 
2.3 The EM algorithm 
Suppose that the data vector is in the form of , , , . For  1, … ,  and 1, … , , If  represents 
the number of uncensored individuals, then  is the number of censored individuals. Accordingly, the 
observed data are (i) the lifetime ( ); (ii) the censoring status ( 1) for 1 … ; (iii) the cure status ( 1) 
for 1 … ,  , and (iv) the covariates vector (Vj) for all j, while the only unobserved data are the cure 
status  for 1 … . 
However, in the expectation step (E-Step) we determine the expected value of the log likelihood function (6) as 
follows: 

/ , c , t , ∑ 1 ∑ 1 ∑ 1 1   
 
                         ∑ 1 1 log 1 ∑ log 1 ∑  

                     

∑ 1 log 1   ∑ 1 log 1    
 

                  ∑ 1 ∑ 1 log 1   
 

log 1  log 1    

∑ 1 , ∑  and ∑ log 1    are the sufficient statistics for the 
parameters’ vector , . It follows that the log-likelihood based on complete data is linear in the complete 
data sufficient statistics, and then the E-step requires the computation of , ∑ 1 , 

, ∑  and , ∑ log 1   . 

Based on the probability of cure of patients given by equation (10) let:  

, 1  

                        ∑
 

                                  (11) 
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, 1  

                  ∑ 1
 

                                    (12) 

and 

, log 1    

  ∑
 

  
log 1                                   (13) 

On grounds of the data partition defined above and the sufficient statistics, we can re-write equation (7) and the 
system of nonlinear equations in (8) respectively as follows: 

 θ log
∑

∑
1 log

∑ ∑

∑ ∑
1   

  log
∑

∑
1           

  log 1  .                                                                        (14) 

 

∑ 1 ∑ 1                                                      

          ∑ 1
  

 
            

                                            ∑ 1
  

 
0

.

.

.

 

∑ 1 ∑ 1                                                      

          ∑ 1
  

 
            

                                            ∑ 1
  

 
0

                                  

∑ 1 ∑ 1
  

 
0

                                            .
.
.

 
∑ 1 ∑ 1

  

 
0   

             
                                            

                            (15) 

However, for the maximization step (M-Step), the complete data maximum likelihood estimates of the parameters 
are given by equations (14) and the system of nonlinear equations (15). Thus, for an initial value of  ° the system 
of non-linear equations (15) with respect to the parameters vector ( ) using any appropriate numerical method, 
such as the Newton Raphson method, can be solved. The solution of the non-linear equation in (15) in addition to 
the initial value of ° can be used to solve the complete data sufficient statistics given by equations (11), (12) and 
(13). Substitution of these sufficient statistics in equation (14) will give a new value for    that will be reiterated 
until convergence and eventually the desired cure fraction is exp . 
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3. Simulation and results 

Simulation studies based on left censored data involve similar steps in comparison with right censoring type. In 
this study, exponential, binomial and uniform distributions were used to generate the data which is composed of 
the lifetimes , censoring, cure status and covariates vector , ,  respectively.  

The steps used to generate a left censored data set are shown below: 

a) Generate a variable  for true survival time from an exponential distribution with various scale 
parameter  values since we were quite interested in varying the censoring rates (P) as this enables 
identification of the pattern which the cure rate estimation will assume. So, for the sake of flexibility in 
finding out how the pattern of the cure rate would progress as the censoring rate increased, both slowly 
and rapidly, we were interested in the scale parameter 0.5, 2 .  

b) Generate another variable for censoring time from a uniform distribution on the interval 
(min , min max /2) to obtain left censored survival times. This censoring variable is 
denoted as . 

c) Compare the true survival time  with the censoring time . Then the lifetimes and censoring 
indicator  can be defined as follows: 

       
       

 

 

    
0       
1       

 

In this simulation we generated 20 data sets each with 100 individuals where as a special case for each set of 
cohorts we considered the left censored individuals are cured. Thus, the cure indicator  can be defined in the 
same manner of censoring indicator where 

     
0       
1       

 

Regarding the covariates, only two covariates were considered: gender, which derived from a binomial distribution; 
and type of treatment, i.e., chemotherapy or radiotherapy, which derived from binomial distribution. 

In this simulation we were interested in the bias and in the mean square error (MSE), where bias is commonly 
defined as the difference between the true and the expected values of an estimator as given by:          

bias  , 
where  is the maximum likelihood estimate for π. 

Consequently, the MSE of an estimator is known as the expected squared deviation of the estimated parameter 
value from the true one. By using a standard notation for a scalar parameter, it can be expressed in the following 
form: 

          

The simulation was carried out with the built-in random generators in the R statistical software to fulfill the entire 
simulation and the final results are presented next by Tables 3.1 and Figure 3.1, respectively. 

The above results show the results of the parametric estimation of the cure fraction when covariates were included 
in the analysis. The bias and MSE values for the various given rates of censoring indicate that the proposed method 
of cure rate estimation was more efficient when the censoring rate was low than when it was high, and that the 
estimation started to diverge in the case of heavy censoring rates. Hence, increasing the proportion of censored 
data will distort the estimated parameters, and vice versa. 

4. Conclusion 

By assuming that both ° .  and ° .  are known, the researchers investigated the parametric maximum 
likelihood estimation equations of the cure fraction. The analysis was conducted by consideration of the left 
censoring case based on the bounded commutative hazard model with the exponential distribution used to 
represent the survival function of the uncured patients. Covariates were involved in the analysis via the scale 
parameter of the exponential function whereby the parametric estimation equations of the parameters can be 
solved numerically by selection of an appropriate numerical method since the researchers could not find an explicit 
solution. The results demonstrate that cure fraction estimation based on the proposed procedure was more 
attractive when censoring rate is low than when it is high. 
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Table 3.1 Results of the simulation based on the scale parameter 0.5, 2  and 20 data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Censoring rate versus bias based on the results in table 3.1. 
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Run Censoring Rate Real Cure Expected Cure Bias MSE(×100) 

1 18% 18% 17% 1% 0.2194 

2 20% 20% 19% 1% 0.2194 

3 21% 21% 19% 2% 0.2494 

4 23% 23% 20% 3% 0.2994 

5 25% 25% 22% 3% 0.2994 

6 26% 26% 22% 4% 0.3694 

7 27% 27% 22% 5% 0.4594 

8 29% 29% 23% 6% 0.5694 

9 31% 31% 25% 6% 0.5694 

10 32% 32% 25% 7% 0.6994 

11 33% 33% 25% 8% 0.8494 

12 35% 35% 27% 8% 0.8494 

13 36% 36% 27% 9% 1.0194 

14 38% 38% 29% 9% 1.0194 

15 38% 38% 28% 10% 1.2094 

16 40% 40% 28% 12% 1.6494 

17 42% 42% 28% 14% 2.1694 

18 45% 45% 30% 15% 2.4594 

19 47% 47% 32% 15% 2.4594 

20 50% 50% 34% 16% 2.7694 


