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Abstract  
Normalization is important for Electrical Capacitance Tomography (ECT) data due to the very small capacitance values 
obtained either from the physical or simulated ECT system.  Thus far, there are two commonly used normalization 
methods for ECT, but their suitability has not been investigated.  This paper presents the work on comparing the 
performances of two Multilayer Perceptron (MLP) neural networks; one trained based on ECT data normalized using 
the conventional equation and the other normalized using the improved equation, to recognize gas-oil flow patterns.  
The correct pattern recognition percentages for both MLPs were calculated and compared.  The results showed that the 
MLP trained with the conventional ECT normalization equation out-performed the ones trained with the improved 
normalization data for the task of gas-oil pattern recognition.  
Keywords: Electrical Capacitance Tomography, Artificial Neural Networks, Quasi-Newton (QN), 
Levenberg-Marquardt (LM), Resilient-Back-propagation (RP), Pattern Recognition 
1. Introduction
Recognition of flow regimes of gas-liquid flow is important in industrial process such as gas-oil industry. However, this 
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information cannot be easily determined since gas-oil flows are normally concealed within a pipe.  One way to obtain 
such information is by employing the Electrical Capacitance Tomography (ECT) technique. ECT is a technique used to 
visualize the distribution of two dielectric components (Yang and Byars, 1999). It has been employed for industrial 
process containing different dielectric materials, such as gas/oil flows in oil pipeline. In an ECT sensor, several 
electrodes are mounted around the pipe vessel. It is said to be non-invasive and non-intrusive since the sensing 
electrodes are not physically in contact with the medium inside the pipe vessel. With N electrodes, the total number of 
M independence capacitance measurements is given by (Xie et al, 1992) 

                                                           (1)         

The measured capacitances are usually normalized before being used for any application. There two versions of 
equations for normalizing the capacitance values, referred to in this paper as the conventional normalization and 
improved normalization methods. The conventional normalization approach assumes that the distribution of the two 
materials is in parallel and hence, the normalized capacitance is a linear function of the measured capacitance (Yang 
and Byars, 1999). The normalization equation is given by (Xie et al, 1992) 

                                           (2)  

where  is the conventional normalized capacitance between a pair of electrodes i and j, is the measured 
capacitance, is the capacitance when the pipe is full of gas and is the capacitance when the pipe is full of the 
higher permittivity material than the permittivity of the gas, such as oil.  An improved normalization approach is 
derived from a series sensor model by modeling the sensor capacitances as two capacitances in series and is given by 
the following equation (Yang and Byars, 1999) 

                                                   (3) 

where  is the improved normalized capacitance between a pair of electrodes i and j, is the measured 
capacitance, is the capacitance when the pipe is full of gas and is the capacitance when the pipe is full of the 
higher permittivity material than the permittivity of the gas. 
For both equations, the normalized capacitance values for empty and full pipe are 0 and 1, respectively. This can be 
proven by substituting Cij(p) = Cij(e) for empty and Cij(p) = Cij(f) for full pipe. Therefore, ideally, the maximum and 
minimum values for normalized capacitances are 1 and 0, respectively. If the normalized capacitance value is higher 
than 1, the value is said to overshoot and if it is less than 0, the value is said to undershoot. 
Until now, there has been no proper research to investigate which normalization method is the best for flow regime 
recognition using neural network. Thus, this paper presents the work on such investigation using the Multilayer 
Perceptron (MLP) neural network, the most commonly used neural network. 
1.1 Multilayer Perceptron (MLP) 
An Artificial Neural Network (ANN) or simply referred to as a ‘neural network’ is an intelligent system composed of 
simple processing elements which operate in parallel (Haykin, 1999). An MLP is a type of an ANN model. MLPs have 
been used in various different applications due to their ability to solve complex functions including pattern 
classification (Yan et al, 2004), function approximation (Lee et al, 2004), process control (Ren et al, 2000) and filtering 
tasks (Parlos, 2001).   
Figure 1 shows the basic MLP supervised learning structure where pairs of input and target output are used to train the 
networks. The term ‘supervised’ refers to the involvement of target output that act as a ‘teacher’ during a neural 
network learning process. Typically, an MLP consists of neurons or nodes or processing elements arranged within an 
input layer, one or more hidden layers and an output layer. The input signal propagates through the network in a 
forward direction, on layer-by-layer basis. Figure 2 shows the architecture of an MLP (Haykin, 1999). 
2. Methodology 
Figure 3 shows schematic diagrams of flow regimes investigated in this work which are the empty flow, full flow, 
stratified, bubble, annular and core flows. The first stage of the work involved collection of ECT raw dataset using an 
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ECT simulator based on the finite element method (Spink, 1996). The simulated data were used because of two reasons. 
Firstly, the actual data of flow regimes are very difficult to obtain since some flow patterns are non-repeatable. 
Secondly, the actual plant data are constantly interrupted by noise and external interference and hence the data collected 
are not accurate. The dataset were obtained based on various geometrical flow patterns to give a variety of patterns for 
each flow regime. Since the number of electrodes used for the ECT sensor was 12, each ECT dataset consists of 66 
capacitance values corresponding to the difference in capacitances between all possible pairs of electrodes (refer to 
equation 1). Table 1 shows the number of readings corresponding to their pairs of electrodes.  
For each flow regime, all of the capacitances values were computed into normalized value before being randomly 
divided into three sets in the ratio of 8:1:1 for training, validation and test, respectively. For this investigation, the 
number of training set, validation set and testing set were 1140, 142 and 142, respectively.  The training set was used 
for computing the gradient and updating the network weights and biases during ANN learning. The validation set was 
used to stop the training process. The testing set was used to verify the network’s generalization performance.  
The second stage is data analysis. As already mentioned, the ideal normalized capacitance values are within 0 and 1. 
This stage is performed to determine the differences in normalized capacitance values between the conventional and 
improved normalization in terms of how much their overshoot and undershoot values differ. Normalized capacitance 
values for one pattern from each flow regime, for both normalization methods were plotted on the same graph and their 
differences were calculated and discussed.  
The third stage is an ANN learning or training process. In this stage, MLP were trained with three different kinds of 
back-propagation training algorithms; the Resilient Back-propagation (RP), Quasi-Newton (QN) and the Levenberg 
Marquardt (LM). These training algorithms are the most commonly used training algorithms for classification using 
MLP neural networks. The number of inputs used in an MLP was 66 (corresponding to 66 normalized values) and 
outputs was 6 (corresponding to 6 flow regimes to classify). The output class representations are as listed in Table 2.  
The number of hidden neurons was determined using the network growing approach by adding one neuron at a time to 
the hidden layer.  
Suitable activation functions must be applied to the MLP hidden and output neurons. The logistic sigmoid activation 
function is the most commonly used activation function for back-propagation algorithm because it is differentiable 
(Demuth and Beale, 1998). Due to this fact, the activation function had been applied to hidden neurons during training. 
Since the output neurons could result in either 0 or 1, the activation function applied to these neurons was the logistic 
sigmoid.  
To ensure that the MLP was not stuck at a local minimum, 30 runs were made for each number of hidden neurons.  
Each training process stopped when there was no improvement in the validation error after 5 consecutive training 
iterations.  At completion, the MLP weights and biases at the minimum of the validation error were saved. 
The last step was MLP performance assessment. This stage was carried out to investigate the performance of the MLPs 
based on the percentage of correct classification (CCP) of test data to determine the best normalization method. The 
CCP is calculated using,  

                                       (4) 

3. Results and Discussion 
The results on data analysis of the normalized ECT data and the performances of the MLPs trained with the 
conventional and improved normalized data are discussed in the following subsections. 
3.1 Data Analysis 
Figures 4(a) to 4(d) show plots of capacitance values for a variety of flow pattern examples normalized based on the 
improved and conventional normalization equations.  The number of reading (i.e. x-axis) corresponds to the electrode 
pairs as listed in Table 1. Table 3 shows the results of total shooting for the capacitance values based on the improved 
and conventional normalization equations. The table shows that the total undershooting for stratified flow normalized 
using the improved equation is higher than that  normalized using the conventional normalization equation. On the 
other hand, its capacitance overshoot is higher when normalized using the conventional equation compared to the 
improved normalization.  For bubble pattern, the overshoot value for both improved and conventional normalization 
methods is 0.  However, the conventional normalization gives a slightly higher overshoot capacitance value of about 
0.4%.  The core example pattern gives 0 overshoot for both normalization methods, whilst the undershoot is higher 
when the improved normalization equation is used.  The annular flow pattern for both, the improved and conventional 
normalization equations give 0 undershoot, whilst the conventional equation produces an undershoot value of about 0.2% 
higher than the improved equation. From the table, it shows that the improved normalization equation results in 38% 
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lower total overshoot value than the conventional normalization.  However, the improved normalization equation 
results in 74% higher total undershoot value than the conventional normalization equation. Overall, the data analysis 
results have shown that the conventional normalization method has led to less total shooting compared to the improved 
normalization method.  
3.2 Flow Regime Recognition 
Figures 5, 6 and 7 shows the CCP plots of MLPs trained with the RP, QN and LM algorithms based on the improved 
and conventional normalization methods, respectively. From Figure 5, it is obvious that the MLP trained with the 
conventional normalized data produces higher CCP than the MLP trained with the improved normalized data. Also, it 
can be seen that the MLP trained with the improved normalized data give rather unstable CCP at different numbers of 
hidden neurons. Comparing the plots in Figure 6, it can be seen that the MLP trained with the conventional normalized 
data outperformed the MLP trained with the improved normalized data at 3 and more hidden neurons. The 
performances of the MLPs trained using the LM algorithm (see Figure 7) for both improved and conventional 
normalized data seems less competitive. However, it can be seen that the MLP trained with the improved normalized 
data is rather unstable in its CCP values for different numbers of hidden neurons.  Although both MLPs produce the 
same maximum CCP, the MLP trained with the conventional normalized data reaches the maximum CCP earlier (at 6 
hidden neurons) that the MLP trained with the improved normalized data.   
Table 4 shows the comparison in the maximum performance of the MLPs trained with the improved and the 
conventional normalized data using various training algorithms as investigated.  In the table, HN is the abbreviation 
for the number of hidden neurons. For the RP algorithm, the conventional normalization is better than the improved 
normalization in terms of the maximum CCP value.  Also, its number of hidden neurons is less than the MLP trained 
with the improved normalized data. For the QN algorithm, the conventional normalization obtains its highest CCP at 
98.6% with 11 hidden neurons whilst the improved normalization obtains its highest CCP at 96.5% with less number of 
hidden neurons. However, since the main concern for an MLP performance is the CCP value, it can be concluded that 
the conventional normalization is better than improved normalization. For the LM algorithm, even though both 
normalization methods obtain the same value of highest CCP with 99.3%, the conventional normalization has achieved 
its highest CCP with less number of hidden neurons compared to the improved normalization.  Consequently, the 
conventional normalization method is better in terms of the number of hidden neurons, which results in smaller 
structure of the MLP. Thus, the network execution becomes faster.   
The overall results demonstrate that it is better to use the conventional normalization for ECT data compared to the 
improved normalization method. However, it does not mean that the improved normalization method is of no value for 
other application.  It has to be born in mind that this work focuses on flow regime recognition application.  Perhaps, 
the improved ECT data normalization method might be of better used for other applications, such as image 
reconstruction. 
4. Conclusion 
An investigation had been carried out to determine the best normalization equation for ECT data for the task of flow 
regime recognition.  For all the three training algorithms investigated, the results proved that the conventional equation 
was a better normalization equation for ECT data in the quest to train MLP neural networks.   
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Table 2. Output class representation for each flow regime 

Flow regime Target output 
Full 1 0 0 0 0 0  
Stratified 0 1 0 0 0 0 
Bubble 0 0 1 0 0 0  
Core  0 0 0 1 0 0  
Annular  0 0 0 0 1 0 
Empty  0 0 0 0 0 1 
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Table 3. Undershoot and overshoot values based on the improved and conventional normalization equations for 
examples of flow patterns  

Flow regime
Improved Normalization Conventional normalization 

Total undershoots Total overshoots Total undershoots Total overshoots
Stratified 4.937 1.334 1.561 3.932 
Bubble 0.000 3.760 0.000 4.179 
Core 4.051 0.000 1.717 0.000 
Annular 0.000 0.150 0.000 0.349 
Total shooting 14.233 11.738 

Table 4. A comparison of the MLP flow regime recognition performances based on different training algorithms for 
improved and conventional normalization methods  

Figure 1. MLP supervised learning structure 

 Improved 
Normalization

Conventional 
Normalization

RP CCP (%) 97.9 99.3 
HN 38 3 

QN CCP (%) 96.5 98.6 
HN 6 11 

LM CCP (%) 99.3 99.3 
HN 7 6 
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 (a) Example of stratified flow               (b) Example of bubble flow 

(c) Example of annular flow              (d) Example of core flow 

Figure 4. Plots for capacitance values based on improved and conventional normalization method for examples 
of (a) stratified, (b) bubble, (c) annular and (d) core, flows 

Figure 5. CCP of MLP trained with RP algorithm based on (a) improved and (b) conventional normalization methods 
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Figure 6. CCP of MLP trained with QN algorithm based on (a) improved and (b) conventional normalization methods 

Figure 7. CCP of MLP trained with LM algorithm based on (a) improved and (b) conventional normalization methods 




