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Abstract 

The effects of vertical parabolic walls on natural convection in a parabolic enclosure have investigated 
numerically in this paper. The bottom wall is heated isothermally, while the other vertical parabolic walls are 
maintained at constant cold temperature and the top wall is well insulated. The flow and temperature fields are 
studied numerically for three values (C = 0.1, 0.5, 1.0) of the parabolic equation constant. The laminar flow field 
is analyzed numerically by solving the steady, two-dimensional incompressible Navier-Stokes and energy 
equations. The Cartesian velocity components and pressure on a collocated (non-staggered) grid are used as 
dependent variables in the momentum equations, which discretized by finite volume method, body fitted 
coordinates are used to represent the complex parabolic wall geometry accurately, and grid generation technique 
based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity 
field to satisfy the conservation of mass. The range of Rayleigh number is (103≤ Ra ≤105) and Prandtl number is 
0.7. The results show that the heat transfer rates decrease with increase the parabolic equation constant. 

Keywords: Natural convection, Parabolic enclosure, Finite volume 

1. Introduction 

This study focuses on understanding of heat transfer by natural convection in parabolic enclosure as found in 
solar parabolic concentrators. Specifically, the effect of vertical parabolic walls of the enclosure on laminar 
natural convection is analyzed as a non-square enclosure heated from below. 

Natural convection in differentially heated square enclosures has been studied extensively. De Val Davis (1983) 
obtained a benchmark numerical solution of buoyancy driven flow in a square cavity with vertical walls at 
different temperatures and adiabatic horizontal walls. De Val Davis and Jones (1983) presented a comparison of 
different contributed solutions to the same problem. These solutions covered the range of Rayleigh numbers 
between 103  to 106. More recent contributions include a new benchmark quality solution by means of discrete 
singular convolution Wan etc. (2001), steady state and transient solutions using a fourth order momentum 
equation Bubnovich (2002), and a study of free convective laminar flow with and without internal heat 
generation in rectangular enclosures of different aspect rations at various angles of inclination Rahman and 
Sharif (2003). 

Natural convection studies that include coordinate transformations include the works by Lee (1984) for 
convective fluid motion in a trapezoidal enclosure, Karyakin (1989) for prismatic enclosures of arbitrary cross 
section. Talabi and Nwabuko (1993) have studied the natural convection in parabolic enclosure numerically. The 
analytical model is consisting of a hot parabolic upper-wall, a cold horizontal base and an adiabatic vertical wall. 
Two cases of heat input from the parabolic upper-wall have been considered, isothermal condition on the hot 
wall, and constant heat-flux through the hot wall. The base and vertical walls are made isothermal and adiabatic, 
respectively Results show that in case of isothermal hot wall the heat transfer rate to the cold wall increases with 
increase in Grashof and Prandtl numbers. Diaz and Winston (2008) have analyzed the interaction of natural 
convection and surface radiation in two-dimensional parabolic cavities heated from below with insulated walls 
and flat top and bottom walls numerically. The numerical model based on finite differences is used to solve the 
mass, momentum, and energy equations. A coordinate transformation is used to map the parabolic shape into a 
rectangular domain where the governing equations are solved. The results show that surface radiation 
significantly changes the temperature distribution and local Nusselt number inside the parabolic enclosure. The 
aim of the present study is to investigate natural convection in a parabolic enclosure when bottom wall is heated 
isothermally and top wall is well insulated while two vertical parabolic walls are cooled by means of two 
constant temperature baths (see figure 1). 
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2. Problem Formulation 

The treated problem is a two-dimensional parabolic enclosure with a height H and base wall of length L=H. The 
physical system considered in the present study is displayed in figure 1. The bottom wall is heated isothermally 
at temperature (Th) and top wall is well insulated while two vertical wavy walls are cooled by means of two 
constant temperatures (Tc). The fluid properties are assumed constant except for the density variation which is 
treated according to Boussinesq approximation. The viscous incompressible flow and the temperature 
distribution inside the cavity are described by the Navier–Stokes and the energy equations, respectively. The 
governing equations were transformed into dimensionless forms upon incorporating the following 

non-dimensional variables: 

Where X and Y are the dimensionless coordinates measured along the horizontal and vertical axes, respectively, 

u and v being the dimensional velocity components along x- and y axes, and   is the dimensionless temperature. 

The dimensionless forms of the governing equations under steady state condition are expressed in the following 

forms: 
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3. Parabolic Walls 
In order to simulate the vertical parabolic walls, the parabolic equation can be expressed as:- 
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Where C is constant and has taken in this study for three values (0.1, 0.5, and 1) . 
3. Boundary Conditions 

Boundary conditions can be summarized by the following equations: 
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5. Numerical Method 
The set of conservation equations (2-4) can be written in general form in Cartesian coordinates as 
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Where  is the effective diffusion coefficient,  is the general dependent variable, S  is the source term. The 
continuity equation (2) has no diffusion and source terms; it will be used to derive an equation for the pressure 
correction.  

The grid generation scheme based on elliptic partial differential equations is used in the present study to generate 
the curvilinear coordinates. Equation (7) can be transformed from physical domain to computational domain 
according to the following transformation  yx,  ,  yx,  , the final form of the transformed equation 
can be written as:- 
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, G1 and G2 are the contravariant velocity components, J is the Jacobian of the transformation, on the 

computational plane, and α, ,  are the coefficients of transformation. They are expressed as 
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The transferred equation (8) is integrated over the control volume in the computation domain. The convective 
terms are discretized by using hybrid scheme, while the diffusion terms are discretized by central scheme. 
SIMPLE algorithm on a collocated nonorthogonal grid is used to adjust the velocity field to satisfy the 
conservation of mass. Since all variables are stored in the center of the control volume, the interpolation method 
is used in the pressure correction equation to avoid the decoupling between velocity and pressure as in Rhie and 
Chow (1983). In order to consider the effect of the cross derivatives and to avoid solving a nine diagonal matrix 
of the pressure-correction equation, the cross derivatives are calculated by the approximate method of Wang and 
Komori (2000). The resulting set of discretization equations are solved iteratively using the line-by-line 
procedure which uses the Tri-Diagonal Matrix Algorithm (TDMA). The convergence criterion is that the 
maximum residuals in all equations fall below 10-4. For further information, numerical details can be found in 
Ferziger and Peric (1996). 

6. Grid Independence Test 

Computations have carried out for three selected grid sizes (i.e., 50 × 30, 60 × 40, and 70 ×50). Figure (2) shows 
local Nusselt number distribution along the hot bottom wall for Ra = 105 and C = 0.50. Results for the selected 
grid sizes show very good agreement with each other. Medium grid (60 × 40) is presented throughout this paper.  

7. Validation 

The model validation is an essential part of a numerical investigation. Hence, the present numerical results are 
compared with the numerical results of Tanmay Basak etc. (2009), which were reported for laminar natural 
convection heat transfer in a trapezoidal enclosure heated isothermally from below while the other vertical walls 
are maintained at constant cold temperature and the top wall is well insulated. The comparison is conducted 
while employing the following dimensionless parameters: Ra = 105, Pr = 0.7 and trapezoidal angle  = 30o. 
Excellent agreement is achieved, as illustrated in figure (2), between the present results and the numerical results 
of Tanmay Basak etc. (2009) for the local Nusselt number distribution along the bottom wall. 

8. Results and Discussion 

Figure (4a-c) and (5a-c) illustrate the stream function and isotherm contours of the numerical results for Ra =103 
and 105, respectively. The results are for Pr = 0. 7 and for three values of the parabolic equation constants (C 
=0.1, 0.5, and 1.0) when the bottom wall is heated isothermally and the side walls are cooled while the top wall 
is well insulated.  

As expected due to the cold vertical parabolic walls, fluids rise up from middle portion of the bottom wall and 
flow down along the two vertical parabolic walls forming two symmetric rolls with clockwise and anti-clockwise 
rotations inside the cavity. At Ra = 103, the magnitudes of stream function are considerably lower and the heat 
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transfer is purely due to conduction. For (C=0.1), the temperature contours with  = 0.1 occur symmetrically 
near the side walls of the enclosure and the other temperature contours with  ≥ 0.2 are smooth curves symmetric 
with respect to the vertical symmetric line as shown in figure (4a). On the other hand as the constant increases to 
(C=1.0) the temperature contours with   0.4 occur symmetrically near the side walls of the enclosure and the 
other temperature contours with  ≥ 0.5 are smooth curves symmetric with respect to the vertical symmetric line 
as shown in figure (4c), this is due to the increase of the area of the vertical cold walls.  

At larger Ra = 105, the effect of buoyancy force is stronger compared to viscous forces and the intensity of fluid 
motion has been increased as indicated by larger magnitudes of streamfunctions (figure (5a-c)). The enhanced 
convection causes larger heat energy to flow from the bottom wall to the top portion of the vertical wall and a 
large regime of top portion of the cavity remains at uniform temperature for C=0.5 and C =1. It is interesting to 
observe that the stratification zone of temperature at the central vertical line near the bottom wall is suppressed 
for Ra = 105 due to enhanced convection whereas the stratification zone is larger for Ra = 103. It may be noted 
that the stratification zone of temperature at bottom is thicker for C = 0.1 due to less intense circulation near the 
top portion of the cavity. It is also observed that the isotherms are compressed strongly towards the side walls for 
Ra = 105 especially with C = 0.5 and C = 1.0 as shown in (figure (5b-c)). The isotherms with   0.4 are 
compressed near the side walls of the enclosure for C =0.1, 0.5, and 1. It is also observed that isotherms for C = 
1.0 are more distorted (figure (4c)) compared to C = 0.1 (figure (4a)) due to the extension of circulation in the 
whole enclosure.  

Figure (6) illustrates the local Nusselt number verses distance for the bottom wall, for Pr = 0:7 and Ra = 105 and 
for three values of the parabolic equation constants (C =0.1, 0.5, and C = 1). It is observed that the heat transfer 
rate is maximum near the edge of the wall and the rate is minimum near the center of the wall for all constants (C 
= 0.1, 0.5, and 1). It is also interesting to observe that the heat transfer rates (Nu) for (C = 0.5 and C = 1) are 
smaller that heat transfer rates (Nu) for C = 0.1 due to highly compressed isotherms as seen from figure (5a). 
Figure (7) illustrates that average Nusselt number (Nua) increases with Rayleigh number for all the three values 
of constants (C). It is observed that heat transfer rate is largest for (C = 0.1), this may be explained based on local 
Nusselt number plots as shown in figure (6). 

9. Conclusion 

The finite volume method with collocated grid is used to analyze the natural convection in parabolic enclosure. 
The heat transfer rates have analyzed with local and average Nusselt numbers for the bottom wall of the 
enclosure. The results show that the local heat transfer rate is larger for the small value of the parabolic equation 
constant (C =0.1) and also the average heat transfer rate is larger for C =0.1.  
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Figure 1. Schematic diagram of the physical system 

                    

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2. Grid independence test for local Nusselt number for Ra = 105, C =0.5 
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Figure 3. Comparison of the present study with the result of Tamnay Basak etc.(2009) for local Nusselt Number 

on the bottom wall of trapezoidal enclosure for Ra =105, Pr = 0.7 and trapezoidal angle ( =30o) 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Isotherms Contours (left) and Streamlines contour (right) for Ra=103, Pr = 0.7 and for (a) C=0.1 

(b) C =0.5, and (c) C =1.0 

(a) 

(b) 

(c) 



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 3; June 2011 

Published by Canadian Center of Science and Education 219

0
.1

0.2

0.
2

0.3

0.
3

0.4

0
.4

0.
4

0.5

0.5

0.5

0.60.70.80.9

0.1

0.
1

0.2

0.
2

0.3 0.
3

0.4

0.
40.5 0.5

0.
6

0.70.80.9

0.1

0.
1

0.2

0.
2

0.3

0.
3

0.4 0.4

0.5

0.5

0.5

0.6

0.7 0.8
0 9

-1
2

-1
0

-8

-6

-4

-4

-2

-2

2

2

4

4

6
8

1012

-12

-10

-1
0

-8

-8

-6

-6

-4

-4

-4

-2

-2

2

2

4

4

6

6

8

10 10

12

-12-10

-1
0

-8

-8
-6

-6

-4

-4

-4

-2

-2

-2

2

2

2

4

4

6

6

6

8

8

10

10

12

0.20 0.40 0.60 0.80
X

0.00

4.00

8.00

12.00

N
u

C=0.1

C=0.5

C=1.0

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Isotherms Contours (left) and Streamlines contour (right) for Ra=105, Pr = 0.7 and for (a) C=0.1 (b) C 

=0.5, and (c) C =1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Local Nusselt number on the bottom wall of the enclosure fore Ra =105, Pr=0.7 and for three different 

values of the constant C 

 

 

(a) 

(b) 

(c) 



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 3; June 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 220

1000.00 10000.00 100000.00
Ra

0.00

2.00

4.00

6.00

8.00

10.00

N
ua

C=0.1

C=0.5

C=1.0

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Average Nusselt number versus Rayleigh number for three different values of the constant C 

 


