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Abstract 

Travelling Salesman Problem (TSP) is one of the most popular NP-complete problems for the researches in the 

field of computer science which focused on optimization. TSP goal is to find the minimum path between cities 

with a condition of each city must to visit exactly once by the salesman. Grey Wolf Optimizer (GWO) is a new 

swarm intelligent optimization mechanism where it success in solving many optimization problems. In this paper, 

a parallel version of GWO for solving the TSP problem on a Hypercube Interconnection Network is presented. 

The algorithm has been compared to the alternative algorithms. Algorithms have been evaluated analytically and 

by simulations in terms of execution time, optimal cost, parallel runtime, speedup and efficiency. The algorithms  

are tested on a number of benchmark problems and found parallel Gray wolf algorithm is promising in terms o f 

speed-up, efficiency and quality of solution in comparison with the alternative algorithms.    

Keywords: grey wolf optimizer, chemical reaction optimization, meta-heuristics, Travelling salesman problem 

1. Introduction 

Due to the large increases in the number of cities in the world, mobility between cities has become difficult because 

of there existing many dissimilar roads to reach the same city with  different travelling cost (Vukmirović and 

Pupavac, 2013), where there are several places that are all directly connected to each other by different long roads 

and the passenger wants to make the shortest trip. Some Algorithms can be used to guide people using one of the 

transport or movement methods (walking, train, car, and bus) to reach their destination on the shortest route. (Zhan 

and Noon, 1996).  

TSP is arisen in many different practical applications such as School bus routes, Computer wiring, job-shop 

scheduling and many more (Matai, et al., 2010). While there is many applications of TSP then applied new 

algorithms and architecture could give the opportunity to inspire new solutions that could be better than existing  

ones, which means, optimizing for all of these applications. 

TSP has received great interest from researchers and mathematicians, as it is easy to describe, difficult to solve. 

TSP problem has a place in a big class of problems known as NP-complete, as shown in Figure 1. In particular, if 

an efficient algorithm (polynomial time) can be found for solving TSP, then efficient algorithms could be found 

for all others. (Karla, et al., 2016). 
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Figure 1. NP – Complete Problems (Al-Shaikh, et al., 2016) 

 

TSP is the problem of finding the shortest route between cities or nodes which classified as minimization problem 

(Lam and Newman, 1985), the problem is to create the shortest route in the form of aggregation to visit each node 

exactly once and then return to the initial node (Kan and Shmoys, et al., 1985).  

TSP is a permutation problem which required O (n!) as time complexity (Kaempfer and Wolf, 2018). There exist  

an algorithm called Held and Karp algorithm as in (Chekuri, 2017) based on dynamic programming to solve TSP 

where they reduce the computational time complexity to O (2nn2) but it’s still too high for solving big size of real-

world instance. 

1.1 TSP Formulation 

Miller (as cited in Sawik, 2016) shows that TSP can be defined as an integer linear program as follow: 

 

            Xij =        1 There is rout from city i to city j 

                         0  No rout 

Where x is a variable for an n city problem, by defining the Travelling cost between two cities i and j is ci.j and  

ui is a temporary variable, Miller shows how TSP can be defined as an integer linear program as : 

 

Where equations 2 and 3 are used to ensure that each city on the route can only arrive from another city exactly 

once, Equalities 4 and 5, it is necessary for each city on the route, there is an exit to the another city. Fin ally, 

equation 6 is used to ensure that there is only one route covering all cities, which means that they cant be multiple, 

simultaneous and unconnected paths. 
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While the importance of the TSP in numerous fields and for its applications, many researchers s olve it using 

different approaches aspiring to get a better solution than existing such as : Bee Colony Optimization (BCO) (Wong, 

el al., 2008), Ant Colony Optimization (ACO)(Yang, et al., 2008), Firefly algorithm (FA)(Kumbharana and 

Pandey)(2013) and Heuristic Algorithm (Hernández, el al., 2016). These methodologies do not generally locate 

the optimal solution. Rather; they will often find the near-optimal solutions for the problem. Most of these 

algorithms called Swarm optimization (SO) (Poli, el al,2007) or Meta-Heuristic optimization mechanisms (Blum, 

el al, 2007), SI is an intent of design or distributed problem-solving inspired devices by the collective behavior of 

colonies of insects social and other sociedades animals (Raja, 2015), which can be used to solve many types of 

optimization problems. As an examples in natural systems of Swarm optimization are include Bacterial Growth  

(Zwietering, el al.,1990), whales (Mirjalili and Lewis, 2016), Bird  Flocking (Reynolds, 1987),  Fish Schooling 

(Bastos, et al., 2008) and spiders (James and Li, 2015). Swarm intelligence techniques become very popular and 

commonly used in solving many types of optimization problems due to many advantages, some of these advantages 

are (Kordon): 

• Easy to implement. 

• Fewer numbers of parameters to adjust. 

• Less memory to save (less space complexity). 

• Obtained good results in responsible time. 

Grey Wolf Optimizer (GWO) is a recently established SI optimization mechanism where their many researchers 

used it to solve many optimization problems such as Parameter Estimation in Surface Waves  (Song, el al., 2015), 

Economic Emission Dispatch (Song, et al., 2015) and Scheduling problem (Komaki and Kayvanfar, 2015). 

The inspiration for GWO is from a species of wolves called the Grey Wolf (Canis lupus), by imitating its hunting 

methods and hierarchical pack distribution, which are referred to as; Alpha α, Beta β, Delta δ, and Omega (ω); 

these are used to imitate the series of commands as shown in Figure 2. 

 
Figure 2. Hierarchy of Grey Wolf (Mirjalili and lewis, 2014) 

 

As seen in figure 2, sovereignty reclines from top to bottom. The first level is Alpha (α), which is the leader, which  

is not necessary to be the most robust wolf but the superior to other wolves in managing the pack. Thus it is 

responsible for the decision making. The second level is Beta (β), which helps Alpha in decision making. Thus, it 

represents as the mentor to Alpha and an educator to the pack. The third level is Delta (δ) which controls Omega 

(ω). This category could be Scouts , sentinels, elders, hunters, and caretakers. Finally, the fourth level is Omega (ω) 

that acts as the scapegoat and gives up to all dominant wolves. 

In the real world, there are many complicated events that occur simultaneously and in a temporal sequence like 

weather and galaxy formation, where that far exceeds the capabilities of single-processor architectures (Worboys, 

2005). 

Therefore, the concept of parallel computing seemed to increase performance and reduce computation time to 

solve these problems (Barney, 2010) where parallel machines break a single problem in parallel tasks that were 

performed simultaneously, as TSP problem. Parallel computing is much more suitable for modeling and simulating  

complex problems (D'Angelo, 2011). 

Hypercube is a multi-dimensional mesh of processors with exactly 2 processors in every dimension; this means 

that a two-dimensional hypercube is made up of processors p = 2 ^ d. For example, a zero -size hypercube is a 

single processor. In general, a hypercube (d + 1) -dimensional is constructed by connecting the corresponding two-

dimensional hypercube processors as shown in Figure 3 (Bhuyan and Agrawal, 1984). 
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Figure 3. Hypercube Interconnection network 

 

In this study, we decide to use hypercube because of its performance measure proved that it has a better 

performance compared with static network topologies (Kiasari, et al., 2008) wise of Diameter, Bisection Width, 

Arc Connectivity and the Cost as shown in Table1. And also, because of the topology of hypercube was 

implemented in many supercomputers such as Endeavour Supercomputer by NASA (Cathleen, 2011). 

The main contributions of this paper are summarized as follows: 

• This study adapted GWO to solving the TSP problem, its executed sequentially on different size of World 

TSP benchmarks and measure the performance in terms of execution time and optimal cost. 

• To compare the result of the GWO with other meta-heuristic algorithms, GA (genetic algorithm) and CRO 

(optimization of the chemical reaction) are chosen and adapted to solve the TSP, the performance metrics are 

measured in terms of execution times and optimal costs. 

• Development of the parallel GWO. The parallel GWO is developed on the basis of both data and computation 

distribution techniques through the hypercube interconnection network.  Data distribution technique is 

designed based on dividing the dataset map (cities) with a goal of achieving load balancing among the 

interconnection network. Computation distribution is provided by distributing GWO iterations through the 

interconnection network to reduce the computing time. 

• A comparison between PGOW (Parallel Grey Wolf Optimizer), PCRO (Parallel Chemical reaction 

optimization) and PGA (Parallel Genetic algorithm) in terms of execution time, parallel runtime, speedup, 

efficiency and optimal cost. The PGWO shows better performance results than PCRO and PGA.  

The remaining of this paper is structured as follows: In Section II, a work related to this study is presented, section  

III addresses our parallel model for GWO for solving TSP, then in Section IV, the analytical evaluation of the 

sequential and parallel version of TSP-GWO is presented. Section V shows the discussions of our experimental 

results. Finally, conclusions and future work are in section VI.  

2. Related Works  

Several researchers have been conducting research on solving TSP and apply their algorithm on different  

topologies; below are some of these very recent studies. 

A recent meta-heuristic algorithm used to solve TSP in (Kumbharana and Pandey, 2013), where authors used the 

Firefly Algorithm (FA) to solve TSP problem, the experimental results obtained on different size TSP instances. 

Authors show that the proposed algorithm provides better results than (ant colony optimization) ACO, genetic 

algorithm (GA) and simulated annealing (SA) in most of the instances. Also, in (Bhardwaj and Pandey, 2014), 

they presented a Parallel Ant Colony (ACO) algorithm to solve TSP in heterogeneous platform using the OpenCL 

framework. All the parameters of the algorithm in ant system are been  investigated to their best values as control 

parameters, where α and β represent the dependency of probability on the pheromone content or the heuristic and 

equal to α = 1, β = 5 and ρis the evaporation rate = 0.5. The parallel implementation is done on CPU and GPU 

using OpenCL, where GPU gives better results. In (AbdulJabbar and Abdullah, 2016), authors proposed a hybrid 

algorithm based on two metaheuristic methods: simulated annealing (SA) and tabu search (TS). The goal of using 

tabu search is to resolve the long computation times that take from SA by keeping the best -founded solution in 
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each SA iteration. By comparing with the basic version of SA, authors found the proposed approach reduces the 

time complexity by finding the optimal path (best solution) with a few numbers of iterations. In another study 

(Anjaneyulu, et al., 2014), they used approximation algorithms to find near-optimal solution, the approximation  

algorithm used for maximizat ion or minimizat ion based on the problem, when it comes to TSP it  is minimizat ion . 

They focused on a special case of TSP, which is Metric TSP (the distance between two cities is the same in each 

opposite direction), then they proposed a parallel two-approximation algorithm for metric TSP. Finally, they 

reported that the algorithm found near optimal solution with a significant reduction in runtime. In (Razali and 

Geraghty, 2011), authors have used the Genetic Algorithm (GA) but with Different Selection Strategies to solve 

the TSP problem, they firstly use Tournament selection strategy as a popular selection method in genetic algorithm 

then they try another selection strategy called Proportional Roulette Wheel Selection and as a final selection 

strategy, they use a Rank-based Roulette Wheel Selection. The algorithms are coded in MATLAB and tested by 

eight TSP instances. They found that GA with the rank-based roulette wheel selection always gives better solution 

quality than the other selection strategy. 

Because of the importance of TSP and its applications (Applegate, et al., 2007), this study presents a solution to 

the TSP by using the GWO, where GWO is a recent establish meta-heuristic optimization mechanisms and its 

success in solving many types of optimization problems with good results. To compare the result of GWO with  

alternative meta-heuristic algorithms, GWO will be compared with GA and CRO. GA regardless of achieving great 

success in solving many optimization problems, it is also used for comparison in most meta-heuristic optimization  

research like in (Shaheen and Sleit, 2016), (Ross and Corne, 1995) and (Ingber and Rosen, 1992). Also, CRO used 

to compared with GWO because it is one of the newest meta-heuristic algorithm where it also obtained good results 

in solving NP problems as in (Barham, et al., 2016), (Shaheen, et al.,2018) and (Sun, et al., 1990). 

3. Proposed Approach 

GWO is a new nature-inspired metaheuristic (Swarm intelligence) where this type of algorithms are inspired by 

natural systems (Mirjalili, et al., 2014). GWO gets its name from the nature of the social hierarchy of wolves, as 

well as their hunting behavior. The Hunting behavior of Grey Wolves is split into four procedures: (1) Chasing, (2) 

Encircling, (3) Hunting and (4) attacking the victim. In Chasing phase, The Algorithm considers that α is the best 

solution; β is the second best solution and δ is the third best solution. However, ω represents the rest candidate 

solutions. Thus the hunting is led by the dominant wolves (α, β, and δ). In other words; Grey Wolves could 

recognize the position of the prey through an iteration process and surround it as in encircling phase, Grey Wolves 

bounded the victim through the hunt (optimization) by calculating the distance between the location of the prey. 

In hunting phase, The hunt generally is led be the leader (α). However, sometimes β and δ contribute in hunting. 

In another hand, there is no idea about the position of the prey that represents the optimum. Therefore, the algorithm 

assumes that α, β, and δ has preferable knowledge about the position of prey. Thus, the algorithm saves the first 

three best solutions then update the locations of the rest wolves (ω) depending on the position of the dominant 

wolves (best search agent) and in attacking phase where it’s the final phase, the hunting proceeding obtained the 

optimization solution the prey stops proceeding.  

In this paper, we used the concept of GWO to solve TSP. The proposed solution is implemented in two approaches. 

In the first approach, the algorithm is implemented sequentially using the standard JAVA programming language 

where the second approach of the implementation uses Java multithreading and aims to make the most of CPU 

processing power. The reason for implementing two approaches of the algorithm is to demonstrate the feasibility  

of the parallel structure. The approaches are implemented in the most logical way possible. 

3.1 Sequential ALGORITHM: "GWO-TSP" 

In GWO, there are four types of wolfs: Alpha (α), Beta (β), Delta (δ), and Omega (ω) and the prey, wolfs applied 

the hunting methods to hunt prey, this is being implemented in a hierarchical way until Alpha wolf take the decision 

of attack. TSP contains number of cities while there is a cost of Travelling between each pair of cities, the objective 

is to find the shortest path going through all cities, which means a simple cycle tour, which starts and ends at city 

1. By applying GWO to find the possible solution for TSP, Figures 4 present the pseudo -code for the proposed 

"GWO_TSP" sequential algorithm, TABLE 1 shows the main attributes and their meaning related to the proposed 

algorithm "GWO_TSP", in comparison with wolfs meaning in GWO. 

 

 

 



mas.ccsenet.org Modern Applied Science Vol. 12, No. 8; 2018 

147 
 

Algorithm1: Sequential "GWO-TSP" 

Input: TSP problem. 

Output : Shortest tour among all cities  

1//Initialization phase 

2 Population size [].  

3 Preys : Initial and next preys selection size = 3;  

4 Population [ ].  

5 Select 3 random preys from city map and added as initial population.   

6   While Population.size < Population [ ] and FullTour(Population [ ]) // Iteration phase 

7    { 

8             For each Population [i]   

9                   Calculate the destination of all wolfs   

10      X α = next best wolf from city map. 

11      X β = next second wolf from city map. 

12      X δ = next third wolf from city map.  

13      Update Population as: 

14                  Population [i]  =  Population [i] + X α . 

15         Population [i+1] + X β  // New population 

16         Population [i+2] + X δ  //  New population    

17       Calculate fitness for each Population .     

18 End for 

19              If Population > Population.size  

20                   Remove most costly tour.  

21 End if 

22   } 

23   return X alpha // final stage 

Figure 4. Pseudo code of GWO for solving TSP. 

 

Table 1. Profile for GWO-TSP 

GOW meaning GWO-TSP meaning 

Gray wolf population Candidate solution: Tours  

Prey Strat city 

Gray wolfs The remaining cities 

Alpha (α) wolf Nearest city to the start city. 

Beta (β) wolf Second nearest city to the start city. 

Delta (δ) wolf Third nearest city to the start city. 

Number of iterations Number of solutions. 

Fitness function Current optimal TSP  solution. 

 

The GWO-TSP algorithm, as shown in Figure 4 (see lines 1, 6 and 23, present these three stages). First, the 

initialization stage can be shown in Figure 4 (see lines 1-5) to assign initial values for the algorithm parameters. 

Each individual in the Population is an array, which represents the maximum number of candidate solutions. While 

each of them consists a full tour as in Table 1. Next, initialize and as sign the value of three preys, this is because 

as the concept of GWO, its assumes that first three wolves (α, β, and δ) has preferable knowledge about the position 

of prey and as Table 1 each prey represent a city from the city map. Population (see line 4) is an empty array used 

to constructing the candidate solutions. In order to start building solutions, three preys (or cities) will be selected 

randomly from the city map (data-set) and added as an initial population where all towns that surrounding them 
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are considered the grey wolves which is the final step in the initialization stage. The goal of Iteration stage is to 

generate and build the candidate solutions (or tours) until reaching the best solution. Iteration stage is shown in 

Figure 4 (see lines 6-22). After generating the three required population as in the initialization stage, each of them 

will contain a prey that surrounded by a group of wolves. The function (see line 9) used to calculate the destination 

of all wolfs from the prey then returns the nearest three wolfs from the prey and added to Xα, Xβ, and Xδ respectively. 

Now, based on the positions of the three best wolves, the Xα will be added to the original population and two new 

population will be created and added the prey in each one plus Xβ and Xδ respectively. That's mean, each 

population will generate two new population and each of them will contain two preys. In other words, after the 

first iteration, the number of population will be equal nine and each of them will contain two preys. Next, the 

algorithm will calculate the fitness for each population, which means, the cost of Travelling between cities. While 

increasing of number of population, the function (see line 20) used to remove the most costly tour. This will happen 

when the number of population is larger than the allowed population size. Iteration stage keeps working until 

reaches the stopping criteria, two stopping criteria used to stop the iteration stage. Firstly, the number of population 

must be larger than the allowed population size, and each population should be contained a  full solution. Which 

means, as equal as the number of cities, this is done through FullTour function. In the final stage, the best solution 

found will be retrieved.  
To understand how this study uses GOW to optimize TSP problem, as in figure 5.a. It shows  a TSP problem which  

is an undirected graph of four cities and six edges, each edge has its own Travelling cost, which will be used in 

this example to represents the possible solutions. Based on TABLE 1, each element in GWO represent what its 

means in GWO-TSP, for instance, Gray wolf population in GWO represented in  GWO-TSP as the candidate 

solutions of TSP. By adapting the elements in GWO to our proposed algorithm, The example that was displayed 

in Figure 5.a this will become as shown in Figure 5.b. 

 
Figure 5. Solving TSP problem using GWO. a) TSP example. b) TSP-GWO example 

 

3.2 Parallel ALGORITHM: "GWO-TSP" 

The large number of possible solutions, even with a GWO, opens the possibility of parallelizing the solution for 

the TSP problem, in which the main objective of this paper is to study the possibility of parallelizing the GWO to 

solve the TSP problem. In our proposed model, we have created the parallel version of GWO (PGWO) that can be 

efficiently executed on the Hypercube interconnection network. 

For developing PGWO, original TSP map must be divided to achieve load balancing among all processors. In this 

study, We divide the problem of TSP into sub-problems by creating districts from the original map (dataset) during 

the partition operation, then we apply the GWO-TSP steps on each part of the district generated by the partition 

operation. The partition operation consists of two steps: 

• Find the highest and lowest values edges of the map. 

• Divide the map into multiple districts by subtracting the highest values from the lowest values then dividing 

the difference by the desired value. Figures 6.1 - 6.3 show how districts are created from a original map. 
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Figure 6. Splitting the TSP map into multiple districts  

 

The number of districts depends on the number of processors we use, for example, if the number of processors is 

16, then the number of districts must be at least equal16. The equation 7 was used to find the number of districts.  

D  = N                                        (7) 

Where D is the number of districts, N is the number of processors. Figure 7 presents the districts algorithm. 

 

Figure 7. Create districts algorithm 

 

As in Figure 7, District algorithm firstly read the city map and add cities on the x-axis and y-axis. Also, find the 

Border of the map by storing the Most Top City and theMost Bottom City values for x-axis and y-axis. Lines 12 – 

15, used to group the cities in districts depends on their location in the map using cities stored in first loop.  

As discussed in the introductory section, the hypercube interconnection network contains 2d nodes, where d is the 

number of hypercube dimension. we can find the number of dimensions of hypercube from the number of nodes 

using equation 8, where N is the number of nodes. 
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d = log2(N)                                    (8) 

To distribute districts over hypercube, label all nodes in the hypercube interconnection network, where the number 

of bits is required to label all nodes equal to the dimension value. For example, if the dimension is equal to 3, label 

all the nodes in three bits (000, 001, 010, ..., 111), which provides eight numbers of nodes. To distribute districts 

through the hypercube network, find d using equation 8, then check all the nodes. If d = 3, the loop will be executed 

three times, each time the districts are divided in half and send half to the next node along the dimension (d - 1). 

Each node, the same operation is performed until it reaches the dimension of d = 0 as an indicator to be stopped 

(see Figures 9). 

Figure 8 shows the routing algorithm for hypercube to partition and distribute the data all over nodes. 

Algorithm 3: Hypercube routing algorithm  

Input:  

D: Array of districts. 

doh: Dimension of hypercube.  

Output: District partition and distrubtion over hypercube. 

1.for (i:=0 to doh) {  

2. nextNode = D / 2.  

3. SOA(D, 0, part).  

4. D = UpdateD(D, part+1, |D|)  

5. } 

Figure 8. Hypercube routing algorithm 

 

In Figure 8, lines from 1 to 5 a loop equal to the value of hypercube dimension, keeps splitting the districts over 

all nodes in the hypercube. Line 2 finds the desired value for next node, in Line 3, SOA function responsible to 

split the original array of districts D, then send that desired value to the next node. Finally, UpdateD function 

responsible to update the districts array value at Line 4. 

Figure 9 shows the communication mechanism for d= 2. 

 

 
Figure 9. Communication mechanism over hypercube 

 

The computation distribution is provided by distribution the maximum population size from each district in order 

to reduce the computation time. As equation 9: 

population size = a * districtSize                                         (9) 

where a is a factor between [0-1], districtSize equals the number of cities in district and the population size is the 
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maximum number of candidate solutions. 

The data combination is performed by overturning the order of the steps in the distribution phase. After each node 

completes all the planned iterations, sends the best solution to the node that contains a complete route (shorter path) 

and links the solution with the solution that it provides, in the end, the master node will contain the final solution 

(full path). Figures 4 present the pseudocode for the proposed parallel algorithm "GWO_TSP".  

 

Figure 10. PGWO-TSP algorithm on the hypercube interconnection network 

 

4. Analytical Evaluation 

This section provides the analytical evaluation of the sequential GWO-TSP algorithm in term of time complexity  

and the parallel version on Hypercube interconnection network in terms of parallel time complexity, speedup, 

efficiency, and cost. 

4.1 Analytical Evaluation of Sequential GWO-TSP Algorithm 

As it is described in before, GWO-TSP consists of multiple steps, where initially create initial population then 

create new generation by Calculating the destination between cities. 

All the terms that precede (see line 6) are constants. As shown in Figure 4 (lines 1-5), the outer while loop is 

expected to run until reach the population size where each population must contain a Full solution, as shown in 

Figure 4 (lines 2-8). In the worst case, the number of population is equal to the number of cities which means O 

(n). Inside the main loop, another loop runs equal to population size as shown in Figure 4 (lines 8-18), where in 

each iteration, three cities are picked and updated the population O(n). The function in line 9 which used to 

Calculate the destination of all wolfs is require O(n) while line 10 to 16 are constants. In line 17, the time 

complexity for the function of Calculate the fitness value for each Population is O(n). Variables in lines 17 to 19 

are constants.  

The total time complexity of sequential GWOTSP is shown in Equation 10 where T is the time complexity, N is 

the number of population and C is constants:  

T (N) = O( C + N * ( N + C + N + C + N) + C                        (10) 

Equation 10 can be reduced to Equation 11 

T (N)   = O(2C + 3N2 + 2NC )                                (11) 

The largest term of equation 3 is n2, Thus, the final time complexity will be O (n2). 

4.2 Analytical Evaluation of GWO-TSP Algorithm on Hypercube 
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This section provides the analytical evaluation of GWO-TSP algorithm on Hypercube interconnection network in 

terms of parallel time complexity, speedup, and efficiency. 

4.2.1 Parallel Time Complexity 

The parallel execution time is equal to the total of computation time plus the total of communication time. The 

time required to apply the sequential GWO-TSP on a set of cities represents the computation time and the 

communication time is equal to the number of communication steps required in both phases, distribution and 

combination. 

The analytical evaluation of the complexity of the parallel execution time for all phases of the GWO-TSP algorithm 

over hypercube interconnection network is demonstrated by tracing the algorithm in Fig. 10, as shown in  Table 2. 

The overall complexity of the parallel execution time of phases 1-4 is shown in equation (12) where T is the 

complexity of time, N is the number of cities, P is the number of processors and d is the size of the hypercube.  

T(N, p) = O(n2) + O(d) + o(n/p * n2) + O(d + n)                      (12) 

Equation (12) can be reduced to Eq. (13). 

T(N, p) = O(n2 + d + n3/p)                                     (13) 

 

Table 2. All phases of GWO-TSP algorithm on Hypercube interconnection network. 

Phase 1 (Load  

balancing 

phase) 

Root processor executes the Create districts algorithm in fig.7. the execution will split the 

map  to a number of districts, from line 1- 3 the time complexity equal to O(5C+1), from 

line 4-10 the time complexity equal to O(n), finally, the time complexity for grouping cities 

in districts takes O(C×N2), where C is the number of cities in input data and N is the array of 

districts. The total time complexity is O(C+n +C× n2) ≈ O(n2) 

Phase 2 (Data 

distribution 

phase) 
In the hypercube interconnection network, the number of steps necessary to distribute the 

data through all  hypercube is required d steps, where d is the size of the hypercube, which 

is log P, the general execution time is O (d) 

Phase 3: Local 

Repetitive.  
All processors run the sequential GWO-TSP on each district. This will require N /P ×N2 time 

complexity, where N is the number of cities, P is the number of processors and N2 is the run 

time complexity of the sequential GWO-TSP. 

Phase 4: Data 

Combining 

Phase 
All processors will send the solution to the root node, this will be performed in log P steps 

which equals d and root processor required O(n) as time complexity to combining all 

solutions. The total time complexity is O(d + n)   

 

4.2.2 Speedup 

Speedup is an important measure for a parallel algorithm, used to calculate the relation of the sequential 

computation time and the parallel time as equation 14: 

S = TS/TP                                        (14) 

where TS is the time required by the sequential algorithm and TP is the time required by the parallel algorithm.  

The sequential time complexity for GWO-TSP is O(n2) and the parallel version is required which is illustrated in 

Eq. (3), the speedup of GWO-TSP over hypercube is shown in equation 15: 

S = n2 * p / n2 + d + n3/p                           (15) 

4.1.3 Efficiency 

One of the important factors to measure parallel performance is parallel efficiency which measures how much the 

processors being utilized in the interconnection networks. It is equal the ratio between speedup and the number of 

processors as equation 16: 

E = S / p                                   (16) 

Where E is the Efficiency, S is Speedup as equation 6 and p is the number of processors. 

Thus, the efficiency of the GWO-TSP algorithm on Hypercube is shown in equation (17). 
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E = n2 / n2 + d + n3/p                                 (17) 

5. Simulation Results  

For our experiments, we used a computer with Intel Core i5-3317U CPU 1.70GHz with 8 GB of RAM. The 

simulation for GWO, CRO, and GA has implemented in Java JDK 8 programming language. The algorithms were 

tested by 6 different size TSP problems taken from the World TSP (TSP website, 2009); XQF131, XQG237, 

PMA343, PKA379, PBL395, and PBN423. The parameters are fixed on follows: number of wolves equals the 

number of cities in each TSP instance and the maximum number of solutions equals 70% from the number of cities 

in the dataset, this value is selected to make the algorithm more scalable and to reduce both of computation time 

and the required space. For fairness, the same specifications and same stopping criteria are used in our simulations 

for all algorithms. 

5.1 Sequential Results 

Since GWO, CRO, and GA are meta-heuristic mechanisms, the results obtained in different executions could be 

different. Because that we repeat the simulation 25 times and record the results as shown in Table 3.  

 

Table 3. The experimental results of sequential GWO, CRO, and GA in terms of fitness value, quality of solution 

and the execution. 

   GWO    CRO    GA   

Instance 

name 

Optimal Best 

optimal 

Mean 

optimal 

Error 

rate(%) 

Time(Sec) Best 

optimal 

Mean 

optimal 

Error 

rate(%) 

Time(Sec) Best 

optimal 

Mean 

optimal 

Error 

rate(%) 

Time(Sec) 

XQF131 564 569 575 0.886 22.254 573 580 1.595 17.784 574 591 1.773 18.854 

XQG237 1019 1030 1033 1.079 54.985 1033 1037 1.668 44.624 1036 1038 1.766 42.241 

PMA343 1368 1385 1387 1.242 68.854 1385 1398 2.119 52.325 1400 1399 2.339 56.745 

PKA379 1332 1347 1349 1.126 82.325 1347 1360 1.726 74.365 1358 1361 1.951 72.251 

PBL395 1281 1296 1300 1.170 95.254 1296 1312 2.107 83.521 1311 1315 2.341 84.214 

PBN423 1365 1383 1386 1.318 112.542 1383 1395 1.831 88.124 1398 1405 2.417 92.248 

 

In Table 3, the first column shows the name of the instance (the numbers in the names indicate the nodes of each 

instance). The second column shows the best-known solution for each instance taken from the World TSP [42]. 

For each algorithm there are four columns, the best column shows the best fitness value of the best exe cution. The 

mean column shows the average quality of 25 executions of the algorithm. The error rate column shows the fitness 

function (minimum) of the best individual provided algorithm and the optimal TSPLIB. The error is calculated as 

in equation 18, finally, the time column shows the time needed to execute the entire program in seconds.  

𝐸𝑟𝑟𝑜𝑟 = (
𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 −𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) ∗ 100                           (18) 

Where Error is the relative value of difference from the optimum tour, Best Solution is the tour length obtained by 

the experiment and Optimal Solution is the tour length of optimum solution. 
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Figure 11. Quality of solutions for GWO, CRO, and GA 

 

 

Figure 12. Runtime chart for GWO, CRO and GA 

 

From Figure 11, it is clear that GOW always gives the highest solution quality (minimum traveling cost) for all 

TSP instances tested. This is followed by CRO and GA algorithms. However, the quality of solution reduces as 

the size of instance increase with an increase in execution time for all algorithms. 

From Figure 12, we can observe that the runtime for all algorithms is almost the same with a slightly different but 

the best runtime comes from CRO for some data instance such like PMA343 and PBN423. Also, it is clear that the 

experimental and theoretical time converge. 

5.2 Parallel Results 

For the Parallel results, we used a big TSP problem (IRW2802) taken from the World TSP, which contains 8423 

cities with 5533 lengths as the known optimal solution.  

In Table 2, the first column shows the number of processors, the time column shows the parallel time (best time) 

it takes to run the entire program in seconds on nodes. The third column shows the Speedup a ratio of the 

computation time of the sequential time and the parallel time as equation 14. The error rate column shows the error 

value of the fitness function (minimum) of the best individual as equation 18. 
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Table 4. Parallel time, Speedup and Error rate for PGWO, PCRO, and PGA. 

Num of  P  PGWO   PCRO   PGA  

 Time(Sec) Speedup Error rate Time(Sec) Speedup Error rate Time(Sec) Speedup Error rate 

1 223.42 N/A 5.852 191.58 N/A 8.954 182.54 N/A 9.872 

32 10.183 21.942 8.954 9.063 21.138 12.625 10.685 17.083 13.521 

64 5.486 40.725 9.715 4.901 39.012 13.851 7.661 23.827 14.841 

128 3.614 66.812 11.521 2.508 76.387 14.625 3.704 49.281 16.281 

256 2.335 95.683 11.842 2.081 92.061 15.212 2.898 63.162 15.852 

512 2.298 97.223 12.945 2.053 93.317 17.101 2.487 73.397 18.934 

1024 2.817 79.311 14.985 2.963 64.657 19.254 3.603 50.663 21.927 

 

 
Figure 13. Speedup for PGWO, PCRO, and PGA 

 

Figure 13 shows that speed-up increases in all the algorithms apart from the increase in the number of nodes used 

until a certain number of nodes begins to decrease. We can see that the speedup is almost linear for PGWO when 

it uses 32 to 256, while it is sub-linear when there are 512 processors and then begins to decrease. This is due to 

the communication overload in the 512 and 1024 processors scenario, which is much more than th at in 256 

processors or less. PCRO got better Speedup compared to PCRO and PGA. 

 

Figure 14. Quality of solutions for PGOW,PCRO, and PGA 

 

Comparing the error rate of fitness values from Figure 14, we find that in most cases the quality of the solutions 

generated by PGWO is better than PCRO and PGA. This is because in GWO, populations (Solutions) are built 

from scratch, where the CRO and GA populations are created randomly. The results obtained by CRO are better 
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than GA, because there are four types of reactions that improve the solutions more than the GA. Moreover, with  

the increase in the number of processors, the error rate has increased. This is mainly due to the division data and 

the number of iterations on the processors. 

 
Figure 15. Relative efficiency for GWO, CRO and GA 

 

Figure 15 shows the relative efficiency for PGOW, PCRO, and PGA. As it shows that efficiency decreases in all 

the algorithms aside with increasing the number of nodes used, since the amount of data shared for each node 

decreases, so the difference between communication time and computation time is reduced, which affects the 

speedup. linear with the increase in the number of nodes used, which in turn affects the efficiency, but we can see 

that the efficiency of GWO is better than PCRO, PGA, where the worst efficiency is obtained from PGA. 

6. Conclusions and Future Work 

This study introduces a parallel model of GWO algorithm to solve the TSP problem called "GWO-TSP" in a 

hypercube interconnection network. The analytical evaluation of the sequential and parallel is presented. GWO is 

compared first with the sequential GWO and then with PCRO and PGA. The simulations are performed by TSP 

instances of different sizes. To be honest, the same stopping criteria are used in our simulations for all algorithms. 

The results show that GWO for TSP can improve the fitness value and reduce the computation time with a higher 

speed-up and better parallel efficiency.  

For future work, we intend to compare GWO-TSP with other meta-heuristic algorithms, design and test a 

deferential interconnection network. 
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