
Modern Applied Science; Vol. 12, No. 8; 2018
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

69

An Overview of Hadoop Scheduler Algorithms
Faten Hamad1

1 School of Educational sciences, The University of Jordan, Amman, Jordan
Correspondence: Faten Hamad, School of Educational sciences, The University of Jordan, Amman, Jordan.
E-mail: f.hamad@ju.edu.jo

Received: January 27, 2018 Accepted: July 6, 2018 Online Published: July 25, 2018
doi:10.5539/mas.v12n8p69 URL: https://doi.org/10.5539/mas.v12n8p69

Abstract
Hadoop is a cloud computing open source system, used in large-scale data processing. It became the basic
computing platforms for many internet companies. With Hadoop platform users can develop the cloud
computing application and then submit the task to the platform. Hadoop has a strong fault tolerance, and can
easily increase the number of cluster nodes, using linear expansion of the cluster size, so that clusters can process
larger datasets. However Hadoop has some shortcomings, especially in the actual use of the process of exposure
to the MapReduce scheduler, which calls for more researches on Hadoop scheduling algorithms.
This survey provides an overview of the default Hadoop scheduler algorithms and the problem they have. It also
compare between five Hadoop framework scheduling algorithms in term of the default scheduler algorithm to be
enhanced, the proposed scheduler algorithm, type of cluster applied either heterogeneous or homogeneous,
methodology, and clusters classification based on performance evaluation. Finally, a new algorithm based on
capacity scheduling and use of perspective resource utilization to enhance Hadoop scheduling is proposed.
Keywords: Hadoop scheduling, capacity scheduler, fair scheduler, FIFO scheduler
1. Introduction
The past decade has witnessed a rapid development of cluster computing platforms, due to the increased data
sizes, known as big data, which require more scalable applications. Big data, cannot be handled using traditional
database and software technologies due to its size, speed, and variety. For example, Google reported to process
more than 20G of data per day, and Facebook reported that it handles between 15-20 terabytes of compressed
data each day. This amount of data certainly cannot be handled by a single computer. It is also not feasible nor
cost effective to handle big data with a single super high performance PC. Therefore, many models are designed
to efficiently handle big data in parallel with business computer sets. For instance, the open-source Apache
Hadoop has emerged as a de facto platform to handle large-scale, semi-structured and unstructured data
(Brahmwar et al., 2016) (Al-Sayyed et al., 2017).
Hadoop is a reliable and scalable tool for distributed computing, data storage and processing. It is an open source
program for writing and implementing applications in a group. Hadoop and Hadoop are sources accessible to
Mapreduce and Google's file system. Hadoop was originally implemented in Java (Hamad, & Alawamrah,
2018). Applications in Hadoop can be written in different programming languages. When programmers write
applications using the map and reduce functionality, the Hadoop framework automatically performs these
functions in parallel. Hadoop was first created by Doug Kuting in 2004 and was developed primarily by Yahoo.
Its streaming utility allows the user to create and run functions using any executable map and reduction functions.
Apache Hadoop System is a Mapreduce project that was developed in Java by the Apache Foundation. As
Hadoop is published under the Apache license, the Hadoop source code is available for public download.
Hadoop is deployed in Yahoo servers, where hundreds of terabytes of data are created on at least 10,000 cores.
Facebook makes use of Hadoop packages to handle more than 20 terabytes of new data per day. Other web
giants such as Amazon employ ad hoc groups to manage massive amounts of data on a daily basis (Guo et al,
2015) (Hudaib, et al., 2016).
The Hadoop system contains two basic components. The first component is a distributed file system called
HEDFES; and the second is the Mapreduce programming framework for processing large data sets. The
implementation of Hadoop MapRedus is designed for large groups, and targets distributed file system (i.e.
HDFs), In most Hadoop functions, HDFs is used to store both inputs from the map and output tasks by

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

70

minimizing tasks (Zaharia et al, 2010).
Hadoop has two layers; on top, a Mapreduce engine that contains tracker function and tracker functions; and the
bottom, HDFs, contains NAMnode and Datanodes. Each node can act as master or slave in relation to both
Hodges and Mapreduce. The default Hadoop messages are shown in figure 1.

Figure 1. Hadoop typical scheduling massages

Hadoop has its own file system known as HDVs. HDF provides high productivity access to the application and is
designed to store large files with the flow of the data access pattern and run on cluster devices. Monitor
constantly monitors the server to ensure data availability. The HDVs are designed to predict failures in the
commodity machinery groups in order to tolerate and compensate for all those failures. The main benefit of
HDFs is that the software itself deals with hardware issues, freeing users of having to worry about system
failure.
1.1 Characteristics of Hadoop
The main characteristics of Hadoop are:

Accessibility and Cost Effectiveness: it is the best approach for solving big data set problems isong a range
of commodity machines. It has been used as a cloud computing service, for example. Amazon Web
Services (OS) (Al-Sayyed et al., 2017).
Scalability: Hadoop is a highly scalable model that can be used as a classroom research tool in colleges, or
as a terabyte of data storage and analysis as in Yahoo, Facebook or Amazon. If more capacity is needed, it
can be added as required (Reddy, et al, 2011).
General Purpose: Hadoop is a powerful and easy tool for programming. Even new or non-programmers
can write and execute parallel code in a simple way (White, 2012).
Low barrier entry: Hadoop does not need any schema or database in the front. All users are able to easily
download and use raw data.

However, Hadoob has many issues and challenges associated with the scheduler research and management in
cluster computing frameworks for large-scale data processing. For instance, Clauser's distinctive computing
platforms, such as Haddob, were deliberately designed to improve liberal liberalism or a range of large functions.
(Rasooli, & Down, 2011). Moreover, cluster computing platforms serve diverse workloads of deferred and
deferred sources. These workloads usually have important considerations in the underlying performance. For
example, interactive applications that require good response times while making a period or deadlines are more
important for periodic batch jobs. There is no single resource management schema or scheduling applications
that are optimized for all performance metrics (Bhosale & Gadekar, 2014). The original Vivo scheduling policy
is designed by Hadoop Mapreduce to make a better payment. However, the response time of short functions is
sacrificed when applications are introduced behind long intervals. Scheduling such as fair and resource sharing

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

71

capabilities is designed between users and applications that support equity and provide better performance for
short applications. However, they are not optimal in terms of response times for work or productivity (Yong,
Garegrat, & Mohan, 2009) (Hamad, & Adwan, 2018).
Dependency between tasks is another issue with Hadoop. While large functions are broken in small tasks for
parallel performance, there are usually dependencies between functions in most cluster computing applications.
In the Hadrid Mapredus platform, task reduction depends on the map functions of the same function since
performing task reductions based on the average data produced by map tasks. The data transfer process is called
in the Mapreduce mix. In the traditional definition of task dependency, when the task depends on others, the start
time cannot be earlier than the completion of any of its subordinate tasks. However, in the Iron Mapreduce
platform, the reduction of tasks actually begins earlier (He et al, 201). The reason is that the dribbling process is
one with reducing tasks under the center, such that starting to reduce tasks earlier can help improve performance
by interfering with Xu progress with the progress of the map, i.e. keeping the intermediate data produced by the
map tasks done while other map tasks are still running or waiting. In other frameworks, there may be more
complex dependencies between tasks in each job. Types of deferred tasks for cluster computing applications are
typically resource-driven. For example, in the Mapreduce framework, each application has two main phases, the
map and the minimization (DeWitt, & Stonebraker, 2008).
There can be multiple independent tasks that perform the same functions at each stage, i.e. mapping tasks and
reducing tasks. These two types of tasks are often quite different resource requirements. The mapping tasks are
typically intensive for the CPU while reducing intensive I/O tasks, especially when the middleware map
designers are brought in. System resources can be efficiently used if maps and task reduction work concurrently
on a worker's contract. To ensure the best use of resources, the first generation aims to distinguish the important
tasks of the map/reduce tasks by configuring a different map/reducing slots on each node (Rao, & Reddy, 2012).
The concept of time interval is to extract node capacity where each map/time interval accommodates at least one
map/reduces task at any given time (Al Khattab, Aet al, 2015). By setting the number of map /reducing slots on
each node, the Hadoop platform controls the synchronization of different types of tasks in the cluster to achieve
better performance. The second-generation system of Hadoop-Yarn adopts the management of granular resources
where each task needs to explicitly define its demands on different types of resources, i.e. CPU and memory. The
resource manager therefore benefits from heterogeneous resource requirements and uses the resources of the
group more accurately and efficiently (Kc and Anyanwu, 2010).
Moreover, many current resource management schemes cannot fully benefit from group resources. For example,
a Twitter production group managed by Missus reported that the total CPU utilization is less than 20% and
Google system reported a combined CPU usage of 25-35%. One of the main reasons for this is that existing
resource management schemes always maintain a fixed amount of resources for each task as requested by their
resources. However, note that the tasks of different data processing frameworks and applications can have
different patterns to use resources. For example, many tasks of cluster computing applications consist of multiple
internal phases and have relatively long execution times. These tasks usually have a variety of resource
requirements during execution. As discussed above, minimizing tasks in the framework of MapRedus is usually
less CPU usage at the shuffle stage, i.e. fetching intermediate data, when waiting for map tasks to generate
outputs (Hudaib, & Fakhouri, 2016).
Another example is Spark's tasks. When deployed on the Yarn system, Spark's mission is to host multiple
user-defined stages that also require different types and amounts of resources. Moreover, when Spark tasks serve
an interactive function, the use of resources from these tasks can often change, for example, being completely
idle during the user's thinking time, and become busy and requesting more resources. Similarly, frames that
handle data flow may maintain a large number of functions alive and wait for input. Therefore, resource
requirements must change over time when new incoming data arrive, which unfortunately cannot be predicted.
Although short tasks dominate many cluster computing clusters, the long-term effects of long-term tasks on the
use of system resources are negligible given their high resource demands and the long occupation of resources.
In such cases, the allocation of resources during the lifetime of the task becomes ineffective to take full
advantage of system resources (Chen et al., 2010).
The default scheduler assumes that the cluster environment is designed to be homogeneous so that all nodes in
the cluster have the same computation and configuration capacity. However, the real world applications work in
a heterogeneous environment. Accordingly, the overall performance of the Hadoop fails if it continues to use the
default schedule policy in a heterogeneous environment. Moreover, some tasks take longer time to perform
compared to other tasks on the same node. Such tasks are called stragglers. These are responsible for lengthening
task execution time. To solve this issue, Hadoop Mapreduce run the backup task of the slow task on another node

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

72

that has a faster account in order to prevent slow tasks of lengthening the overall execution time of work.
2. Overview of Default Hadoop Scheduler Algorithms
2.1 FAIR Scheduler
Scheduling in Hadoop organizes functions in categories, including shared resources. Each pool is allocated a
guaranteed minimum share, ensuring that certain users or applications always have adequate resources. Fair
sharing also works with work priorities, which are used as weights to determine the part of the total time
allocated to each post. The fair scheduling determines the resources for posts so that all posts, on average,
consume an equal share of resources. For example, if queue1 gets 80% of clusters and queue2 gets 20% of
clusters, then a high priority task goes to queue1 (Zaharia, 2009).
The Gallery Scheduler allows all functions to be run by a default or specified configuration file, limiting the
number of jobs per user and per pool. This configuration file is very useful in two specific situations. First, the
user tries to provide hundreds of jobs at once. Second, many functions simultaneously run cause high context
switching overhead and a huge amount of intermediate data. Reducing the number of jobs running, of course,
does not cause any later functionality provided for failure. However, you must wait for the newly arrived jobs in
the Scheduler queue until some of the running functions are finished (Usha, & Jenil, 2014).
2.2 Capacity Scheduler
Capacity Scheduler is developed by Yahoo for a large collection of resource sharing. The functions are organized
and placed in multiple queues, each of which is secured to reach a fraction of the mass capacity (i.e. number of
task slots). All posts submitted to a particular queue guaranteed resources for this queue. If tasks of functions in
queues have extra capacity it kills tasks. Free resources can be allocated to any queue beyond its capacity. When
there is a demand for resources from queues operating under capacity at a later time (e.g. scheduled tasks on full
resources), resources will be allocated to posts on queues operating under capacity. If inactive queues start to get
work requests, their lost capacity will be rolled back.
Queues can also support priorities for posts that are disabled by default. In the queue, high priority jobs have
access to queue resources before getting jobs with lower priority. However, once a function is run regardless of
its priorities, task will not be pre-empted by any higher priority function. However, the new tasks of the highest
priority function will be predefined in the queue. To prevent one or more users from monopolizing resources,
each row assigns a percentage of the resources allocated to a user at any given time, if all users are using
resources (Ghemawat, , Gobioff, & Leung, 2003). .
Whenever TaskTracker is a free, scheduling capabilities select queue with most free resources. Once the queue is
selected, a scheduler selects a task in the queue according to the priority of the task. This scheduling mechanism
ensures that there is enough free memory in TaskStaker to run the task in case the task has significant memory
requirements. In this way, resource requirements can always be met immediately (Dean, & Ghemawat, 2010).
2.2.1 I Capacity Scheduler
Icapacity scheduling puts jobs into varied queues in accordance with the conditions, and allocates certain system
capability for each queue. If a queue has serious load, it seeks unallocated resources, then makes redundant
resources assigned equally to each job. It re-allocates the resources for empty queue to queues exploitation for
maximizing resource. Once jobs arrive therein queue, running tasks square measure completed and resources
square measure given back to main queue. It conjointly permits priority based totally programming of jobs in
associate organization queue. To use icapacity dynamic scheduler, the subsequent property has to be set in
yarnsite.xml like below: yarn. resourcemanager. schedular.class
org.apache.hadoop.yarn.server.resourcemanager.sche dular.capacity.CapacitySchedular.
2.3 Hadoop Scheduling Algorithm Framework
Five scheduling algorithms have been selected in order compare between Hadoop scheduling algorithms
framework in term of the proposed scheduler algorithm, the default scheduler algorithm that has been enhanced,
the type of cluster applied; either heterogeneous or homogeneous, methodology, and clusters classification based
on performance evaluation. See table 1. Five selected schedulers will be briefly discussed.
2.3.1 Tolhit – A Scheduling Algorithm for Hadoop Cluster (2016)
Tolhit uses the usage of resources and network information from cluster nodes to find the optimal node for
scheduling a speculative version of a slow task. The performance of the proposed scheme has been evaluated
through a series of experiments (Brahmwar, Kumar, & Sikka, 2016).

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

73

The name "Tolhit" comes from the algorithm ability to use more accurate phase weights to provide an estimation
to the operation of tasks. Resources from cluster nodes such as Ram & Disk usage is also maintained and
updated periodically in resource info. Parameter for Disk usage by the node is calculated by looking only at input
and output requests from the running tasks on that node (Brahmwar, Kumar, & Sikka, 2016).
The proposed algorithm maintains history information of the date when each node is present in the cluster. Each
record contains historical information about any map (M1 and M2) and reduces phase weights (R1, R2, and R3).
Tolhit assumes the implementation of the map function Weight as M1 and then reorder the medium weight of the
result as M2 of the map task. R1, R2, R3 stand for the copy, sort and reduce phase weights from task
minimization. The date information stored on each node is sorted using genetic (13) to any of the clusters. If the
ongoing work satisfies the extant (threshold for the task map Detection) on a data node, then the algorithm
assigns a temporary task to the phase weight map (M1). The map phase weight is used as a search parameter to
determine the block with the nearest map phase weight (M1) between (K) in historical information (Brahmwar,
Kumar, & Sikka, 2016).

Figure 2. Tolhit algorithm flow chart

2.3.2 COSHH
The scheduling system, named COSHH, is considered heterogeneous for both application and mass levels. The
goal of COSHH is to improve the average time of completion of employment. The high-level architecture of
COSHH is displayed in the Figure.3 while COSHH Queuing Process are displayed in figure 4 (Rasooli, & Down,
2014).

Figure 3. The high-level architecture of COSHH.

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

74

Figure 4. COSHH Queuing Process

The Hadoop Model Scheduling receives two key messages From the Hadoop system: A m`essage refers to a new
job Access from user, heartbeat message from free Resources. Therefore, COSHH consists of two main
supporters, Sys, where each process is run by receiving one of the messages. When you receive a new
functionality, schedule lead the queue process to store the incoming function in Suitable queue. When receiving
heartbeat mes-SAGA, scheduling causes the routing process to be set Function to the current free resource.
2.3.3 An Adaptive Scheduling Algorithm for Dynamic Heterogeneous Hadoop Systems
Rasooli &. Down, (2011) designed a scheduling algorithm which classifies the jobs based on their requirements
and finds an appropriate matching of resources and jobs in the system. The algorithm is completely adaptable to
any variation in the system parameters. The classification part detects changes and adapts the classes based on
the new system parameters. Also, the mean job execution times are estimated when a new job is submitted to the
system, which makes the scheduler adaptable to changes in job execution times. A high level view of Dynamic
Heterogeneous Hadoop Systems is shown in Figure 5.
This scheduling algorithm uses system information such as estimated access rates and times to make scheduling
decisions. The goal of this algorithm is to improve the average time of completion of the submitted jobs. It
receives a typical two Hadoop schedule Key Messages: New Access Message from user and heartbeat message
of free re-charging source. When the scheduler receives a new functionality from a user, the scheduler queue the
process and store the incoming function in the appropriate queue.

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

75

Figure 5. A high level view of Adaptive Scheduling Algorithm for Dynamic Heterogeneous Hadoop Systems

When a heartbeat message arrives from a resource, scheduling prompts the CES to assign a function to the free
resource. The algorithm uses a classic function, so when new function up to the system, the queue
process-specific class of this function, stores post in the queue of its class. Column A process that sends updated
information to everyone and chapters to the routing process, where this routing process uses information for
selection Function of current free resources.
2.3.4 Dynamic Capacity Scheduling in Hadoop
Thakur, Singh & Sharma, (2015), aimed in their work decrease the completion time of reduced tasks in
map-reduce framework. They tend to organized yarn-site.xml file in Hadoop and additional property values for
capacity scheduler. By adding properties for icapacity scheduler we tend to inform to icapacity scheduler
algorithmic program, the properties of that are organized in ICapacity-scheduler.xml. The following algorithm of
icapacity scheduler is used in which first we initialize the queue, second collect the running container then add to
the scheduler. It kill the container, if a queue is below capacity because of lack of demand, and so demand will
increase, the queue can solely come to capacity as resources area unit discharged from different queues as
containers complete as shown in figure 6.

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

76

Initialize from Config file
Minimum allocation, maximum allocation, node locality, threshold
Initialize queues
For (Csleaf Q: queueManager)
{ Resource. add (resTopreempt)
If (Resource greater than Resource Calculator)
Preempt + resource (quemagr. Get LeafQueue)
// collect running container
for (sched: scheds)
{ If (Resource. greater than Resource Calculator)
{ for (appsched: sched.getAppSchedulable)
{ For (RMContainer: getLiveContainer)
{ Running container. add(c)
Apps.put (c, appsched.getApp ())
Queues. put (c, sched) }}}
//kill container
If (time! = null)
{ If (time + waitTime BeforeKill < clock.getTime ()) Create preemped container Status
(container .getContainerId ()) CompletedContainer (containers, status, RMcontainer.KILL)

Figure 6. ICapacity scheduler algorithm

2.3.5 The Improved Job Scheduling Algorithm of Hadoop Platform
In the Improved Job Scheduling Algorithm of Hadoop Platform, the scheduling algorithm based on Bayes
Classification where the jobs in job queue are classified into bad job and good job by Bayes Classification. When
JobTracker gets task request, it will select a good job from job queue, and select tasks from good job to allocate
JobTracker, then the execution result will feedback to the JobTracker. Therefore the scheduling algorithm based
on Bayes Classification influence the job classification via learning the result of feedback with the JobTracker
will select the most appropriate job to execute on TaskTracker every time. the feature usage are considered for
job resource and the influence of TaskTracker resource on task execution, the former of which we call it job
feature, for instance, the average usage rate of CPU and average usage rate of memory, the latter node feature,
such as the usage rate of CPU and the size of idle physical memory, the two are called feature variables. These
two types of feature variable are: 1) Job feature that mainly describes the resource usage situation of job. The
value of the variable can be set when the user commits job or obtained via analysis the history information of job
execution. The variable values are set from 10 to 1, and 10 is the maximum value which represents the utmost
using of resources, 1 corresponding to the minimum value which represents the min usage of resources. The
feature variables average CPU usage rate of job, average network usage rate, and average usage rate of IO and
average memory usage rate will be adopted. 2) Node feature that represents the computation resource state and
quality on a TaskTracker computing node. The variable can be divided into static feature variable of node and
dynamic feature variable of node. The static feature variable refers to feature variables which stay static or are
constants, while the dynamic feature variable refers to those node properties which change frequently along with
time (Guo, Wu, Wu, & Wang, 2015).
With Job scheduling algorithm based on Bayes classification the administrator can adjust task allocation policy
through learning the feedback result of every task allocation decision to cluster resources to affect or adjust later
allocation strategy constantly. This is accomplished without knowledge of the resource using feature of
MapReduce job and resource of TaskTracker on the cluster to improve the correct rate of task allocation and then
provide the most system availability. At the end it can reduce administrator’s burden, improve management
efficiency and reduce the possibility of human error obviously, (Guo, Wu, Wu, & Wang, 2015).

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

77

Table 1. Comparison between scheduling algorithms (Tolhit, COSHH, An Adaptive Scheduling Algorithm for
Dynamic Heterogeneous Hadoop Systems, Dynamic Capacity Scheduling in Hadoop, The Improved Job
Scheduling Algorithm of Hadoop Platform)

 Tolhit (Brahmwar, Kumar, &

Sikka, 2016).

An Adaptive Scheduling

Algorithm for Dynamic

Heterogeneous Hadoop

Systems. (Rasooli, &

Down, 2011).

COSHH, (Rasooli, & Down,

2014)

Dynamic Capacity

Scheduling in Hadoop.

(Thakur, Singh &

Sharma, 2015).

The Improved Job

Scheduling Algorithm of

Hadoop Platform. (Guo,

Wu, Wu, & Wang, 2015).

Proposed

work

An algorithm to assist the

scheduler in identifying the

nodes on which stragglers can

be executed so that the overall

delay can be reduced.

A new scheduler algorithm

to improve mean completion

time of submitted jobs.

Design and implement a new

Hadoop scheduling system,

named COSHH.

Introduced pipeline and

queue management in

proposed work for

improving the

performance of Hadoop.

Jobs scheduling

optimization algorithm

based on Bayes

Classification.

The default

scheduler

algorithm

that to be

enhanced

Fair Scheduler (HFS). Fair scheduling Fair scheduling Improved capacity

scheduler

Fair scheduling

Enhancement Execution time Mean

completion time of

submitted jobs

Improve the mean completion

time of jobs.

Improve the existing

scheduler issues that help

the scheduler to execute

the task in less time.

Improvement in execution

efficiency and

Stability of job scheduling.

Cluster

applied to:

heterogeneous

or

homogeneous

Heterogeneous. Heterogeneous. Heterogeneity at both the

application and cluster levels.

Heterogeneous. Heterogeneous.

Objective Aid the scheduler

In identifying the nodes on

which stragglers can be

executed and to solve the

stragglers problem.

Improve mean completion

time of submitted jobs.

Improve the mean completion

time of jobs.

Improve the existing

scheduler issues to

minimize the scheduler

execution time.

Redesign scheduling

algorithm based on Bayes

Classification and review

the shortcomings of the used

algorithms.

Methodology Maintains historical

information for every node

present in the cluster.

Each record in the historical

information holds 5 values i.e.

map (M1 & M2) and reduce

stage weights (R1, R2 & R3).

Tolhit assumes “Map function

execution weight “as M1 and

“Reordering intermediate

results weight “as M2 of a map

task. R1, R2, R3 stand for the

copy, sort and reduce stage

weights of reduce task.

The history information stored

on every node is classified

using Genetic algorithm based

clustering scheme into k no of

clusters.

Uses system information

such as estimated job arrival

rates and mean job execution

times to make scheduling

decisions.

COSHH consists of two main

processes, where each process

is triggered by receiving one of

These messages. Upon

receiving a new job, the

scheduler performs the queuing

process to store the incoming

job in an appropriate queue.

Upon receiving a heartbeat

message, the scheduler triggers

the routing process to assign a

job to the current free resource.

initialize the queue,

second collect the running

container then

add to the scheduler .It

kill the container, if a

queue is below

capacity because of lack

of demand, and so

demand will

increase, the queue can

solely come to capacity as

resources area unit

discharged from different

queues as containers

complete.

the scheduling

algorithm based on Bayes

Classification influence the

job classification via

learning the result of

feedback

with the JobTracker will

select the most appropriate

job to execute on

TaskTracker every time

performance

evaluation

The simulations were done on a

5 node heterogeneous cluster.

The performance evaluation of

the proposed scheme has been

done by series of experiments.

Using simulation,

demonstrate that the

algorithm is a very

promising candidate for

deployment in real systems.

However, as it is concerned

with other key Hadoop

Performance metrics, our

proposed scheduler also

achieves competitive

Experimental result show

that the proposed

strategies can result in

about 29 to 50 % decrease

in average response time.

Not mentioned

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

78

From the performance analysis

27% improvement in

terms of the overall execution

time

performance under minimum

share satisfaction, fairness and

locality metrics with respect to

other well-known Hadoop

schedulers.

3. Proposed hadoob Scheduler Algorithm
At present, the common scheduling algorithm mainly has the default scheduling algorithm FIFO, which adopts a
single advanced First out of the queue, regardless of the size or priority of the job, the efficiency is low. The
inefficiency and the right Heterogeneous system demand new scheduling algorithms
For this we propose a new scheduling algorithm, from the perspective of resource utilization, that enhance the
capacity scheduling algorithm based on the best job priority, resource requirements, node distance to calculate
the weight of the job, while observing the real-time and feedback execution status of the jobs , and this will
adaptively adjust the node workload, to achieve the task scheduling process load balancing, so as to improve the
efficiency of the task scheduling of the cluster.
3.1 The Proposed and Improved Algorithm: Weighted Capacity Scheduling Algorithm
In the original algorithm, the job queue is sorted by job submission time and job priority, and then the queue
header job is selected. The proposed algorithm first sorts the jobs for each queue according to the job weights,
and then allocates the idle slots to the first queue for a job. Therefore, the choice of job weight in the proposed
algorithm is an important reference for job scheduling.
In order to avoid long-term waiting for the scheduling task, the proposed algorithm optimizes the order of the
jobs in the allocation step, that is, according to the actual status of the job execution, in order to dynamically
adjust the weight of the jobs. And this is done by analyzing the weight order, by computing the average of the
requested resource size.
To discuss the proposed algorithm in more details we will first describe the resource scheduling model:
The organization and distribution management of cluster resources is one of the most basic functional modules
in the Hadoop system. The process can be summarized as shown in figure 7:

1
•The node manager reports the node information through the heartbeat message.

2
•The resource manager and the node manager return the heartbeat response, release
the information.

3
•The resource manager receives the node manager information and triggers the node
update event

4
•After receiving the node update event, the resource scheduler allocates the resources
on the policy node to each application according to certain policies.

5
•The application sends a periodic heartbeat message to the resource manager to
receive the newly allocated jobs.

6
•The resource manager receives the application heartbeat information after the
allocation of the jobs in the form of heartbeat response to return.

7
•The application receives a new allocation of the list of assets, which is further
assigned to the internal tasks.

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

79

4. Summary and Findings
Scheduler of jobs in hadoop to better evaluation plays a major role in enhancing the performance hadoob in
general, in this paper we have studied hadoop scedular algorithms, we provided an over view of hadoop and
hadoop scheduler algorithms then we have introduced and compare five of the state of art scheduling algorithms
to improve that enhance the speed of Hadoop framework , we compare these algorithms in term of The proposed
scheduler algorithm, The default scheduler algorithm that is enhanced, Cluster applied to : heterogeneous or
homogeneous, methodology, clusters re classification according and Performance evaluation. The compared
algorithms focused on reducing the time needed to execute the job with taking into consideration the fairness
between the jobs, the algorithms have enhanced the default hadoop scheduler algorithms (fair scheduler, capacity
scheduler), we have seen that the field of scheduling in hadoop is a promising research area that need more
researches to enhance the hadoop scheduling algorithms.
References
Al Khattab, A., Al-Shalabi, H., Al-Rawad, M., Al-Khattab, K., & Hamad, F. (2015). The Effect of Trust and Risk

Perception on Citizen’s Intention to Adopt and Use E-Government Services in Jordan. Journal of service
science and management, 8(03), 279.

Al-Sayyed, R. M., Fakhouri, H. N., Murad, S. F., & Fakhouri, S. N. (2017). CACS: Cloud Environment
Autonomic Computing System. Journal of Software Engineering and Applications, 10(3), 273.

Al-Sayyed, R. M., Fakhouri, H. N., Rodan, A., & Pattinson, C. (2017). Polar Particle Swarm Algorithm for
Solving Cloud Data Migration Optimization Problem. Modern Applied Science, 11(8), 98.

Bhosale, H. S., & Gadekar, D. P. (2014). Big data processing using hadoop: Survey on scheduling. International
Journal of Science and Research (IJSR), 3(10), 272-277.

Brahmwar, M., Kumar, M., & Sikka, G. (2016). Tolhit–A Scheduling Algorithm for Hadoop Cluster. Procedia
Computer Science, 89, 203-208.

Chen, Q., Zhang, D., Guo, M., Deng, Q., & Guo, S. (2010). SAMR: A Self Adaptive MapReduce Scheduling
Algorithm in Heterogeneous Environment, In 10th IEEE International Conference on Computer and
Information Technology, CIT’10, (Washington, DC, USA), IEEE Computer Society, pp. 2736-2743.

Dean, J., & Ghemawat, S. (2010). MapReduce: a flexible data processing tool. Communications of the
ACM, 53(1), 72-77.

DeWitt, D., & Stonebraker, M. (2008). MapReduce: A major step backwards. The Database Column, 1, 23.
DongjinYoo, Kwang, & Mong, S. (2011). A comparative review of job scheduling for mapreduce. Multi-Agent

and Cloud Computing Systems Laboratory, Proceedings of IEEE CCIS2011.
Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google File System, 37(5), 29-43. ACM.
Guo, Y., Wu, L., Yu, W., Wu, B., & Wang, X. (2015). The Improved Job Scheduling Algorithm of Hadoop

Platform. arXiv preprint arXiv:1506.03004.
Hamad, F., & Adwan, O. (2018). Policy Based Approach for Information Transfer over Mobile ad hoc Network

using Messages Privacy Control. Modern Applied Science, 12(5), 22.
Hamad, F., & Alawamrah, A. (2018). Measuring the Performance of Parallel Information Processing in Solving

Linear Equation Using Multiprocessor Supercomputer. Modern Applied Science, 12(3), 74.
He, C., Lu, Y., & Swanson, D. (2011, November). Matchmaking: A new mapreduce scheduling technique.

In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference
on (pp. 40-47). IEEE.

Hudaib, A. A., & Fakhouri, H. N. (2016). An Automated Approach for Software Fault Detection and Recovery.
Hudaib, A. A., Fakhouri, H. N., Al Adwan, F. E., & Fakhouri, S. N. (2016). A Survey about Self-Healing

Systems (Desktop and Web Application). Communications and Network, 9(01), 71.
Jagmohan, Chauhan (n.d.). Dwight Makaroff and Winfried Grassmann, “The Impact of Capacity Scheduler

Configuration Settings on MapReduce Jobs”.
Kaabneh, K., Abu-Hammad, E., & Hamd, F. (2007, November). Enhanced Skin Detection Technique Using

Block Matching. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International
Conference on (pp. 21-24). IEEE.

mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018

80

Kc, K. & Anyanwu, K. (2010). Scheduling Hadoop Jobs to Meet Deadlines. In Proc. CloudCom, pp.388-392.
Mark, Y., Nitin, G., & Shiwali, M. (2009). Towards a Resource Aware Scheduler in Hadoop. In Proc. ICWS,

2009, 102-109.
Radheshyam, N., Niteshaheshwari, R. R., & Vasudeva, V. (). Job Aware Scheduling Algorithm for MapReduce

Framework. 3rd IEEE International Conference on Cloud Computing Technology and Science Athens,
Greece.

Rao, B. T., & Reddy, L. S. S. (2012). Survey on improved scheduling in Hadoop MapReduce in cloud
environments. arXiv preprint arXiv:1207.0780.

Rasooli, A., & Down, D. G. (2011). An adaptive scheduling algorithm for dynamic heterogeneous Hadoop
systems. In Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative
Research (pp. 30-44). IBM Corp.

Rasooli, A., & Down, D. G. (2014). COSHH: A classification and optimization based scheduler for
heterogeneous Hadoop systems. Future Generation Computer Systems, 36, 1-15.

Reddy, V. K., Rao, B. T., & Reddy, L. S. S. (2011). Research issues in cloud computing. Global Journal of
Computer Science and Technology.

Sandholm, T., & Lai, K. (2010, April). Dynamic proportional share scheduling in hadoop. In Workshop on Job
Scheduling Strategies for Parallel Processing (pp. 110-131). Springer, Berlin, Heidelberg.

Sun, X., He, C., & Lu, Y. (2012). ESAMR: An Enhanced Self-Adaptive MapReduce Scheduling Algorithm,
IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS), pp. 148-155.

Usha, D., & Jenil, A. A. (2014). A survey of Big Data processing in perspective of Hadoop and
mapreduce. International Journal of Current Engineering and Technology, 4(2), 602-606.

White, T. (2012). Hadoop: The definitive guide. "O'Reilly Media, Inc.".
Yong, M., Garegrat, N., & Mohan, S. (2009, December). Towards a resource aware scheduler in hadoop. In Proc.

ICWS (pp. 102-109).
Zaharia, M. (2009). Job scheduling with the fair and capacity schedulers. Hadoop Summit, 9.
Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., & Stoica, I. (2010, April). Delay

scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of
the 5th European conference on Computer systems (pp. 265-278). ACM.

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, L., Shenker, S., & Stoica, I. (2010). Delay scheduling: A
Simple Technique for Achieving Locality and Fairness in Cluster Scheduling, In 5th European Conference
on Computer systems (EuroSys).

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/4.0/).

