

Vol. 3, No. 1 January 2009

# Fabrication of LaNiO<sub>3</sub> Porous Hollow Nanofibers via an Electrospinning Technique

Xiangting Dong (Corresponding author), Jinxian Wang, Qizheng Cui, Guixia Liu & Wensheng Yu School of Chemistry and Environmental Engineering Changchun University of Science and Technology Changchun 130022, China

Tel: 86-431-8558-2574 E-mail: dongxiangting888@yahoo.com.cn

This work was financially supported by the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20040125, 20060504, 20070402), the Scientific Research Planning Project of the Education Department of Jilin Province (Under grant Nos. 200224, 2005109, 2007-45)

#### **Abstract**

Polyvinyl Pyrrolidone(PVP)/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite nanofibers were fabricated via an electrospinning technique. SEM micrographs indicated that the surface of the prepared composite fibers was smooth, and the diameters of the nanofibers were in the range of 1-3 $\mu$ m. XRD analysis revealed that the composite nanofibers were amorphous in structure. LaNiO<sub>3</sub> nanofibers were fabricated by calcination of the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers. The diameters of LaNiO<sub>3</sub> nanofibers were smaller than those of the relevant composite fibers. The surface of the LaNiO<sub>3</sub> nanofibers became coarse with the increase of calcination temperatures. LaNiO<sub>3</sub> porous hollow nanofibers formed by nanoparticles were acquired when firing temperature was 600-900°C. SEM images indicated that the diameters of the synthesized LaNiO<sub>3</sub> nanofibers ranged from 500 to 800nm, and their lengths were greater than 100 $\mu$ m. XRD analysis revealed that LaNiO<sub>3</sub> nanofibers were trigonal in structure with space group R3m. Possible formation mechanism for LaNiO<sub>3</sub> nanofibers was preliminarily proposed.

Keywords: LaNiO<sub>3</sub>, Lanthanum, Nickel, Nanofibers, Electrospinning

#### 1. Introduction

The science and technology of nanostructured materials is advancing at a rapid pace. Over the past decade, the preparation and functionalization of one-dimensional nanostructured materials has become one of the most highly energized research fields. One-dimensional nanostructured materials, such as nanowires, nanorods, nanowhiskers and nanofibers, have stimulated great interest due to their importance in basic scientific research and potential technological applications. They are expected to play an important role as both interconnects and functional components in the fabrication of nanoscale electronic and optoelectronic devices. In order to obtain these materials, various preparation methods have been developed including arc discharge, laser ablation, template, precursor thermal decomposition, and other methods. Electrospinning technique is widely applied to prepare polymers nanofibers. Recently, some inorganic compounds nanofibers have been prepared by electrospinning technique using electrospun fibers of polymer/inorganic composite as the precursor. This processing involved the following three steps: (1) Preparation of a gel with suitable inorganic precursor and proper polymer, and achieving the right rheology for electrospinning process; (2) Electrospinning of the gel to obtain fibers of polymer/inorganic precursors composite; (3) Calcinations of the composite fibers to obtain final oxide fibers. It is important, however, to control all of the above three steps in order to obtain high quality fibers with the desired final properties. LaNiO<sub>3</sub> has attracted much interest recently due to their specific electrical and catalytic properties. A few methods on the preparation of LaNiO<sub>3</sub> nanocrystalline materials were reported. However, to the best of our knowledge, there have been no reports on the preparation of LaNiO<sub>3</sub> nanofibers by electrospinning. In this paper, LaNiO<sub>3</sub> nanofibers were fabricated by calcination of the electrospun fibers of PVP/(lanthanum nitrate and nickel acetate) composite, and some new results were obtained.

## 2. Experimental section

## 2.1 Chemicals

Polyvinyl pyrrolidone(PVP)(Mr≈10000) and nickel acetate tetrahydrate[Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O] were purchased from Tianjin Kermel Chemical Reagents Development Center. Lanthanum nitrate hexahydrate[La(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O] was obtained

from Tianjin Guangfu Institute of Fine Chemicals. All chemicals were analytically pure and directly used as received without further purification. Distilled water was used as solvent.

# 2.2 Preparation of PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite gel

PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite solution was prepared by dissolving 29.9700g of PVP powders, 5.6213g of La(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and 3.2306g of Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O in 26.33g of distilled water, and stirring for 10h, then remaining motionlessly for 2h. Thus, a viscous gel of PVP/[La(NO<sub>3</sub>)<sub>3</sub>+ Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite containing 46%(wt%) PVP, 10%(wt%) metallic salts, 44%(wt%) H<sub>2</sub>O, and the molar ratio 1:1 of La<sup>3+</sup> to Ni<sup>2+</sup> were obtained for electrospinning processing.

## 2.3 Fabrication of PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers and LaNiO<sub>3</sub> nanofibers

The setup used for electrospinning was indicated in Fig. 1. The above composite gel of PVP,  $La(NO_3)_3$ ,  $Ni(CH_3COO)_2$  and  $H_2O$  mixture was contained in a plastic syringe with a stainless steel needle on its top. A copper wire connected to a DC high-voltage generator was placed in the gel, and the gel was kept in the syringe by adjusting the angle between syringe and the fixing bar. A grounded aluminum foil served as counter electrode and collector plate. A voltage of 18 kV was applied to the composite gel and a sprayed dense web of fibers was collected on the aluminum foil. The collected fibers were  $PVP/[La(NO_3)_3+Ni(CH_3COO)_2]$  composite fibers. The prepared composite fibers were dried initially at  $70^{\circ}$ C for 12h under vacuum, and then calcined at a heating rate of  $120^{\circ}$ C/h and remained for 10h at  $300^{\circ}$ C,  $600^{\circ}$ C and  $900^{\circ}$ C, respectively. Thus,  $LaNiO_3$  nanofibers were obtained when calcinations temperature is  $600-900^{\circ}$ C.

#### 2.4 Characterization methods

XRD analysis was performed with a Holland Philips Analytical PW1710 BASED X-ray diffractometer using Cu  $K\alpha_1$  radiation, the working current and voltage were 30mA and 40kV, respectively. Scans were made from 10° to 80° at the speed of 3°/min, and step was 0.05°. The morphology and size of the fibers were observed with a S-4200 scanning electron microscope made by Japanese Hitachi company. FTIR spectra of the samples were recorded on BRUKER Vertex 70 Fourier transform infrared spectrophotometer made by Germany Bruker company, and the specimen for the measurement was prepared by mixing the sample with KBr powders and then the mixture was pressed into pellets, the spectrum was acquired in a wave number range from  $4000 \text{cm}^{-1}$  to  $400 \text{cm}^{-1}$  with a resolution of  $4 \text{cm}^{-1}$ .

## 3. Results and discussion

#### 3.1 XRD patterns

In order to investigate the lowest crystallizing temperature and the variety of phases, the  $PVP/[(La(NO_3)_3+Ni(CH_3COO)_2)]$  composite fibers and samples obtained by calcining the composite fibers at different temperatures for 10h were characterized by XRD, as indicated in Fig. 2. The results showed that the  $PVP/[La(NO_3)_3+Ni(CH_3COO)_2]]$  composite fibers were amorphous in structure, only a broad peak was located around  $20^\circ$ , it was the typical peak of the amorphous polymer, indicating that the composite fibers were amorphous in structure. LaNiO<sub>3</sub> was not formed at  $300^\circ$ C, and the sample was the mixture of metallic oxides. The polycrystalline LaNiO<sub>3</sub> nanofibers with single phase were synthesized when calcination temperature was in the range of  $600-900^\circ$ C, the d(spacing between crystallographic plane)values and relative intensities of LaNiO<sub>3</sub> diffraction peaks were consistent with those of JCPDS standard card(34-1181), the crystal structure of the prepared LaNiO<sub>3</sub> was trigonal system in structure with space group is  $R\bar{3}m$ .

#### 3.2 SEM images

In order to study the morphology and size of the as-synthesized fibers, the prepared fibers were investigated by SEM, as shown in Fig. 3. As seen from Fig. 3, the morphology and size of the fibers varied strongly with the increase of calcination temperatures. The surface of the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+ Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers was very smooth, and the diameter of the composite fibers was in the range of 1µm-3µm. The morphology and size of the fibers at 300°C were almost the same as those of the composite fibers. The surface morphology of LaNiO<sub>3</sub> nanofibers became coarse with the increase of calcinations temperatures. LaNiO<sub>3</sub> porous hollow nanofibers formed by nanoparticles were acquired at 600°C-900°C. SEM analysis indicated that the diameters of the synthesized LaNiO<sub>3</sub> nanofibers were in the range of 500nm-800nm, and their lengths were greater than 100µm. The diameters of LaNiO<sub>3</sub> nanofibers were smaller than those of the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers owing to the decomposition and evaporation of PVP, NO<sub>3</sub> and CH<sub>3</sub>COO.

## 3.3 FTIR spectra analysis

Pure PVP, PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers and LaNiO<sub>3</sub> nanofibers(obtained by calcination of the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers at 900°C for 10h) were analyzed by FTIR, as shown in Fig. 4. As seen from Fig.4, PVP(Fig.4a) and PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers(Fig.4b) had the identical spectra, but absorption peaks intensity of spectrum for PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers was lower than those of spectrum for pure PVP. This resulted from the lower content of PVP in the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite

fibers. All absorption peaks were attributed to PVP at  $3445 \text{cm}^{-1}$ ,  $2955 \text{cm}^{-1}$ ,  $1668 \text{cm}^{-1}$ ,  $1424 \text{cm}^{-1}$ , and  $1289 \text{cm}^{-1}$ , corresponding to the stretching vibrations of hydroxyl group( $v_{O-H}$ ), C-H bond( $v_{C-H}$ ), carbonyl group( $v_{C-O}$ ), C-H bond( $v_{C-H}$ ), and C-N bond or C-O bond( $v_{C-N}$  or  $v_{C-O}$ ), respectively. It was seen from Fig. 4c that all peaks of PVP disappeared, and at low wave number range, new absorption peaks at 601, 563,  $428 \text{cm}^{-1}$  appeared. The new absorption peaks were ascribed to the vibration of metal-oxygen bonds, indicating that LaNiO<sub>3</sub> was formed. The results of FTIR analysis were in good agreement with XRD results.

3.4 Possible formation mechanism of LaNiO<sub>3</sub> porous hollow nanofibers

Possible formation mechanism of LaNiO<sub>3</sub> porous and hollow nanofibers was described as follows. La(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O and PVP were mixed with distilled water to form gel with certain viscosity. PVP acted as template during the formation processing of LaNiO<sub>3</sub> nanofibers. La<sup>3+</sup>, Ni<sup>2+</sup>, NO<sub>3</sub><sup>-</sup> and CH<sub>3</sub>COO<sup>-</sup> were mixed with or absorbed onto PVP molecules to fabricate PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers under electrospinning. During calcination treatment of the composite fibers, solvent water containing La<sup>3+</sup>, Ni<sup>2+</sup>, NO<sub>3</sub><sup>-</sup> and CH<sub>3</sub>COO<sup>-</sup> ions in the composite fibers would remove to the surface of the PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers and eventually evaporated from the composite fibers. Thus, La<sup>3+</sup>, Ni<sup>2+</sup>, NO<sub>3</sub><sup>-</sup> and CH<sub>3</sub>COO<sup>-</sup> ions would also remove to the surface of the composite fibers brought by removed water. With the increasing in calcination temperature, PVP, NO<sub>3</sub><sup>-</sup> and CH<sub>3</sub>COO<sup>-</sup> would oxidize and volatilize rapidly, La<sup>3+</sup> and Ni<sup>2+</sup> were oxidized into LaNiO<sub>3</sub> crystallites, and many crystallites were combined to form small LaNiO<sub>3</sub> nanoparticles, and these nanoparticles were mutually connected to generate hollow-centered and porous LaNiO<sub>3</sub> nanofibers. It was found from experiments that the average molecular weight of PVP and PVP content in the starting mixed gel had important impact on the formation of LaNiO<sub>3</sub> porous hollow nanofibers. Further work is under way.

#### 4. Conclusions

- 4.1 PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers were fabricated by electrospinning. Polycrystalline LaNiO<sub>3</sub> nanofibers were synthesized by calcining the relevant composite fibers at 600-900°C.
- 4.2 XRD analysis revealed that the composite fibers were amorphous in structure. The crystal structure of LaNiO<sub>3</sub> nanofibres was trigonal system in structure with space group  $R\bar{3}_m$ .
- 4.3 SEM micrographs indicated that the surface of the prepared composite fibres was smooth, and the diameters of the composite fibres were in the range of 1-3μm. The diameters of LaNiO<sub>3</sub> nanofibers were smaller than those of the composite fibers. The surface of the LaNiO<sub>3</sub> nanofibers became coarse with the increase of calcination temperatures. LaNiO<sub>3</sub> porous and hollow nanofibers formed by nanoparticles were acquired when calcining temperature was 600-900°C. The diameters of LaNiO<sub>3</sub> nanofibers were in the range of 500nm-800nm, and their lengths were greater than 100μm.

## References

Duan, X. F., Huang, Y., Agarwal, R., Lieber, C. M. (2003). Single-nanowire electrically driven lasers. *Nature*, 421, 241-245.

Hu, X. K., Qian, Y. T., Song, Z. T., et al. (2008). Comparative study on MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> nanobelts: structure and electric transport. *J. Chem. Mater.*, 20(4), 1527-1533.

Huynh, W. U., Dittmer, J. J., Alivisatos, A. P. (2002). Hybrid nanorod-polymer solar cells. *Science*, 295, 2425-2427.

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58.

Kar, S., Chaudhuri, S. (2006). Shape selective growth of CdS one-dimensional nano-structures by a thermal evaporation process. *J. Phys. Chem. B*, 110(10), 4542-4547.

Li, A. D., Ge, C. Z., Di, P. L., et al. (1997). Fabrication and Electrical properties of sol-gel derived BaTiO<sub>3</sub> films with metallic LaNiO<sub>3</sub> electrode. *Appl. Phys. Lett.*, 70(12), 1616-1618.

Li, D., Xia, Y. N. (2004). Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. *Nano Lett.*, 4(5), 933-938.

Li, D., Xia, Y. N. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater., 16(14), 1151-1170.

Liang, X. Y., Ma, Z., Bai, Z. C., et al. (2002). Properties and sonochemical preparation of nanostructured LaNiO<sub>3</sub>. *Acta Physico-Chimica Sinica*, 18(6), 567-571.

Mohapatra, S. K., Misra, M., Mahajan, V. K., et al. (2008). Synthesis of Y-branched TiO<sub>2</sub> nanotubes. *Materials Letters*, 62, 1772-1774.

Morales, A. M., Lieber, C. M.(1998). A laser ablation method for the synthesis of crystalline semiconductor nanowires. *Science*, 279, 208-211.

Pan, Z. W., Dai, Z. R., Wang. E.L. (2001). Nanobelts of semiconducting oxides. Science, 291, 1947-1949.

Shao, C. L., Guan, H. Y., Liu, Y. C., et al. (2004). A novel method for making ZrO<sub>2</sub> nanofibres via an electrospinning technique. *J. Crystal Growth*, 267, 380-384.

Shi, W. S., Zheng, Y. F., Wang, N., et al. (2001). A general synthetic route to III-V compound semiconductor nanowires. *Adv. Mater.*, 13, 591-594.

Wang, Y. P., Zhu, J. W., Yang, X. J., et al. (2006). Preparation and characterization of LaNiO<sub>3</sub> nanocrystals. *Mater. Res. Bull.*, 41(8), 1565-1570.

Yang, Q. H., Fu, X. X. (2003). Analysis of photocatalytic oxidation activity of nano-LaMO<sub>3</sub>(M=Cr Mn, Ni, Co) compounds. *J. Chin. Ceram. Soc.*, 31(3), 254-256.

Zhang, S. H., Dong, X. T., Xu, S. Z., et al. (2007). Preparation and characterization of TiO<sub>2</sub>@SiO<sub>2</sub> submicron-scaled coaxial cables via a static electricity spinning technique. *Acta Chimica Sinica*, 65(23), 2675-2679.

Zhang, S. H., Dong, X. T., Xu, S. Z., et al. (2008). Preparation and characterization of TiO<sub>2</sub>/SiO<sub>2</sub> composite hollow nanofibers via an electrospinning technique. *Acta Materiae Compositae Sinica*, 25(3), 138-143.

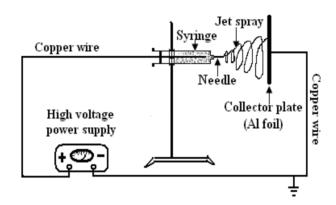



Figure 1. Schematic diagram of electrospinning setup

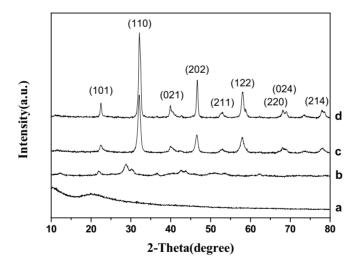



Figure 2. XRD patterns of samples

a. PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers b. 300°C c. 600°C d. 900°C

Modern Applied Science January, 2009

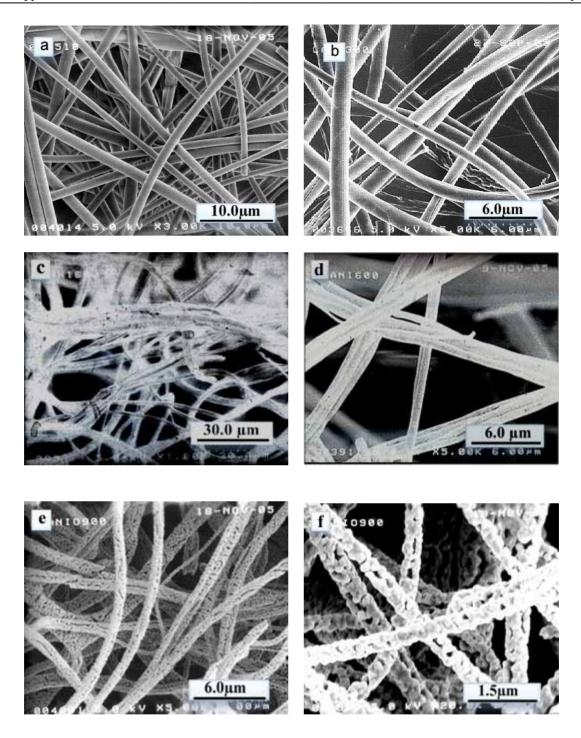



Figure 3. SEM micrographs of the fibers obtained at different temperatures a. PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers b. 300°C c. 600°C(Low magnification) d. 600°C(High magnification) e. 900°C(Low magnification) f. 900°C(High magnification)

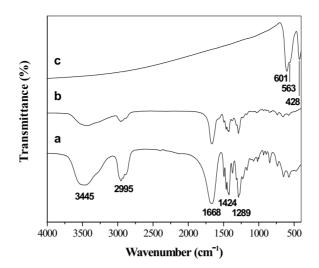



Figure 4. FTIR spectra of the samples a: PVP b: PVP/[La(NO<sub>3</sub>)<sub>3</sub>+Ni(CH<sub>3</sub>COO)<sub>2</sub>] composite fibers c: LaNiO<sub>3</sub> nanofibers