
www.ccsenet.org/mas                     Modern Applied Science                   Vol. 5, No. 1; February 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 186

Topological Optimization of Dynamic Characteristics for Orthotropic 
Material Structure Using Shape Derivative and Augmented 

Lagrangian Method  

Sen Liang  

School of Mechanical Engineering, Qingdao Technological University 

Shandong Province, Qingdao 266033, China 

 Tel: 86-532-8507-1299   E-mail: liangsen98@mailst.xjtu.edu.cn 

 

Lei Liang 

Department of Mechanical and Electronical Engineering, Baoji University of Arts and Sciences  

Shanxi Province, Baoji 721007, China 

Tel: 86-917-336-4295   E-mail: lpqdf@yahoo.com.cn 

 
The research is financed by the Natural Science Foundation of Shandong Province, People’s Republic of China 
(Z2007F04) 

 

Abstract 

This paper presents a new level set method for topology optimization of dynamic structure of orthotropic 
materials using the shape derivative analysis and augmented Lagrangian method. The design boundary of the 
structure is embedded implicitly into the zero level set of a higher dimensional scalar function, which is 
mathematically represented as a Hamilton-Jacobi partial differential equation (PDE). The design sensitivity of 
the dynamic structure is obtained by the combination of the level set representation and the shape derivative 
method. In doing so, the evolution of the design boundary is advanced iteratively in terms of the solutions of the 
Hamilton-Jacobi PDE using explicit time marching schemes. Some typical numerical examples are applied to 
demonstrate the validity of the present method. 

Keywords: Augmented Lagrangian, Dynamic structure, Topology optimization, Level-set method, Orthotropic 
material 

1. Introduction  

Structural optimization, in particular the shape and topology optimization, has been identified as one of the most 
challenging tasks in structural design. By combining the finite element method with various optimization 
algorithms, investigation has made a considerable progress in the structural design engineering during the last 
few decades. The optimization method has been widely received by automotive, aerospace, nuclear and other 
high-tech industries, which is used to satisfy the design requirements for maximum performance, minimum 
weight, cost efficiency, and environmental consideration. Various techniques and approaches including ground 
structure method (Prager 1974,  Rozvany 1979, Hagishita and Ohsaki 2009), homogenization method (Bendsøe 
and Kikuchi 1988), solid isotropic material with penalization (Zhou and Rozvany 1991, Mlejnek 1992, Bendsøe 
and Sigmund 1999) and level-set method (Wang etc. 2003, Allaire etc. 2004) have been developed. Other 
methods, such as the current flexible building block method (Kim etc. 2006) , the unit cell approach (Wang 
2004), the radial-basis-function (RBF) level-set method (Wang 2006) can be considered nearly as evolutions of 
the approaches mentioned above, thus they will not be discussed here. The essential idea of all these methods is 
to transform the design problem into an optimal material distribution problem so that the configuration designed 
can be measured quantitatively by an objective function. Also, there are some differences among these 
approaches in their representations and modeling schemes.  

It is not easy to design a mechanical structure with the desired natural frequency and mode shape. As for 
parametric structural optimization problems, many methods were presented for sensitivity analysis of the 
dynamic structures, such as these reported by Fox and Kapoor 1968, Nelson 1976, Seyranian etc.1994 and Luo 
etc.2006 etc. For non-parametric structural optimization problems, a technique for topology optimization of 
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linear elastic continua based on homogenization theory was investigated by Bendsøe & Kikuchi 1988, and it has 
been applied to topology optimization problems of the dynamic structures by Diaz and Kikuchi 1992 and Tenek 
and Hagiwara 1994 etc. By employing this technique, the material distribution was formulated with parameters 
of periodic microstructure. Another few papers explored the nonparametric boundary optimization problems of 
linear elastic continuum. Based on the gradient method in a Hilbert space, Inzarulfaisham & Azegami 2004 and 
Meske etc. 2006 proposed a numerical method called the traction method and they applied it to maximum 
lower-order natural frequencies under a volume constraint. Later, Seonho etc. 2006 developed a topological 
shape optimization method which was applied to power flow problems at high frequencies and the necessary 
design gradients were computed by using an efficient adjoint sensitivity analysis method. Allaire and Jouve 2005 
applied the level-set method to the shape and topology optimization, and they maximized the first 
eigenfrequency under the specified weight constraint in the three-dimensional space. 

This paper explores the feasibility employing level set method to optimize an orthotropic material structure. The 
augmented Lagrangian multiplier with inequality constraint is extended into the topology optimization of the 
design structure. By the combination of the shape derivative, level set and augmented Lagrangian multiplier 
method, the sensitivity of the maximum lower order natural frequency is investigated theoretically. The 
optimization boundary of orthotropic material structure is embedded implicitly into the zero level set of a higher 
dimensional scalar function, which is mathematically represented as a Hamilton-Jacobi type partial differential 
equation (PDE). The movements of the design boundary are advanced iteratively in terms of the solutions of the 
Hamilton-Jacobi PDE using explicit time marching schemes. The 2D numerical examples are employed to 
demonstrate the validity of the current method.  

2. Topological optimization theories 

In order to obtain the dynamic topological structure of an orthotropic material, the key problem is to develop a 
formula of the maximum lower order natural frequency. The constructive relationship is the foundation of stress 
equation and strain equation.  

2.1 Constitutive relationship  

As we know, the constructive relationship of the orthotropic material under the plane stress state is given as 
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Here ijQ  , ij , ij are the elements of stiffness matrix, stress matrix and strain matrix in the local coordinate 

system (or the material coordinate system). From the material coordinate system to the global coordinate system，
the transformation equation of the elastic parameters is 
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Here cosm  , sinn   and   is the angle measured from the global coordinate system to the material 
coordinate system. If the material coordinate system is inconsistent with the global coordinate system, the 
stress-strain relationship in the global coordinate system can be given as follow 
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Here ij , ij  and Q'ij are the elements of stress matrix, strain matrix and stiffness matrix in the global coordinate 
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system.  

Equation (3) is the constructive relationship of 2D orthotropic material. After obtaining the formula of the 
constructive relationship, the sensitivity of the maximum lower order natural frequency will be derived.  

2.2 Augmented Lagrangian method  

It is very difficult to obtain a reasonable optimal result with a fixed Lagrangian multiplier in the structural 
topology optimization. In this paper, the augmented Lagrangian method with slack variables is explored to solve 
the optimization problem with inequality constraints.  

Generally speaking, the augmented Lagrangian method can be classified into equality constraint and inequality 
constraint problems. In the case of equality constraints, the quadratic penalty function is adopted to penalize 
constraint violations by squaring the infeasibility (Chen and Shapiro 2006). For the inequality constraint problem, 
it can be converted into an equality constraint by introducing the slack variables. Let us describe the issue firstly 
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x

mjxgxf j                             (4) 

Here )(xf  is objective function, and 0)( xg j  are inequality constraints. By defining slack variables jr , 
equation (4) can be changed into the following form  
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Let’s define a new function 01  jjj r(x)g(x)g , and the augmented Lagrangian equation with equality  

constraints at the kth iteration can be obtained (Nocedal and Wright 1999). 

2

m...,0,1,jm...,0,1,j

k

x.
))(()()f(), L(Min 



 xg
2η

1
xgλxx, j

1
kj

1
j

kk                    (6) 

Subject to )m...,j(,rj 210                                                              
Differentiating equation (6) with respect to jr  , then 

0

 k

jjj
k

j

/)rg(λ
r

L
η                                                (7) 

The following equation can be 

j
k

j
k

j gηλr                                                           (8) 

Equation (6) is a convex quadratic function with respect to slack variables jr , so the optimal value of the slack  

variables is zero. By considering equations (6) and (8), jr value at kth iteration is expressed as follow 
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Equation (9) solves the problem of slack variables jr . By substituting jr into equation (6), the next issue is an  

optimization problem of equality constraint as follow 
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Equation (10) is an augmented Lagrangian equation with equality constraints. We can apply the iteration formula 
of equality constraints to here, and then we have 
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In this way, the inequality constraint problem can be optimized by the augmented Lagrangian method. For more 
details, readers can refer to Bertsekas 's book published in 1982. In the next section, this method will be applied 
to the topological optimization of maximum lower-order nature frequency. 

2.3 Maximum lower-order natural frequency  

A linear elastic continuum is in an open domain nRΩ  , n=2, 3, with Dirichlet boundary DΓ  as well as 
Neumann boundary NΓ , and 

DN ΓΓΩΓ   

The topological optimization structure of maximum lower-order natural frequency with inequality constraints is 
defined as follow 
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matrix as shown in equation (3). Utilizing the standard and augmented Lagrangian multiplier methods for 
equation (13), we have 
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Here v stands for both the adjoint variable and Lagrangian multiplier. By solving shape derivative of equation (14) 

with respect to t（Sokolowski etc. 1991）, the following formula, according to equation (11), can be obtained 
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Based on equation (12), the formula to update the Lagrange multiplier is  
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As we know, the problem of maximum lower-order natural frequency is a self-adjoint problem（Meske etc. 2006）, 

so vu  . Let us define sensitivity of the objective functional as follows  
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Equation (19) is an evolution speed of the frequency optimization problem. This velocity can make equation (20) 

not more than zero, so the objective function always decreases until 0nV . When 0nV , the shape designed 

is the optimized result. In next section, level-set method will be investigated in detail. 
2.4 Level-set method 

After obtained the evolution velocity of the design boundary, the PDE of Hamilton-Jacobi equation (Osher and 
Sethian 1988 ) will be introduced in this section. 

The level-set method was developed by Osher and Fedkiw 2003 as well as Sethian 1999 to solve the problems 
such as tracking, computer vision, crack propagation in solid material, image processing, boundary evolution 
simulating in fluid mechanics etc. The topology optimization can be expressed as a dynamic evolution process of 
the level-set function varying with pseudo time t. The embedded function allows its surface to move up and 
down on a fixed coordinate system without changing its surface topology structure, and the optimization shape 
embedded in level-set function can automatically modify the topology structure by boundary merging and 
breaking. We can track the topological change of the design structure by checking the level-set surface. This 

process can be completed by solving PDE with the evolution velocity  nV and a set of initial value. The 

Hamilton-Jacobi PDE is generally solved by using the upwind based on the fixed Eulerian grids. Therefore, in 
the following paragraph we can employ the level-set method to capture the optimization structure on a fixed 
mesh. 

Let us define a closed subset )32(d ordRΩ   as the design domain including the whole admissible 

shapes. The closed boundary DΩΓ   which is described by zero level-set is Lipschits continuous. We 

introduce an embedded function )),(( ttx  to denote the different parts of the design domain as shown in Fig. 

1. 
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In the level-set method, the design boundary is embedded implicitly into the zero level-set of a 
higher-dimensional level-set surface. The movement of the higher-dimensional embedded function is governed 
by the Hamilton-Jacobi PDE, the evolution velocity and a set of initial value. The Hamilton-Jacobi equation can 
be given by differentiating equation 0)),(( ttx  with respect to t  
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Here   is the gradient operator. In the three-dimensional space, let us take  
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Here nV and tV  are the normal and tangent components of the velocity V , and nS  & tS are unit vectors in 

the  
normal direction and the tangent direction, respectively. Substituting equation (22) into equation (21), we have 
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Equation (23) demonstrates that only can the normal velocity nV  provide the contribution for the boundary 

evolution. Furthermore, we simplify the second term of equation (23) 
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The Hamilton-Jacobi equation is rewritten as 
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Here   .)( T is a scalar function. 

Now, we have velocity nV to make the objective function decrease. The optimization boundary embedded into 

the level-set function can automatically be updated in the iteration process. In next section, the optimal 
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numerical algorithm will be described in detail. 
2.5 Optimum numerical algorithms 

Once the velocity nV and Hamilton-Jacobi PDE (21) have been obtained, the finite difference method with 

respect to t can be obtained 
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Here nV  is the velocity at time nt , and denotes the gradient operator. For the 3D case, the formula can be 
written as  
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condition. For the 2D case, the CFL condition can be obtained 
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Here    and   are the absolute values of the evolution velocities in x and y directions. x and y  are 

lengths of sides over the entire Cartesian grid.  10  α , the common nearly-optimal value is 9.0 . 
Equation (28) indicates that the numerical waves must be at least as fast as the physical waves. In order to make 
the level-set function regular, we reinitialize it periodically by solving the following equation 

010 
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The accurate and robust numerical method was developed by Osher and Fedkiw 2003. To simplify this paper, 

readers can refer to Osher and Fedkiw's book for more details. 
3. Numerical examples 

In this section, several topological optimization examples of the orthotropic material are explored by employing 
the method presented in this paper. The objective function of the optimization problem is the maximum 
first-order natural frequency. The numerical examples are the cantilever beams of 2D structure whose geometric 
parameters and boundary conditions are shown in Fig. 2. The material parameters are 1E =135 109, 

2E =28.8 
 109, 12G =4.47  109 and 12 =0.33, and mass fraction is no more than 0.4（M0=0.4）. The initial design 
structure and initial value of level-set function are shown in Fig.3 and Fig.4, respectively. The length and width 
of the design domain are 0.1m and 0.05 m, and the thickness is 1 mm. When material directions are 00, 300, 450, 
600 and 900, figures 5, 10, 12, 14, and 16 are some topological optimal results and figures 9, 11, 13, 15 and 17 
are the final level-set surface. When material direction is 00, Figures 6, 7, 8 are volume, augmented Lagrange 
multiplier and the first-order natural frequency variable with iteration number, respectively. If the material 
directions are 00 and 900, the optimization structures are symmetric. When the material directions are 300, 450 
and 600, the optimal results are not symmetric and the result of 300 material direction is the most 
non-symmetrical in the three cases. This result illustrates that the material performance as well as material 
direction can affect the topological optimal result.  

The optimization structures shown in Figures 5, 10, 12, 14, and 16 are basically coinciding with the paper of 
Allaire and Jouve 2005, which proves our method to be very valid. 

4. Conclusions 

The feasibility of employing level set method to optimize an orthotropic material structure is explored 
theoretically. The augmented Lagrangian multiplier with inequality constraints is extended into the topology 
optimization of the design structure. By the combination of level-set, shape derivative and augmented 
Lagrangian method, the sensitivity formulae of the topological optimization of dynamic structure is derived. The 
optimization boundary of the orthotropic material structure is embedded into the zero level-set of a 
higher-dimensional scalar function. The movements of the boundary are iteratively promoted by the solutions of 
PDE. The evolution velocity of moving boundary can be controlled by CFL condition and sensitivity. Examples 
studied are employed to illustrate the validity of the present optimization method. The conclusions indicate this 



www.ccsenet.org/mas                     Modern Applied Science                   Vol. 5, No. 1; February 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 192

investigation will provide an important foundation for the advanced development topology optimization of the 
complex constitutive relationship material. 
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Figure 1. Design domain Ω  and level-set embedded function 

 

Figure 2. The geometric structure and boundary condition 

 

Material direction 
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Figure 3. Initial design structure 

 

Figure 4. Initial value of level-set function  

 

Figure 5. The first-order natural frequency maximization of orthotropic material (00) 
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Figure 6. Volume variable with iteration number (00) 

  

 

Figure 7. Augmented Lagrange multiplier variable with iteration number (00) 
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Figure 8. Fundamental natural frequency variable with iteration number (00) 

 

Figure 9. Final level-set surface (00) 
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Figure 10. The first-order natural frequency maximization of orthotropic material (300) 

 

Figure 11. Final level-set surface (300) 

 

Figure 12. The first-order natural frequency maximization of orthotropic material (450) 
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Figure 13. Final level-set surface (450) 

 

Figure 14. The first-order natural frequency maximization of orthotropic material (600) 

 
Figure 15. Final level-set surface (600) 
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Figure 16. The first-order natural frequency maximization of orthotropic material (900) 

 
Figure 17. Final level-set surface (900) 

 


