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Abstract 
Hadoop is a cloud computing open source system, used in large-scale data processing. It became the basic 
computing platforms for many internet companies. With Hadoop platform users can develop the cloud 
computing application and then submit the task to the platform. Hadoop has a strong fault tolerance, and can 
easily increase the number of cluster nodes, using linear expansion of the cluster size, so that clusters can process 
larger datasets. However Hadoop has some shortcomings, especially in the actual use of the process of exposure 
to the MapReduce scheduler, which calls for more researches on Hadoop scheduling algorithms. 
This survey provides an overview of the default Hadoop scheduler algorithms and the problem they have. It also 
compare between five Hadoop framework scheduling algorithms in term of the default scheduler algorithm to be 
enhanced, the proposed scheduler algorithm, type of cluster applied either heterogeneous or homogeneous, 
methodology, and clusters classification based on performance evaluation. Finally, a new algorithm based on 
capacity scheduling and use of perspective resource utilization to enhance Hadoop scheduling is proposed. 
Keywords: Hadoop scheduling, capacity scheduler, fair scheduler, FIFO scheduler 
1. Introduction 
The past decade has witnessed a rapid development of cluster computing platforms, due to the increased data 
sizes, known as big data, which require more scalable applications. Big data, cannot be handled using traditional 
database and software technologies due to its size, speed, and variety. For example, Google reported to process 
more than 20G of data per day, and Facebook reported that it handles between 15-20 terabytes of compressed 
data each day. This amount of data certainly cannot be handled by a single computer. It is also not feasible nor 
cost effective to handle big data with a single super high performance PC. Therefore, many models are designed 
to efficiently handle big data in parallel with business computer sets. For instance, the open-source Apache 
Hadoop has emerged as a de facto platform to handle large-scale, semi-structured and unstructured data 
(Brahmwar et al., 2016) (Al-Sayyed et al., 2017).  
Hadoop is a reliable and scalable tool for distributed computing, data storage and processing. It is an open source 
program for writing and implementing applications in a group. Hadoop and Hadoop are sources accessible to 
Mapreduce and Google's file system. Hadoop was originally implemented in Java (Hamad, & Alawamrah, 
2018). Applications in Hadoop can be written in different programming languages. When programmers write 
applications using the map and reduce functionality, the Hadoop framework automatically performs these 
functions in parallel. Hadoop was first created by Doug Kuting in 2004 and was developed primarily by Yahoo. 
Its streaming utility allows the user to create and run functions using any executable map and reduction functions. 
Apache Hadoop System is a Mapreduce project that was developed in Java by the Apache Foundation. As 
Hadoop is published under the Apache license, the Hadoop source code is available for public download. 
Hadoop is deployed in Yahoo servers, where hundreds of terabytes of data are created on at least 10,000 cores. 
Facebook makes use of Hadoop packages to handle more than 20 terabytes of new data per day. Other web 
giants such as Amazon employ ad hoc groups to manage massive amounts of data on a daily basis (Guo et al, 
2015) (Hudaib, et al., 2016).  
The Hadoop system contains two basic components. The first component is a distributed file system called 
HEDFES; and the second is the Mapreduce programming framework for processing large data sets. The 
implementation of Hadoop MapRedus is designed for large groups, and targets distributed file system (i.e. 
HDFs), In most Hadoop functions, HDFs is used to store both inputs from the map and output tasks by 
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minimizing tasks (Zaharia et al, 2010). 
Hadoop has two layers; on top, a Mapreduce engine that contains tracker function and tracker functions; and the 
bottom, HDFs, contains NAMnode and Datanodes. Each node can act as master or slave in relation to both 
Hodges and Mapreduce. The default Hadoop messages are shown in figure 1. 

  
Figure 1. Hadoop typical scheduling massages 

 
Hadoop has its own file system known as HDVs. HDF provides high productivity access to the application and is 
designed to store large files with the flow of the data access pattern and run on cluster devices. Monitor 
constantly monitors the server to ensure data availability. The HDVs are designed to predict failures in the 
commodity machinery groups in order to tolerate and compensate for all those failures. The main benefit of 
HDFs is that the software itself deals with hardware issues, freeing users of having to worry about system 
failure. 
1.1 Characteristics of Hadoop  
The main characteristics of Hadoop are:  

Accessibility and Cost Effectiveness: it is the best approach for solving big data set problems isong a range 
of commodity machines. It has been used as a cloud computing service, for example. Amazon Web 
Services (OS) (Al-Sayyed et al., 2017). 
Scalability: Hadoop is a highly scalable model that can be used as a classroom research tool in colleges, or 
as a terabyte of data storage and analysis as in Yahoo, Facebook or Amazon. If more capacity is needed, it 
can be added as required (Reddy, et al, 2011). 
General Purpose: Hadoop is a powerful and easy tool for programming. Even new or non-programmers 
can write and execute parallel code in a simple way (White, 2012). 
Low barrier entry: Hadoop does not need any schema or database in the front. All users are able to easily 
download and use raw data. 

However, Hadoob has many issues and challenges associated with the scheduler research and management in 
cluster computing frameworks for large-scale data processing. For instance, Clauser's distinctive computing 
platforms, such as Haddob, were deliberately designed to improve liberal liberalism or a range of large functions. 
(Rasooli, & Down, 2011). Moreover, cluster computing platforms serve diverse workloads of deferred and 
deferred sources. These workloads usually have important considerations in the underlying performance. For 
example, interactive applications that require good response times while making a period or deadlines are more 
important for periodic batch jobs. There is no single resource management schema or scheduling applications 
that are optimized for all performance metrics (Bhosale & Gadekar, 2014). The original Vivo scheduling policy 
is designed by Hadoop Mapreduce to make a better payment. However, the response time of short functions is 
sacrificed when applications are introduced behind long intervals. Scheduling such as fair and resource sharing 
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capabilities is designed between users and applications that support equity and provide better performance for 
short applications. However, they are not optimal in terms of response times for work or productivity (Yong, 
Garegrat, & Mohan, 2009) (Hamad, & Adwan, 2018). 
Dependency between tasks is another issue with Hadoop. While large functions are broken in small tasks for 
parallel performance, there are usually dependencies between functions in most cluster computing applications. 
In the Hadrid Mapredus platform, task reduction depends on the map functions of the same function since 
performing task reductions based on the average data produced by map tasks. The data transfer process is called 
in the Mapreduce mix. In the traditional definition of task dependency, when the task depends on others, the start 
time cannot be earlier than the completion of any of its subordinate tasks. However, in the Iron Mapreduce 
platform, the reduction of tasks actually begins earlier (He et al, 201). The reason is that the dribbling process is 
one with reducing tasks under the center, such that starting to reduce tasks earlier can help improve performance 
by interfering with Xu progress with the progress of the map, i.e. keeping the intermediate data produced by the 
map tasks done while other map tasks are still running or waiting. In other frameworks, there may be more 
complex dependencies between tasks in each job. Types of deferred tasks for cluster computing applications are 
typically resource-driven. For example, in the Mapreduce framework, each application has two main phases, the 
map and the minimization (DeWitt, & Stonebraker, 2008). 
There can be multiple independent tasks that perform the same functions at each stage, i.e. mapping tasks and 
reducing tasks. These two types of tasks are often quite different resource requirements. The mapping tasks are 
typically intensive for the CPU while reducing intensive I/O tasks, especially when the middleware map 
designers are brought in. System resources can be efficiently used if maps and task reduction work concurrently 
on a worker's contract. To ensure the best use of resources, the first generation aims to distinguish the important 
tasks of the map/reduce tasks by configuring a different map/reducing slots on each node (Rao, & Reddy, 2012). 
The concept of time interval is to extract node capacity where each map/time interval accommodates at least one 
map/reduces task at any given time (Al Khattab, Aet al, 2015). By setting the number of map /reducing slots on 
each node, the Hadoop platform controls the synchronization of different types of tasks in the cluster to achieve 
better performance. The second-generation system of Hadoop-Yarn adopts the management of granular resources 
where each task needs to explicitly define its demands on different types of resources, i.e. CPU and memory. The 
resource manager therefore benefits from heterogeneous resource requirements and uses the resources of the 
group more accurately and efficiently (Kc and Anyanwu, 2010). 
Moreover, many current resource management schemes cannot fully benefit from group resources. For example, 
a Twitter production group managed by Missus reported that the total CPU utilization is less than 20% and 
Google system reported a combined CPU usage of 25-35%. One of the main reasons for this is that existing 
resource management schemes always maintain a fixed amount of resources for each task as requested by their 
resources. However, note that the tasks of different data processing frameworks and applications can have 
different patterns to use resources. For example, many tasks of cluster computing applications consist of multiple 
internal phases and have relatively long execution times. These tasks usually have a variety of resource 
requirements during execution. As discussed above, minimizing tasks in the framework of MapRedus is usually 
less CPU usage at the shuffle stage, i.e. fetching intermediate data, when waiting for map tasks to generate 
outputs (Hudaib, & Fakhouri, 2016).  
Another example is Spark's tasks. When deployed on the Yarn system, Spark's mission is to host multiple 
user-defined stages that also require different types and amounts of resources. Moreover, when Spark tasks serve 
an interactive function, the use of resources from these tasks can often change, for example, being completely 
idle during the user's thinking time, and become busy and requesting more resources. Similarly, frames that 
handle data flow may maintain a large number of functions alive and wait for input. Therefore, resource 
requirements must change over time when new incoming data arrive, which unfortunately cannot be predicted. 
Although short tasks dominate many cluster computing clusters, the long-term effects of long-term tasks on the 
use of system resources are negligible given their high resource demands and the long occupation of resources. 
In such cases, the allocation of resources during the lifetime of the task becomes ineffective to take full 
advantage of system resources (Chen et al., 2010). 
The default scheduler assumes that the cluster environment is designed to be homogeneous so that all nodes in 
the cluster have the same computation and configuration capacity. However, the real world applications work in 
a heterogeneous environment. Accordingly, the overall performance of the Hadoop fails if it continues to use the 
default schedule policy in a heterogeneous environment. Moreover, some tasks take longer time to perform 
compared to other tasks on the same node. Such tasks are called stragglers. These are responsible for lengthening 
task execution time. To solve this issue, Hadoop Mapreduce run the backup task of the slow task on another node 
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that has a faster account in order to prevent slow tasks of lengthening the overall execution time of work.  
2. Overview of Default Hadoop Scheduler Algorithms  
2.1 FAIR Scheduler 
Scheduling in Hadoop organizes functions in categories, including shared resources. Each pool is allocated a 
guaranteed minimum share, ensuring that certain users or applications always have adequate resources. Fair 
sharing also works with work priorities, which are used as weights to determine the part of the total time 
allocated to each post. The fair scheduling determines the resources for posts so that all posts, on average, 
consume an equal share of resources. For example, if queue1 gets 80% of clusters and queue2 gets 20% of 
clusters, then a high priority task goes to queue1 (Zaharia, 2009). 
The Gallery Scheduler allows all functions to be run by a default or specified configuration file, limiting the 
number of jobs per user and per pool. This configuration file is very useful in two specific situations. First, the 
user tries to provide hundreds of jobs at once. Second, many functions simultaneously run cause high context 
switching overhead and a huge amount of intermediate data. Reducing the number of jobs running, of course, 
does not cause any later functionality provided for failure. However, you must wait for the newly arrived jobs in 
the Scheduler queue until some of the running functions are finished (Usha, & Jenil, 2014). 
2.2 Capacity Scheduler 
Capacity Scheduler is developed by Yahoo for a large collection of resource sharing. The functions are organized 
and placed in multiple queues, each of which is secured to reach a fraction of the mass capacity (i.e. number of 
task slots). All posts submitted to a particular queue guaranteed resources for this queue. If tasks of functions in 
queues have extra capacity it kills tasks. Free resources can be allocated to any queue beyond its capacity. When 
there is a demand for resources from queues operating under capacity at a later time (e.g. scheduled tasks on full 
resources), resources will be allocated to posts on queues operating under capacity. If inactive queues start to get 
work requests, their lost capacity will be rolled back. 
Queues can also support priorities for posts that are disabled by default. In the queue, high priority jobs have 
access to queue resources before getting jobs with lower priority. However, once a function is run regardless of 
its priorities, task will not be pre-empted by any higher priority function. However, the new tasks of the highest 
priority function will be predefined in the queue. To prevent one or more users from monopolizing resources, 
each row assigns a percentage of the resources allocated to a user at any given time, if all users are using 
resources (Ghemawat, , Gobioff, & Leung, 2003). . 
Whenever TaskTracker is a free, scheduling capabilities select queue with most free resources. Once the queue is 
selected, a scheduler selects a task in the queue according to the priority of the task. This scheduling mechanism 
ensures that there is enough free memory in TaskStaker to run the task in case the task has significant memory 
requirements. In this way, resource requirements can always be met immediately (Dean, & Ghemawat, 2010).  
2.2.1 I Capacity Scheduler 
Icapacity scheduling puts jobs into varied queues in accordance with the conditions, and allocates certain system 
capability for each queue. If a queue has serious load, it seeks unallocated resources, then makes redundant 
resources assigned equally to each job. It re-allocates the resources for empty queue to queues exploitation for 
maximizing resource. Once jobs arrive therein queue, running tasks square measure completed and resources 
square measure given back to main queue. It conjointly permits priority based totally programming of jobs in 
associate organization queue. To use icapacity dynamic scheduler, the subsequent property has to be set in 
yarnsite.xml like below: yarn. resourcemanager. schedular.class 
org.apache.hadoop.yarn.server.resourcemanager.sche dular.capacity.CapacitySchedular. 
2.3 Hadoop Scheduling Algorithm Framework  
Five scheduling algorithms have been selected in order compare between Hadoop scheduling algorithms 
framework in term of the proposed scheduler algorithm, the default scheduler algorithm that has been enhanced, 
the type of cluster applied; either heterogeneous or homogeneous, methodology, and clusters classification based 
on performance evaluation. See table 1. Five selected schedulers will be briefly discussed.  
2.3.1 Tolhit – A Scheduling Algorithm for Hadoop Cluster (2016) 
Tolhit uses the usage of resources and network information from cluster nodes to find the optimal node for 
scheduling a speculative version of a slow task. The performance of the proposed scheme has been evaluated 
through a series of experiments (Brahmwar, Kumar, & Sikka, 2016). 
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The name "Tolhit" comes from the algorithm ability to use more accurate phase weights to provide an estimation 
to the operation of tasks. Resources from cluster nodes such as Ram & Disk usage is also maintained and 
updated periodically in resource info. Parameter for Disk usage by the node is calculated by looking only at input 
and output requests from the running tasks on that node (Brahmwar, Kumar, & Sikka, 2016). 
The proposed algorithm maintains history information of the date when each node is present in the cluster. Each 
record contains historical information about any map (M1 and M2) and reduces phase weights (R1, R2, and R3). 
Tolhit assumes the implementation of the map function Weight as M1 and then reorder the medium weight of the 
result as M2 of the map task. R1, R2, R3 stand for the copy, sort and reduce phase weights from task 
minimization. The date information stored on each node is sorted using genetic (13) to any of the clusters. If the 
ongoing work satisfies the extant (threshold for the task map Detection) on a data node, then the algorithm 
assigns a temporary task to the phase weight map (M1). The map phase weight is used as a search parameter to 
determine the block with the nearest map phase weight (M1) between (K) in historical information (Brahmwar, 
Kumar, & Sikka, 2016). 

 
Figure 2. Tolhit algorithm flow chart 

 
2.3.2 COSHH  
The scheduling system, named COSHH, is considered heterogeneous for both application and mass levels. The 
goal of COSHH is to improve the average time of completion of employment. The high-level architecture of 
COSHH is displayed in the Figure.3 while COSHH Queuing Process are displayed in figure 4 (Rasooli, & Down, 
2014). 

 

Figure 3. The high-level architecture of COSHH. 
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Figure 4. COSHH Queuing Process 
 
The Hadoop Model Scheduling receives two key messages From the Hadoop system: A m`essage refers to a new 
job Access from user, heartbeat message from free Resources. Therefore, COSHH consists of two main 
supporters, Sys, where each process is run by receiving one of the messages. When you receive a new 
functionality, schedule lead the queue process to store the incoming function in Suitable queue. When receiving 
heartbeat mes-SAGA, scheduling causes the routing process to be set Function to the current free resource. 
2.3.3 An Adaptive Scheduling Algorithm for Dynamic Heterogeneous Hadoop Systems 
Rasooli &. Down, (2011) designed a scheduling algorithm which classifies the jobs based on their requirements 
and finds an appropriate matching of resources and jobs in the system. The algorithm is completely adaptable to 
any variation in the system parameters. The classification part detects changes and adapts the classes based on 
the new system parameters. Also, the mean job execution times are estimated when a new job is submitted to the 
system, which makes the scheduler adaptable to changes in job execution times. A high level view of Dynamic 
Heterogeneous Hadoop Systems is shown in Figure 5. 
This scheduling algorithm uses system information such as estimated access rates and times to make scheduling 
decisions. The goal of this algorithm is to improve the average time of completion of the submitted jobs. It 
receives a typical two Hadoop schedule Key Messages: New Access Message from user and heartbeat message 
of free re-charging source. When the scheduler receives a new functionality from a user, the scheduler queue the 
process and store the incoming function in the appropriate queue. 

 



mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018 

75 
 

 
Figure 5. A high level view of Adaptive Scheduling Algorithm for Dynamic Heterogeneous Hadoop Systems 

 
When a heartbeat message arrives from a resource, scheduling prompts the CES to assign a function to the free 
resource. The algorithm uses a classic function, so when new function up to the system, the queue 
process-specific class of this function, stores post in the queue of its class. Column A process that sends updated 
information to everyone and chapters to the routing process, where this routing process uses information for 
selection Function of current free resources.  
2.3.4 Dynamic Capacity Scheduling in Hadoop 
Thakur, Singh & Sharma, (2015), aimed in their work decrease the completion time of reduced tasks in 
map-reduce framework. They tend to organized yarn-site.xml file in Hadoop and additional property values for 
capacity scheduler. By adding properties for icapacity scheduler we tend to inform to icapacity scheduler 
algorithmic program, the properties of that are organized in ICapacity-scheduler.xml. The following algorithm of 
icapacity scheduler is used in which first we initialize the queue, second collect the running container then add to 
the scheduler. It kill the container, if a queue is below capacity because of lack of demand, and so demand will 
increase, the queue can solely come to capacity as resources area unit discharged from different queues as 
containers complete as shown in figure 6.  
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Initialize from Config file 
Minimum allocation, maximum allocation, node locality, threshold  
Initialize queues  
For (Csleaf Q: queueManager)  
{ Resource. add (resTopreempt)  
If (Resource greater than Resource Calculator)  
Preempt + resource (quemagr. Get LeafQueue) 
// collect running container  
for (sched: scheds)  
{ If (Resource. greater than Resource Calculator)  
{ for (appsched: sched.getAppSchedulable)  
{ For (RMContainer: getLiveContainer)  
{ Running container. add(c)  
Apps.put (c, appsched.getApp ())  
Queues. put (c, sched) }}}  
//kill container  
If (time! = null)  
{ If (time + waitTime BeforeKill < clock.getTime ()) Create preemped container Status 
(container .getContainerId ()) CompletedContainer (containers, status, RMcontainer.KILL) 
 

Figure 6. ICapacity scheduler algorithm 
 
2.3.5 The Improved Job Scheduling Algorithm of Hadoop Platform 
In the Improved Job Scheduling Algorithm of Hadoop Platform, the scheduling algorithm based on Bayes 
Classification where the jobs in job queue are classified into bad job and good job by Bayes Classification. When 
JobTracker gets task request, it will select a good job from job queue, and select tasks from good job to allocate 
JobTracker, then the execution result will feedback to the JobTracker. Therefore the scheduling algorithm based 
on Bayes Classification influence the job classification via learning the result of feedback with the JobTracker 
will select the most appropriate job to execute on TaskTracker every time. the feature usage are considered for 
job resource and the influence of TaskTracker resource on task execution, the former of which we call it job 
feature, for instance, the average usage rate of CPU and average usage rate of memory, the latter node feature, 
such as the usage rate of CPU and the size of idle physical memory, the two are called feature variables. These 
two types of feature variable are: 1) Job feature that mainly describes the resource usage situation of job. The 
value of the variable can be set when the user commits job or obtained via analysis the history information of job 
execution. The variable values are set from 10 to 1, and 10 is the maximum value which represents the utmost 
using of resources, 1 corresponding to the minimum value which represents the min usage of resources. The 
feature variables average CPU usage rate of job, average network usage rate, and average usage rate of IO and 
average memory usage rate will be adopted. 2) Node feature that represents the computation resource state and 
quality on a TaskTracker computing node. The variable can be divided into static feature variable of node and 
dynamic feature variable of node. The static feature variable refers to feature variables which stay static or are 
constants, while the dynamic feature variable refers to those node properties which change frequently along with 
time (Guo, Wu, Wu, & Wang, 2015). 
With Job scheduling algorithm based on Bayes classification the administrator can adjust task allocation policy 
through learning the feedback result of every task allocation decision to cluster resources to affect or adjust later 
allocation strategy constantly. This is accomplished without knowledge of the resource using feature of 
MapReduce job and resource of TaskTracker on the cluster to improve the correct rate of task allocation and then 
provide the most system availability. At the end it can reduce administrator’s burden, improve management 
efficiency and reduce the possibility of human error obviously, (Guo, Wu, Wu, & Wang, 2015). 
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Table 1. Comparison between scheduling algorithms (Tolhit, COSHH, An Adaptive Scheduling Algorithm for 
Dynamic Heterogeneous Hadoop Systems, Dynamic Capacity Scheduling in Hadoop, The Improved Job 
Scheduling Algorithm of Hadoop Platform) 

 Tolhit (Brahmwar, Kumar, & 

Sikka, 2016). 

An Adaptive Scheduling 

Algorithm for Dynamic 

Heterogeneous Hadoop 

Systems. (Rasooli, & 

Down, 2011). 

COSHH, (Rasooli, & Down, 

2014) 

Dynamic Capacity 

Scheduling in Hadoop. 

(Thakur, Singh & 

Sharma, 2015). 

The Improved Job 

Scheduling Algorithm of 

Hadoop Platform. (Guo, 

Wu, Wu, & Wang, 2015). 

Proposed 

work  

An algorithm to assist the 

scheduler in identifying the 

nodes on which stragglers can 

be executed so that the overall 

delay can be reduced. 

A new scheduler algorithm 

to improve mean completion 

time of submitted jobs.  

Design and implement a new 

Hadoop scheduling system, 

named COSHH. 

Introduced pipeline and 

queue management in 

proposed work for 

improving the 

performance of Hadoop. 

Jobs scheduling 

optimization algorithm 

based on Bayes 

Classification. 

The default 

scheduler 

algorithm 

that to be 

enhanced  

Fair Scheduler (HFS). Fair scheduling Fair scheduling Improved capacity 

scheduler 

 

Fair scheduling 

Enhancement Execution time  Mean 

completion time of 

submitted jobs 

Improve the mean completion 

time of jobs. 

Improve the existing 

scheduler issues that help 

the scheduler to execute 

the task in less time.  

Improvement in execution 

efficiency and  

Stability of job scheduling. 

Cluster 

applied to: 

heterogeneous 

or 

homogeneous  

Heterogeneous. Heterogeneous. Heterogeneity at both the 

application and cluster levels. 

Heterogeneous. Heterogeneous. 

Objective Aid the scheduler 

In identifying the nodes on 

which stragglers can be 

executed and to solve the 

stragglers problem. 

Improve mean completion 

time of submitted jobs. 

Improve the mean completion 

time of jobs. 

Improve the existing 

scheduler issues to 

minimize the scheduler 

execution time.  

Redesign scheduling 

algorithm based on Bayes 

Classification and review 

the shortcomings of the used 

algorithms. 

Methodology Maintains historical 

information for every node 

present in the cluster.  

Each record in the historical 

information holds 5 values i.e. 

map (M1 & M2) and reduce 

stage weights (R1, R2 & R3).  

Tolhit assumes “Map function 

execution weight “as M1 and 

“Reordering intermediate 

results weight “as M2 of a map 

task. R1, R2, R3 stand for the 

copy, sort and reduce stage 

weights of reduce task.  

The history information stored 

on every node is classified 

using Genetic algorithm based 

clustering scheme into k no of 

clusters.  

Uses system information 

such as estimated job arrival 

rates and mean job execution 

times to make scheduling 

decisions.  

 

 

COSHH consists of two main 

processes, where each process 

is triggered by receiving one of

These messages. Upon 

receiving a new job, the 

scheduler performs the queuing 

process to store the incoming 

job in an appropriate queue. 

Upon receiving a heartbeat 

message, the scheduler triggers 

the routing process to assign a 

job to the current free resource. 

 

initialize the queue, 

second collect the running 

container then  

add to the scheduler .It 

kill the container, if a 

queue is below  

capacity because of lack 

of demand, and so 

demand will  

increase, the queue can 

solely come to capacity as 

resources area unit 

discharged from different 

queues as containers 

complete. 

the scheduling  

algorithm based on Bayes 

Classification influence the 

job classification via 

learning the result of 

feedback  

with the JobTracker will 

select the most appropriate 

job to execute on 

TaskTracker every time 

performance 

evaluation 

The simulations were done on a 

5 node heterogeneous cluster. 

The performance evaluation of 

the proposed scheme has been 

done by series of experiments.  

Using simulation, 

demonstrate that the 

algorithm is a very 

promising candidate for 

deployment in real systems. 

However, as it is concerned 

with other key Hadoop 

Performance metrics, our 

proposed scheduler also 

achieves competitive 

Experimental result show 

that the proposed 

strategies can result in 

about 29 to 50 % decrease 

in average response time.  

Not mentioned  
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From the performance analysis 

27% improvement in 

terms of the overall execution 

time  

performance under minimum 

share satisfaction, fairness and 

locality metrics with respect to 

other well-known Hadoop 

schedulers. 

 
3. Proposed hadoob Scheduler Algorithm 
At present, the common scheduling algorithm mainly has the default scheduling algorithm FIFO, which adopts a 
single advanced First out of the queue, regardless of the size or priority of the job, the efficiency is low. The 
inefficiency and the right Heterogeneous system demand new scheduling algorithms 
For this we propose a new scheduling algorithm, from the perspective of resource utilization, that enhance the 
capacity scheduling algorithm based on the best job priority, resource requirements, node distance to calculate 
the weight of the job, while observing the real-time and feedback execution status of the jobs , and this will 
adaptively adjust the node workload, to achieve the task scheduling process load balancing, so as to improve the 
efficiency of the task scheduling of the cluster. 
3.1 The Proposed and Improved Algorithm: Weighted Capacity Scheduling Algorithm 
In the original algorithm, the job queue is sorted by job submission time and job priority, and then the queue 
header job is selected. The proposed algorithm first sorts the jobs for each queue according to the job weights, 
and then allocates the idle slots to the first queue for a job. Therefore, the choice of job weight in the proposed 
algorithm is an important reference for job scheduling. 
In order to avoid long-term waiting for the scheduling task, the proposed algorithm optimizes the order of the 
jobs in the allocation step, that is, according to the actual status of the job execution, in order to dynamically 
adjust the weight of the jobs. And this is done by analyzing the weight order, by computing the average of the 
requested resource size. 
To discuss the proposed algorithm in more details we will first describe the resource scheduling model: 
The organization and distribution management of cluster resources is one of the most basic functional modules 
in the Hadoop system. The process can be summarized as shown in figure 7: 

 

1
•The node manager reports the node information through the heartbeat message.

2
•The resource manager and the node manager return the heartbeat response, release 
the information. 

3
•The resource manager receives the node manager information and triggers the node 
update event

4
•After receiving the node update event, the resource scheduler allocates the resources 
on the policy node to each application according to certain policies.

5
•The application sends a periodic heartbeat message to the resource manager to 
receive the newly allocated jobs.

6
•The resource manager receives the application heartbeat information after the 
allocation of the jobs in the form of heartbeat response to return.

7
•The application receives a new allocation of the list of assets, which is further 
assigned to the internal tasks.
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4. Summary and Findings 
Scheduler of jobs in hadoop to better evaluation plays a major role in enhancing the performance hadoob in 
general, in this paper we have studied hadoop scedular algorithms, we provided an over view of hadoop and 
hadoop scheduler algorithms then we have introduced and compare five of the state of art scheduling algorithms 
to improve that enhance the speed of Hadoop framework , we compare these algorithms in term of The proposed 
scheduler algorithm, The default scheduler algorithm that is enhanced, Cluster applied to : heterogeneous or 
homogeneous, methodology, clusters re classification according and Performance evaluation. The compared 
algorithms focused on reducing the time needed to execute the job with taking into consideration the fairness 
between the jobs, the algorithms have enhanced the default hadoop scheduler algorithms (fair scheduler, capacity 
scheduler), we have seen that the field of scheduling in hadoop is a promising research area that need more 
researches to enhance the hadoop scheduling algorithms. 
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