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Abstract 

The model is based on Lotka-Volterra dynamics with two competing fish species which are affected not only by 
harvesting but also by the presence of a predator, the third species. The prey populations are taken as equally 
dominating populations so that the coefficients of their interspecific competition are taken equal. The conditions 
of local and global stability of the model and the possibility of bioeconomic equilibrium are derived. Some 
numerical simulations are also done at the end of the paper. The asymptotic stability and global stability 
corresponding to the numerical examples are graphically shown.  
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1. Introduction 

The fishery management system consists of the interaction between the fish species and humans, and not just the 
fish population dynamics. The bioeconomic approach in fishery models combines fish population dynamics and 
the economic components of the fishery system. The bioeconomic models are developed to express and illustrate 
these through harvest activities. The response of fish stock to human activities (i.e. fishing effort, gear selection) 
and the economic consequences of specific harvest strategies can be examined by including the management 
objectives in the models on which management decisions are based. Hanneson (1993) applied the fishery 
bioeconomic model approach to identify economically optimal harvest strategies for the fishery for 
Arcto-Norwegian Cod, a species that exhibits considerable fluctuation in stock size. In recent past numerous 
works on bioeconomic modeling and optimal harvesting of biological resources have been published in leading 
journals. Some fabulous works are done by Clark [1990] on such articles. Later on some works on multispecies 
are done by Chaudhuri (1998), Dai and Tang (1998), Kar and Chaudhuri (2004), Kar (2006). Kar and 
Chattopadhyay (2010) discussed a dynamic reaction model on a multispecies model with stage-structure; Kar et 
al (2009) discussed some special features on multispecies bioeconomic model. Steinshamn (1998) has studied 
the application of bioeconomic approach in fluctuating fish stock. Bioeconomic models mainly aim towards the 
biologically persistence and economic consequences, which have critical importance on ecological system and 
our society. It is quite impossible to consider all natural, social and ecological constraints to formulate a general 
prey-predator model of multispecies and then to analyze the model. The prey and predator are all independent 
and the survival of any one is critically dependent on others. The ecological balance is the basic factor of 
non-extinction of any species from the nature. All commercially valuable fish species fluctuate in abundance, 
which leads to unavoidable changes over time in catches. Variability in catches is one of the most serious 
problems in fishery management. Because the market demand is price sensitive, fluctuating harvests will cause 
fluctuations. This may stabilize or destabilize fishing revenue, depending upon whether price elasticity of 
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demand exceeds in one absolute value. On the other hand, from biological point of view, stability in fish 
abundance is desirable as it reduces the danger of extinction.  

In this paper two prey species are considered whose dominance on each other is equal. The presence of a 
predator is also considered. The prey species are harvested only to meet a fixed demand in such a way that the 
some fraction of total biomass needed is received from one species and other part of total biomass needed is 
received from other prey species. The harvesting of predator species is not considered. We will consider the 
bioeconomic analysis of the model together with some other features. For references, bioeconomic exploitation 
of both the species in a Lotka-Volterra prey predator system was discussed by Chaudhuri and Saha Ray (1991), 
Krishna et al (1998) discussed the conservation of an exploited ecosystem with optimal taxation on harvesting, 
and Pradhan and Chaudhuri (1999) developed a two species model with taxation as a control instrument. The 
organization of the paper is as follows.                                                    

Formulation of the problem is given in section-2, existence of different steady state solutions is discussed in 
section-3, local stability analysis is analyzed in section-4 and the global stability is discussed in section-5. The 
bioeconomic equilibrium is found in section-6, some numerical examples are given in section-8. The paper is 
concluded with a brief conclusion in section-9.  

2. Formulation of the model  

The prey-predator fishery model is as follows. There are two fish populations which compete with each other for 
the use of a common resources and their dominance on each other is equal i.e. the interspecific competition 
between them are of equal strength. Both of these prey species are subjected to a constant harvesting in such a 
way that the total harvested mass is constant to meet a constant demand. There is predator (as for example a 
whale) feeding on both of the competing species. It is considered that the predator species is prohibited to 
harvest. In this model the logistic growth function for both the prey species (that is, the population density of 
each prey is resources limited) and the feeding rate of the predator species is assumed to increase linearly with 
each prey density.    

The equations that govern the model are, 

dt

dx
= )2/()/1([ 111   Eqzykxx                            (2.1)   

              )2/()/1([ 222   Eqzxkyy
dt

dy
                          (2.2) 

              ][ 21 zyxz
dt

dz
                                                  (2.3)  

Where 21212121 ,,,,,,,,,,,  Eqqkk  are all positive constant. Particularly 21, are biotic 

potentials; 21 , kk are environmental carrying capacities of the two prey species;   is the coefficient of 

interspecific competition;  , are the predation rate constants; 21 ,  are digesting factors; 21 , qq are 

catchability coefficients of x and y- species respectively; E is the total required biomass and   is a positive 

constant whose variation indicates the variation in the harvested biomass of each species separately but the total 
harvested biomass remains  E.  
3. Equilibrium analysis 

The steady state solutions are the solutions of the equations,  

    )2/()/1([ 111   Eqzykxx ] =0                          (3.1) 

      )2/()/1([ 222   Eqzxkyy ] =0                          (3 2) 

          ][ 21 zyxz    =0                          (3.3)        

 

Solving these equations of biological equilibrium we get seven points of equilibria 0P , 1P , 2P , 3P , 4P , 5P , 6P  

and the conditions of their existence. They are all listed in the following table. 
< Table 1> 

We now write the values of a, b, yx ~,~ ,
*** ,, zyx .                                     
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We see that if  
2

2)
2

(
q

E    then 1P , 2P exist and if  
1

1)
2

(
q

E    then 3P , 4P exist. That is if the 

harvesting effort to the species is less than its biotechnical productivity (BTP) then 1P , 2P , 3P , 4P  exist. 

4. Local stability analysis 

Now we consider the local stability analysis by variational principle. The variational matrix of the system at any 
point P is written as        
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Now we analyze the local stability at the points of equilibria in terms of the community matrix evaluated at these 
points. 
Here,  
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whose eigenvalues are  01
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Routh-Hurwitz rule we ascertain that  0P  is an unstable node. 
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where )0,,0( 1y are the co-ordinates of 1P  as given in Table1. The eigenvalues of this matrix are  
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If   1P exists then 01
1  , 02

1   and 03
1   . Thus 1P  is also an unstable equilibrium. 
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where (0, ), 22 zy  are the co-ordinates of 2P . The characteristic equation of )( 2PV is 
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Therefore one of the eigenvalues is  
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Under the assumption that 3P exists in 
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Under the condition of existence of 4P  we see that 
1
4 > 0,  

2
4  < 0 and so  4P  is an unstable 

equilibrium.  
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Using Routh-Hurwitz criteria it can be shown that ),,( ***
6 zyxP  is asymptotically stable if, (i)
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We observe that among the equilibria only three points 632 ,, PPP may be asymptotically stable with some 

restrictions. Of which, the stability at 32 , PP  depends on the value of the demand related harvesting variation 

( )  of prey species, but interestingly the stability of the interior equilibrium 6P  does not depend on . 

Thus the persistence of prey species is not affected by the variation of respective harvesting coefficients 
provided the total biomass harvested remains fixed. 
5. Global stability 

For examination of global stability of the interior equilibrium we consider a suitable Lyapunov function  

 )/ln()()/ln()()/ln()(),,( ********* zzzzzyyyyyxxxxxzyxv  .  

So the time derivative of v is given by, 
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Along the steady state solutions of the model, after some little mathematical calculation we get, 
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Therefore 0
dt
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 if A is positive definite. Now the principal minors of A are
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 and  121  . Thus we arrive at the following theorem. 

Theorem 5.1 The sufficient conditions that the interior equilibrium ),,( ***
6 zyxP  is globally 

asymptotically are that  2

21

21 


kk
 and 121  .  

6. Bioeconomic Equilibrium  

The concept of bioeconomic equilibrium is a combined concept of biological equilibrium as well as economic 
equilibrium. The equations of biological equilibrium are 0x , 0y , 0z . The economic equilibrium 
happens when TR (the total revenue obtained by selling the harvested biomass) equals TC (the total cost for the 
effort devoted to harvest). 

Let,                  c  constant fishing cost per unit effort,                                                

                     1p constant price per unit biomass of first species, 

                     2p  constant price per unit biomass of second species. 

The net revenue at any time is given by,                                                               

 ),,,(  zyx TR-TC = cE
E

qpx
E

qp  )
2

()
2

( 2211  .                   (6.1)    

Now the equations of biological equilibrium are        
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Hence the equations of non-trivial biological equilibrium are, 
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The bioeconomic equilibrium ),,(  zyxR  is the point at which the line in (6.2) meets the plane 

),,,(  zyx 0, in the first octant. Therefore unique interior bioeconomic equilibrium exists if all four minors 
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are all positive or all negative. 

Thus we see that though the stability local / global of an interior equilibrium does depend on , interior 

bioeconomic equilibrium depends on . 

7. Numerical simulation  

For numerical analysis we take the following set of values of parameters. 

  1 =2.09, 1k =200,  =0.001,   =0.01 1q =0.04, E =10,  =0.5, 2 =2.07,  2k =300,  

 =0.02, 2q =0.01, 1 =1,  2 =1,  1p =2, 2p =3, c =50. 

In this example the steady state solutions are )0,0,0(0P , )0,029.292,0(1P , )520.5,027.276,0(2P , 

)0,0,775.181(3P , )0,0,775.182(4P , )0,274.269,007.157(5P , )54416.6,9593.250,4975.152(6P .  

The variation of the three species with time is given in the figure 1. 

<Figure1> 

For this set of values of parameters the system is stable at the interior equilibrium
)54416.6,9593.250,4975.152(6P . This is best described in figure 2. 

< Figure 2> 
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< Figure 3>       

We see that the model in terms of global stability at interior equilibrium is not sensible to   while the 

existence of bioeconomic equilibrium depends on . 

For the above example in which 5.0  the bioeconomic equilibrium is attained at the point R (1361.4190, 

59.9343, 14.8128). If we take  9.0  instead of 5.0 then the bioeconomic equilibrium point is shifted 

to R (1478.4606, 85.1125, 16.4869). 
Concluding remarks 

In this paper, we aimed at the discussion of the effects of harvesting in a two prey species equally competitive 
system in presence of a predator species. We have studied the existence and local/global stability of the possible 
steady states. We then discussed the existence of bioeconomic equilibrium of the exploited system. We have 
considered the prey species as equally dominating each other in terms of interspecific competition. 

Keeping total biomass to be harvested fixed and demand oriented harvesting variation of prey species we derive 
all the results. At last, some numerical examples are considered to examine our theoretical results. We used 
Matlab to get numerical results. We observed that global stability of the model does not depend on the variation 
coefficient   , while the bioeconomic equilibrium does.  
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Figure 1. Solution curve 

 

Figure 2. Phase diagram with 5.0  
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Figure 3. Phase diagram with 9.0 . 

 

 

 

 

 

  


