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Abstract  
Geostatistical interpolation is widely used to map spatial variability in physical and chemical properties of soil, 
such as organic matter content, particle density; and pH. Geostatistical interpolation is a branch of applied 
science which predicts spatial concentrations at unknown locations at a study area by incorporating limited 
measured data, which is a major advantage over classical statistics. Although many studies applied geostatistical 
interpolation in agricultural land, there are still gaps in knowledge in selecting suitable models to map soil 
properties on a large geographical location. The objectives of this paper were to examine and to map the spatial 
distribution of the soil physico-chemical properties, including electric conductivity (EC), pH, sodium absorption 
ratio (SAR), organic matter (OM), percentage of sand, silt and clay, bulk density (ρb), saturate percentage (SP), 
and mean weight diameter (MWD), at 800 hectares of agro-industrial land at Sharifabad, Qazvin, Iran. The soil 
samples were collected in total 275 points in a regular grid (100 × 100m) over the study area. The exploratory 
statistical analysis was applied on the collected data for understanding the distribution of the dataset. The silt 
content, clay content and OM data showed normal frequency distribution, and the pH data show near to normal 
frequency distribution. The remaining soil properties data, including SAR, EC, SP, MWD, sand content and bulk 
density showed log-normal distribution, which was identified by the normality test of Kolmogorov-Smirnov with 
an error probability of 1%. The spatial characteristics of the dataset were assessed by semivariogram models in 
GS+ and GIS 10.3 software. Among the four different semivariogram models, namely linear, exponential, 
Gaussian and spherical, the best performing model was chosen following the highest R2 and lowest error values. 
The predictive geostatistical interpolation maps for each variable were drawn using ordinary kriging model.  
Keywords: geostatistics, soil properties, ordinary kriging, spatial variability, variogram 
1. Introduction 
The soil properties such as pH, cation exchange capacity, calcium carbonate and organic matter show spatial 
variation across a study area; therefore, soil properties are studied across the world as it has application in the 
planning and management of industrial and agricultural land (Wang, Gertner, Parysow, & Anderson, 2000).In 
general, the soil properties are similar to the adjacent sampling sites compared to the distant sampling sites 
(Wang et al., 2000).Many studies applied classical statistical method to quantify spatial characteristics in soil 
properties (Salehi, Safaei, Esfandiarpour-Borujeni, & Mohammadi, 2013; Yemefack, Rossiter, & Njomgang, 
2005). However, soil physico-chemical characteristics often exhibit spatial dependency, which cannot be 
captured by classical statistical methods (Burrough, 1993; Lin, Wheeler, Bell, & Wilding, 2005).To overcome 
this issue, many researchers applied geostatistical interpolation methods in estimating the spatial variability in 
soil properties (Cambardella et al., 1994; Webster & Oliver, 2007). 
Geostatistical interpolation models are very effective tool in estimating spatial variations of soil properties at 
large geographic areas (Sokouti & Mahdian, 2011). In theory, the geostatistical models in corporate limited 
number of field measurement data to a large geographical area and estimate concentration surface of the 
variables over the whole study area(Sokouti & Mahdian, 2011). The application of geostatistical interpolation 
models to soil properties’ spatial dataareimportant for accurate soil management (Goovaerts, 1999);(Sokouti & 
Mahdian, 2011). 
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The kriging is a well-established geostatistical interpolation model which is based on a logic of weighted moving 
average (Theodossiou & Latinopoulos, 2006). Mohammadi et al. (2000) applied both kriging and linear 
regression models in the Iran to quantify spatial distribution of several soil properties, including electrical 
conductivity, saturation percent, sodium absorption ratio and its percentage. The study concluded that the kriging 
was the preferred method in estimating spatial distribution of soil properties compared to linear regression 
(Mohammadi, 2000). Similarly, the kriging method was applied in many previous studies to map depth and 
thickness of soil materials (Bourennane, King, & Couturier, 2000; Marinoni, 2003; Penížek & Borůvka, 2006) as 
well as characterize soil textures (Jang, Chen, & Kuo, 2013). 
In China,Sun, Zhou, and Zhao (2003) observed spatial variations in soil properties, including pH, organic matter, 
available phosphorus and available potassium, with a significant spatiotemporal variation in phosphorus contents 
in soil compared to pH levels. Wang, Zhang, & Huang (2009) found that spatial variability in soil carbon content 
was linked to the regional topography and soil types. Ghasemi et al. (2003) estimated the effect of landform and 
land-use parameters to the spatial variability of physico-chemical properties of soil at Khuzestan, Iran. The study 
found an increase in soil salinity from the north to south of the sampled area. The soil properties showed 
temporal and spatial variations due to the inefficient soil management, fertilization issues, and crop rotation 
(Quine & Zhang, 2002; Yemefack et al., 2005). 
Overall, the application of geostatistical interpolation techniques isan important method for accurate soil 
management and understanding spatial variations in the soil properties. This study aimed to conduct a 
comprehensive investigation on the spatial variation of chemical properties of soil at Qazvin province, Iran. The 
study area consisted of agricultural and industrial land with an area of approximately 800 hectors. In total 275 
soil samples were collected across the study area for the laboratory analysis. The soil samples were analysed to 
quantify the concentration of six soil chemical properties, including pH, electrical conductivity (EC), cation 
exchange capacity (CEC), percentage of calcium carbonate (CCE), sodium absorption ratio (SAR), and organic 
matter (OM)), and the recorded data were stored for the further analysis. At the end, the recorded spatial data 
were incorporated in to geostatistical interpolation models to generate predictive spatial map. 
2. Methods and Materials 
2.1 Study Design 
The study was carried out in the northern plains of Sharifabadcity at Qazvin province, Iran, consisting of an area 
of 800 hectares of agricultural and industrial lands. The geographical coordinate of the study area lies between 
50°41′E and35°50′N to36°19′N. The minimum and maximum annual average temperature at the study location 
are 2 °C and 18 °C, respectively, and July and August are the warmest and January and February are the coldest 
months of a year. The average elevation of the study area is 1250 meters above mean sea level. Figure 1 shows 
the study area and 275 soil sampling points.  
2.2 Sample Collection 
The aerial photos of the study area were used to identify and separate the different landscapes and land forms. In 
total 275 soil samples were collected across the study area with a uniform 100×100 meters grid and the topsoil 
depths at each sampling point were ranged between of 0 to 15 cm. On average 3 kilograms of the soil samples 
were collected at each sampling location. 
2.3 Laboratory Analyses 
The collected soil samples at each sampling location were first air-dried and then passed through a 
two-millimetre sieve. The electrical conductivity of the soil samples was measured by electrodes inserted 
directly into soil water which was extracted from a Lysimeter. The soil pH was measured by pH meter, with the 
mixing ratio of the soil sample to water was 1:1 (Rhoades, 1982).The sodium content in the soil solution was 
measured using a flame photometer, and calcium and magnesium using complexometry method. The SAR of 
each the soil samples was calculated using the equation (1). 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑁𝑁

�𝐶𝐶𝐶𝐶+𝑀𝑀𝑀𝑀
2

                                                                                                                                                                    (1) 

The CEC was calculated using sodium acetate at pH 8.2 (Rhoades, 1982).The CCEwas recorded by pressure 
Calcimeter (Olsen, Sommers, & Page, 1982), and the OM in the soil samples was calculated using Walkley and 
black methods (Lal, 2004). 
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Figure 1. Themap shows the geographic location of the study area in Sharif Abad city at Qazvin province, 

Iran,and position of sampling points across the study area 
 
2.4 Classical Statistical Analysis 
The exploratory statistical analysis was performed using SPSS 21 software. The distribution of the collected data 
was evaluated using the significance test of skewness (Zar, 1984). When the recorded data were lacking normal 
frequency distribution, the distribution was tested against logarithmic scale. 
2.5 Geostatistical Approaches 
2.5.1 Variogram Analysis 
A variogram can characterize the spatial variability of random variables between two locations. In practice, an 
experimental variogram,γ(h), is used to calculate pairs of data separated by a vector, h (Isaaks & Srivastava, 
1989). 

𝛾𝛾(ℎ) = 1
2𝑁𝑁(ℎ)

�∑ [𝑧𝑧(𝑢𝑢𝑖𝑖 + ℎ) − 𝑧𝑧(𝑢𝑢𝑖𝑖)]2𝑛𝑛(ℎ)
𝑖𝑖=1 �                                                      (2) 

where N(h) is the number of data pairs, z(ui)is the random variable, and h is the lag distance.  
In this study, the experimental variogram were fitted by a theoretical models, namely spherical, exponential and 
Gaussian models and the nugget effect (ci), sill (c), and range (a) were recorded (Cheng et al., 2007).When the 
variogram value in a theoretical model levels out at a certain lag distance, the beginning distance is the range 
(Fig. 2). The nugget effect represents the variogram value greater than zero at zero lag distance, which is 
attributed to the measurement errors or spatial sources of variation at distances smaller than the sampling interval. 
When the variogram model reaches the range, the variogram value minus the nugget effect is called the sill 
(Isaaks & Srivastava, 1989).The functions of the spherical (eq. 3), exponential (eq. 4), and Gaussian (eq. 6) 
models are defined as follows (Isaaks & Srivastava, 1989): 
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�𝛾𝛾(ℎ) = 𝑐𝑐0 + 𝑐𝑐 �1.5 �ℎ
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𝑎𝑎
�
3
� ,ℎ ≤ 𝑎𝑎

𝛾𝛾(ℎ) = 𝑐𝑐0 + 𝑐𝑐 ,ℎ > 𝑎𝑎
                              (3) 

𝛾𝛾(ℎ) = 𝑐𝑐0 + 𝑐𝑐 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 3ℎ
𝑎𝑎
��                                  (4) 

𝛾𝛾(ℎ) = 𝑐𝑐0 + 𝑐𝑐 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 3ℎ
𝑎𝑎
�
2
�                                 (5) 

When lag distance is short, the spherical, exponential, and Gaussian variogram models typically exhibit linear, 
fast, and slow increases, respectively. This study selected the final variogram models based on least-squares (R2) 
and mean squire error (MSE) value. The variograms were calculated in different directions to measure the 
anisotropy of spatial variability. In general, the variogram models include geometric and zonal anisotropies 
(Deutsch, Srinivasan, & Mo, 1996). The geometric anisotropy occurs when the range varies with the direction of 
the variogram for the constant sill. The zonal anisotropy occurs when both the range and sill vary with the 
direction of the variogram (Cheng et al., 2007). This study considered only the geometric anisotropy. 
2.5.2 Ordinary Kriging 
Ordinary kriging (OK) is the most fundamental geostatistical method for modelling spatial distributions of 
random variables, which is a linear weighted average interpolation technique. The OKestimator equation is 
expressed as (Isaaks & Srivastava, 1989): 

𝑍𝑍∗(𝑢𝑢0) = ∑ 𝜆𝜆𝑗𝑗𝑛𝑛
𝑗𝑗=1 �𝑢𝑢𝑗𝑗�𝑍𝑍(𝑢𝑢𝑗𝑗)                                (6) 

Where λj is a weighting factor of Z(uj). 
OKis unbiased for expected values of estimators and random variables, and it minimizes the variance of 
estimation errors (Isaaks & Srivastava, 1989). In addition, this kriging estimator provides a variance of 
estimation errors termed kriging variance, which quantifies the uncertainty of the estimate at each site (Cheng et 
al., 2007) 
2.5.3 Indicator Kriging 
Indicator kriging (IK) is a nonparametric geostatistical method for estimating the probability in which the 
attribute values are not greater than a specific threshold, zk, at a given location u (Goovaerts, 1997). In the IK, the 
spatial variable (Z(u)) is first transformed into an indicator variable with a binary response which is expressed as 
the equation below (Goovaerts, 1997):  

𝐼𝐼(𝑢𝑢; 𝑧𝑧𝑘𝑘) = �1, 𝑖𝑖𝑖𝑖 𝑍𝑍(𝑢𝑢) ≤ 𝑧𝑧𝑘𝑘   ,𝑘𝑘=1,2,…..𝑚𝑚
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                   (7) 

The expected value of I(u; zk) is conditional on n surrounding data which is expressed as follows (Goovaerts, 
1997): 

𝐹𝐹�𝐼𝐼�𝑢𝑢; 𝑧𝑧𝑘𝑘 ∥ (𝑛𝑛)�� = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝{𝑍𝑍(𝑢𝑢) ≤ 𝑧𝑧𝑘𝑘 ∥ (𝑛𝑛)} = 𝐹𝐹�𝑢𝑢;  𝑧𝑧𝑘𝑘 ∥ (𝑛𝑛)�                    (8) 

whereF (u; zk|(n)) is the conditional cumulative distribution function (ccdf) of Z(u)≤ zk. (Cheng et al., 2007). 
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Figure 2. The components of a theoretical variogram include nugget effect (C0), sill and range (a) 

 
2.5.4 Cross-Validation 
The model performance was assessed by cross-validation, in which the measured data are predicted from the 
applied model. This study used the mean standard error (MSE) and mean square standard error (MSSE) 
parameters to assess the performance of the variogram model and the kriging estimator. The two parameters are 
defined as below (Chiles & Delfiner, 2009): 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑧𝑧∗(𝑢𝑢𝑖𝑖)−𝑧𝑧(𝑢𝑢𝑖𝑖)

𝜎𝜎𝑘𝑘(𝑢𝑢𝑖𝑖)
𝑁𝑁
𝑖𝑖=1                                  (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ [𝑧𝑧∗(𝑢𝑢𝑖𝑖)−𝑧𝑧(𝑢𝑢𝑖𝑖)]2

𝜎𝜎𝑘𝑘
2(𝑢𝑢𝑖𝑖)

𝑁𝑁
𝑖𝑖=1                           (10) 

Where z*(ui) and z(ui) are the estimated and measured values of random variables, respectively, at the ith site; N 
is the number of measured data; and σk(ui)andσK

2(ui) are the kriging standard deviation and variance, 
respectively, at the ith site (Cheng et al., 2007). 
3. Results and Discussion 
3.1 Descriptive Statistics 
Table 1 shows the summary statistics of the investigated soil physico-chemical properties. According to 
(Carvalho, Silveira, & Vieira, 2002),when the values of skewness and kurtosis are close to 0 and 3, respectively 
for a specific parameter, the data are considered normal frequency distribution. Based on this criterion, silt 
content, clay content, and OM showed normal frequency distributions (Table 1). Figure 3 shows that pH have 
frequency distribution near to normal. Whereas, SAR, EC, SP, MWD, sand content and bulk density show a 
log-normal distribution, which is confirmed by the Kolmogorov-Smirnov’snormality test, with error probability 
of 1% . 
 
Table 1. Descriptive statistics of soil samples analysesat 275 spatial points.  

Average Variance Max Min Kurtosis Skewness C.V (%) Unit Parameter 
1.80 1.96 16.02 0.69 44.58 5.5 78 )1-dSm( EC 
4.21 5.84 16.91 1.16 3.85 1.58 57 1/5)1-(meq l SAR 
8.13 0.13 9.03 7.36 -0.643 0.213 5 - pH 
46.42 172.34 76.5 7.5 0.189 -0.235 28 % Sand 
32.62 92.55 67 10.5 0.157 0.067 29 % Silt 
20.95 39.74 54.5 8 3.22 1.35 30 % Caly 
50.97 95.21 99.21 29.21 4.27 1.33 19 % SP 
1.94 0.65 3.78 0.63 -0.642 0.354 41 - MWD 
2.44 0.04 2.98 0.43 29.26 -3.36 9 (gr cm-3) Bulk density 
2.04 0.624 4.44 0.03 0.232 0.313 38 % OM 

 
)B) (A( 

http://www.scielo.br/img/revistas/brag/v69s0/18t03.jpg
http://www.scielo.br/img/revistas/brag/v69s0/18f02.jpg
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Figure 3.The histograms (bar) and density plots forpH and SAR 

 
Table 1 shows that the lowest and the highest coefficient of variationare for pH (5%) and EC (78%), respectively. 
Dafonte, Guitián, Paz-Ferreiro, Siqueira, & Vázquez (2010) classified coefficient of variation as low (<10%), 
medium (10-20%), high (20-30%)and very high (>30%). Moasheri & Foroughifar (2013) identified that the low 
coefficient of variation for pH was caused by parent material composition in soils while the high coefficient of 
variation might be due to the land management factors such as fertilization and land-uses type. In most cases, 
variables with a high coefficient of variation (>50%) were of non-normal frequency distribution. The logarithmic 
transformation reduced the data coefficient of variation and skewness as well as increased normality (Table 1). 
According to Moasheri and Foroughifar et al. (2013), logarithmic transformation of skewed dataset is an 
effective approach in reducing the skewness and coefficient of variation. The spatial variability in soil properties 
is caused by the variations in depositing environment, difference in aggregation, or hydrological difference in 
different land forms. In addition, soil properties in agricultural lands can be affected by irrigation, fertilization, or 
drainage pattern (Moasheri & Foroughifar, 2013). These factors have effect on the data distribution pattern. 
3.2 Spatial Autocorrelation 
In this study, the experimental semivariogram variables were illustrated the spatial variability of 
physico-chemical properties in soil. The semivariogram analysis showed insignificant anisotropy; therefore, the 
isotropic semivariogram was used in the next stages. Figure 4 shows the best fitted semivariogram models of the 
investigated soil properties. The best models for the semivariograms was selected based on the lowest root sum 
square (RSS) and the highest correlation coefficient (R2) (Robertson et al, 2008) (Table 2). The 
bestfittedsemivariogram models for each soil properties are shown in Table 2. The exponential model was fitted 
to the semivariograms of EC, pH, sand content , silt content, caly content, SP, MWD, bulk density and OM, and 
the spherical model was fitted to SAR. Siqueira, Vieira, & Ceddia (2008) reported that the spherical model is the 
most suitable semivariogram analyses for soil and plant attributes. Whereas, Liu, Shi, Jiang, Bae, & Huang 
(2009) and Júnior, Lana, & Guimarães (2007) reported that the exponential model is the most suitable for 
assessing spatial variability in soil chemical properties. Subramoniam, Bera, & Sharma (2011) found that the 
exponential model was among the best for this analysis because it explained maximum variability in the spatial 
dataset. In this study, the coefficient of determination for pH and EC was highest for the exponential model while 
it was lowest for Gaussian model. Mehrjardi, Jahromi, Mahmodi, & Heidari (2008) found the spherical model as 
the most appropriate spatial model for the EC and the SAR. Similarly, Miller, Singer, & Nielsen (1988) 
concluded that the spherical model was the most appropriate spatial model for EC. The spherical model is one of 
the most common geostatistical model fitted for soil properties(Miller et al., 1988).In this study, the nugget effect 
(C0) values for all semivariogram models were low (0.013-0.093), indicating relatively low measurement 
errors(Table 2). The values of the ranges (a) are varied between 600- 2010 (Table 2). The mean error (ME) was 
lower for the EC, particle density, pH and OM, and RMSE was higher (7.74) for SP.  
Figure 4 shows the selected varigram model specifications, namely nugget effect, threshold and their impact 
radius. The nugget effects are attributed to the measurement errors or spatial sources of variation at distances 
smaller than the sampling interval or both. In general, the measurement error occurs in the spatial data due to the 
errors in measuring devices. It is essential to gain proper understanding of the scales of spatial variation. Lag 
distance is a distance beyond which the samples do not affect each other or do not show enough dependence and 
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the spatial points can be considered independently of each other. The lag distance values were varied in this 
study (Table 2). Such lag distance provides information in relation to the limit of permitted distance for sampling. 
The lag distance values for pH and SAR have strong spatial dependency compared to the remaining variables. 
The lag distance of variograms ranged from 732 meters for calcium carbonate to 2046 meters for cation 
exchange capacity (Table 2). The pH showed high lag distance (450); whereas organic matter, electrical 
conductivity, and sodium absorption ratio are of low lag distance. The low lag distance in EC (about 220m) is 
probably linked to the low salinity in the study area. The low lag distance in organic matter and SAR can be 
attributed to the land management factors, including change of land-use, irrigation, fertilization, and plowing. 
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Figure 4. Experimental semivariograms for SAR, pH,EC,OM,SP,MWD, clay content,silt content,sand content, 
and bulk density 

 
Table 2. The semivariogram parameters and the final exponential models 

Nugget effect 
(Co) 

Range 
(a) 

Spatial correlation  
(Co/Co+C) 

 
RMSE 

 
ME 

 
RSS* 

Model Parameter 

0.034 1176 0.421 0.367 0.0061 2.494×10-5 exponential EC 
0.032 870 0.131 1.672 0.028 3.24×10-5 spherical SAR 
0.036 2010 0.221 0.259 0.0061 2.13×10-5 exponential pH 
0.062 972 0.532 11 0.134 102 exponential Sand 
0.020 600 0.689 0.154 0.154 24.6 exponential Silt 

0.036 927 0.285 4.467 0.037 2.01×10-6 exponential Clay 
0.014 600 0.538 7.746 0.012 1.495×10-6 exponential SP 
0.093 1599 0.397 0.771 0.06 2.226×10-5 exponential MWD 
0.013 1290 0.673 0.128 0.0002 1.34×10-6 exponential ρs 
0.361 900 0.572 0.719 0.0034 4.26×10-4 exponential OM 

* Residual sum of squares 
 
3.3 Spatial Characteristics of Soil Properties  
The high values of SAR (>15) indicate greater risk of sodicity problem and increase likelihood of particle 
dispersion. The threshold between sodic and non-sodic soils is a SAR of 13. SAR is classified as very good (less 
than 5), good (5-10), rather hazardous (10-15) and dangerous (more than 15). In this study, almost 95% of the 
SAR was varied between very good and good, and less than 1% fell in the dangerous class (Fig.5).The spatial 
distribution of EC showed that the 95% of salinity in the study area was below 2 dS/ m (Fig.6).According to the 
study conducted on the quality of irrigation water in the area, the salinity was estimated at less than 2.0 dS/m. 
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About 50% of areas had pH between 7.8 and 8.2 and about 42 percent had between 8.3 and 8.7 (Fig.7).The 
spatial distribution of the OM indicates the most favourable conditions for irrigation in the study area are owing 
to the manure from the live-stock farm (Fig.8). About 90 percent of the soil in the study area contained organic 
matters more than 1.5%. According to the zoning map of silt percentage (Fig.9), it can be concluded that the 
most of agricultural and industrial lands soils in Sharif Abad have 30-45% silt content, indicating the soil in the 
studied area is not heavy textured and hydraulic conductivity is from medium to high. Fig. 10 shows that the 
spatial distribution of clay in the studied area is stable as 93% of the area contains 15-30% of clay. In addition to 
its impact on soil texture, clay contents in soil play an important role in preservation of water and nutrients. 
Similar to this study, Sun et al (2003) observed spatial variation in soil properties, including pH, organic matter, 
available phosphorus, and available potassium, in China. The study also observed significant spatiotemporal 
variations in the phosphorus content in soil compared to pH levels. Wang et al. (2009) found that spatial 
variability in soil carbon content which is linked to the regional topography and soil types. 
Figure 11 shows that the particle density is lower than that of the mineral soil across the investigated area, which 
is due to the high level of organic matters in the region. The soil textures in the region were in the group of Loam 
and Sandy Clay Loam. As such, the saturation moisture is in the medium range. Usually, saturation moisture less 
than 40 percent is related to sandy soil, between 40-60 is related to medium-texture soil and more than 60 is 
related to heavy texture. According to the spatial interpolation model map in Fig. 12, more than 90% of the area 
has saturation moisture of 40-55%, which is related to the soil texture. 
Soil aggregation is influenced by several factors associated with the soil clay fraction such as exchangeable 
cations, clay content, clay type, and the amount of dispersible clay. Clay particles are involved in binding or 
cementing soil particles but when clay particles are flocculated and aggregated by calcium ions and organic 
matter, they may not be extensively involved in binding or cementing other particles. Beside clay content, the EC, 
SAR, and pH have influence in soil aggregation. The spatial distribution of MWD suggests high salinity and 
SAR caused that the soil aggregates be degraded (Fig.13). Moreover, MWD is higher (>2) in cultivated and 
non-saline areas while the MWD is less (<1) in soils with high salinity and SAR. 

 
Figure 5.Spatial distribution map for SAR using ordinary kriging 
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Figure 6. Spatial distribution map for EC using ordinary kriging 

 
Figure 7. Spatial distribution map for pH using ordinary kriging interpolation 
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Figure 8. Spatial distribution map for organic carbon using ordinary kriging 

 

 
Figure 9. Spatial distribution map for silt content using ordinary kriging 

 



mas.ccsenet.org Modern Applied Science Vol. 11, No.10; 2017 

34 
 

 
Figure 10. Spatial distribution map for clay content using ordinary kriging 

 

 
Figure 11. Spatial distribution map for particle density using ordinary kriging 
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Figure 12. Spatial distribution map for SP using ordinary kriging 

 

 
Figure 13. Spatial distribution map for MWD using ordinary Kriging 

 
4. Conclusion 
In this study, 275 soil samples were collected at Qazvin province, Iran, to investigate spatial variation of six 
types of soil chemical properties, including pH, EC, CEC, percentage CCE, SAR, and OM. The overall results 
have been summarised below: 
1) The frequency distribution for the collected phyco-chemical spatial data of SAR, EC, SP, MWD, Sand 

content and bulk density had log-normal while only pH had normal distribution.  
2) Geostatistical interpolation identified a strong spatial variability (< 0.25) for pH and SAR data; whereas the 

remaining variables showed a medium spatial variability (> 0.5).  
3) The best samivarigram models for all variables (except SAR) was spherical, followed by an exponential 

model.  
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4) The semivariograms showed the zones of higher variability which indirectly helped in identification of soil 
sample locations precisely. Therefore, the kriging outputs are very much useful for mapping spatial 
variability in large scale/cadastral level. 

5) This study showed that the ordinary kriging interpolation model is very effective land management 
approach as it provides reliable probability distributions of soil parameters. 

6) The developed spatial modelling technique is very effective in mapping soil physico-chemical parameters 
in agricultural land, which has application in improving site-specific fertilizer scheme and enhancing crop 
production. 
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