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Abstract 

In order to have a better understanding whether or not an additional observation has changed the covariance 
structure, a new statistic will be introduced. This statistic will be defined as the scatter matrix issued from 
augmented data set subtracted by that from historical data set. Under normality assumption, the distribution of its 
Frobenius norm will be derived and, for practical purpose, a chi-square approximation will be presented. This 
statistic and Wilks’ will be used to construct a new procedure for monitoring process variability based on 
individual observations. The performance of this procedure in providing information about the effect of an 
additional observation on covariance structure is promising. An industrial application will be presented to 
illustrate its advantage. . 
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1. Introduction 

Since last decades, the notion of manufacturing process quality becomes more and more complex. This is the 
main reason why quality experts have been considering process quality in multivariate setting. In this setting, 
one of the most important parameters is process variability. The stability of this shape parameter, which is 
numerically represented by covariance matrix, must be monitored. In general, there are three scenarios in 
multivariate process variability monitoring. First, is based on sub-grouping where the sub-group size m is greater 
than the number of quality characteristics p. Articles in this scenario include Yeh, Huwang and Wu (2004), 
Djauhari (2005) and Yeh, Lin and McGrath (2006). Second, is based on individual observations, i.e., m = 1 such 
as presented, for example, in Tracy, Young and Mason (1992), Sullivan and Woodall (1996), Khoo and Quah 
(2003), Huwang, Yeh and Wu (2007), and very recently Mason, Chou and Young (2009, 2010). In this scenario, 
the main problem is to test the effect of an additional observation on covariance structure. Third, the most recent 
scenario introduced in Mason, Chou and Young (2009), is based on sub-grouping where 1 < m < p.  

The idea behind the present paper was inspired by the use of Wilks’ statistic (1963) for the second scenario. This 
monitoring procedure was originally introduced by Mason, Chou and Young (2009) and developed in Mason, 
Chou and Young (2010) in order to identify the quality characteristics that contribute to the out-of-control signal. 
What makes Wilks’s statistic important in this area of industrial application is that it has direct and simple 
geometrical interpretation and it is easy to implement in practice especially when p is not too large. Based on 
Wilks’ statistic, the effect of an additional observation on covariance structure is measured as the ratio of the 
scatter matrix determinant issued from a historical data set (HDS) and that issued from the augmented data set 
(ADS). The latter data set consists of HDS and an additional observation. It is thus proportional to the ratio of 
the generalized variance (GV) of HDS and that of ADS. Geometrically, see Anderson (2003), it is the ratio of the 
volume of the p-dimensional parallelotope related to HDS and that related to ADS. 

Since the covariance structure is absolutely determined by the eigenvalues and eigenvectors of covariance matrix, 
then the use of Wilks’ statistic to detect the effect of an additional observation on covariance structure might be 
misleading. This is caused by the fact that GV is only the product of all eigenvalues. It might happen then that 
Wilks’ statistic fails to detect that effect whereas actually the covariance structure has changed. To illustrate the 
situation, it is sufficient to consider two different covariance matrices having the same GV. Let us consider the 
following two hypothetical covariance matrices 1  and 2 , 
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. 

These covariance matrices represent two different covariance structures. The variance of the first and the second 
variables and also the correlation coefficient between them represented by 1  are totally different from those 

represented by 2 . Both matrices have different set of eigenvalues. They have different Frobenius norm, i.e., 

252  for 1  and 553  for 2 . However, they have the same GV which is equal to 36. In Djauhari, 

Mashuri and Herwindiati (2008) we can see the use of Frobenius norm of covariance matrix as another 
multivariate dispersion measure besides GV. In that paper this measure is used in process variability monitoring 
under the first scenario. 
The above illustration indicates that the use of Wilks’ statistic alone might not be sufficient to describe the effect 
of an additional observation on covariance structure. This is a logical consequence of the use of GV as a 
multivariate dispersion measure. This measure has serious limitations as mentioned in Montgomery (2005) and 
discussed in details in Alt and Smith (1988). Therefore, another statistic is needed to have a better understanding 
about that effect. This is what we intend to discuss in this paper.  

In what follows we introduce a new statistic that can be used, besides Wilks’ statistic, for monitoring process 
variability based on individual observations. That statistic will be constructed based on the matrix D defined as 
the scatter matrix issued from ADS subtracted by that from HDS. The distribution of its Frobenius norm will be 
derived and, for practical purpose, a chi-square approximation will be presented. Based on these results we 
propose a new monitoring procedure which will give a better understanding about the effect of an additional 
observation on covariance structure. These are the topic in the next section. In the third section, an industrial 
example will be reported to illustrate the advantage of this procedure. In the last section, additional remarks will 
close the presentation. 

2. Proposed control charting procedure 

Let 1X , 2X , . . . , nX , 1nX   be a random sample drawn from a p-variate normal distribution with 

covariance matrix   positive definite. The realization of 1X , 2X , . . . , nX  will be used as HDS and the 

union of a realization of 1nX   and HDS is called ADS. See Mason, Chou and Young (2009) for further details. 

Let   
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where k = n, n+1. kSS  is the scatter matrix issued from HDS if k = n and from ADS if k = n+1. Wilks (1963) 

proposes to use the following statistic to measure the effect of 1nX   on covariance structure,  
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         …… (2) 

where kSS  is the determinant of kSS and kS  is the GV issued from HDS if k = n and from ADS if k = n+1. 

Wilks also shows that W follows Beta distribution with parameters (n – p)/2 and p/2.  
Due to the limitations of GV as a multivariate dispersion measure mentioned above, a careful attention must be 
paid when we use Wilks’ statistic; two different scatter matrices might have the same value of W. To escape from 
this situation, in the next paragraph we define a matrix D as the scatter matrix issued from ADS subtracted by 
that from HDS. We will see that the use of Wilks’ statistic together with the Frobenius norm of D will give a 
better understanding about the effect of an additional observation on covariance structure. 

From (2) we know how to quantify the effect of an additional observation on covariance structure using Wilks’ 
statistic. In the following proposition we present another quantification method based on the Frobenius norm of 
D. Those who are interested in the mathematical derivation are pleased to contact the author. 

Proposition 1 Let 1X , 2X , …, nX , 1nX   be a random sample of a p-variate normal distribution with 

covariance matrix   positive definite. If D = 1n nSS SS   where nSS  and 1nSS   are defined in (1), then 

 2Tr D  has the same distribution as 2

1

p

k k
k

z

  where 1z , 2z , …, kz  are i.i.d. standard normal N(0,1) and 

k  is the k-th eigenvalue of  . 
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2.1 A new statistic 
Proposition 1 shows that the statistic 

F =   2Tr D                  …… (3) 

represents the effect of 1nX   on scatter matrix measured using the Frobenius norm of D. Like Wilk’s statistic, 

it can be used to test whether or not 1nX   has significantly changed the covariance structure. However, W in (2) 

and F in (3) are two different statistics. Therefore, they might give different statistical decision. This indicates 
that the use of both statistics will provide a better understanding about the effect of 1nX   on covariance 

structure.  
The statistic F is still difficult to implement in practice because its distribution in Proposition 1 is still 
impractical except 1 , 2 , …, p  are equal to each other. In order to handle this problem, a chi-square 

approximation will be discussed in the next sub-section.  
2.2 A chi-square approximation 
The result in Proposition 1 is still difficult to use in practice. To make it more practical, in what follows a 
chi-square approximation will be presented. Since many decades ago, see Solomon and Stephens (1977), it is 
common in practice to approximate the distribution of a linear combination of independent chi-square 

distributions 2
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rc , where c is a positive constant and r is the corresponding degree of freedom, 

satisfying 
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These equalities give 
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In the case where   is unknown, it is customary to replace   by the sample covariance matrix issued from 
HDS, i.e., nS . See, for example, Montgomery (2005). Therefore, the distribution of F can be further 

approximated by  

2
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2.3 Proposed procedure 

The procedure to monitor multivariate process variability based on Wilks’ statistic consists of plotting (i) the 
observed value of W and (ii) the lower control limit (LCL) which is equal to the  -th quantile of Beta 
distribution with parameters (n – p)/2 and p/2. An out-of-control signal occurs if the observed value of W is less 
than LCL. Here,   is the probability of false alarm. Instead of using Wilks’ statistic, we can also use the 
statistic F in Proposition 1 where its distribution is approximated by (4). In this case, the control procedure 
consists of plotting (i) the observed values of F and (ii) the upper control limit (UCL) which is equal to the 

(1 ) -th quantile of 2
rc . An out-of-control signal occurs if the observed value of F exceeds UCL. 

Since both statistics W and F are different, in order to handle the limitation of W, we propose to use both control 
charting procedures one after another. In the next section, an industrial example will illustrate the advantage of 
this procedure.  

3. Industrial example 

We use Wilks’ statistic (2) in monitoring the process variability of B-complex vitamin production at a 
pharmaceutical industry based on individual observations. There are two quality characteristics under 
consideration, i.e., 1x  (Thickness of the tablet in mm) and 2x  (Hardness of the tablet in kg/cm2). A HDS of 
size n = 40 gave 

nX  = 
4 310

7 751

.

.

 
 
 

 and nS  = 
0 0371 0 0197

0 0197 0 0254

. .

. .

 
  

. 

During process variability monitoring, 20 individual observations were observed. These data and their 
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corresponding values of W and F are presented in Table 1.  

To construct W and F charts, we use   = 0.0027. Therefore, the lower control limit of W chart is LCL = 0.7325. 
If this value is plotted together with the observed values of W in the third column of Table 1, we get the W chart 
such as presented in Figure 1. In this figure, an out-of-control signal occurs at the forth sample. On the other 
hand, based on (3) and (4), the upper control limit of F chart is UCL = 0.4032 and the corresponding F chart is 
presented in Figure 2. From this figure we see that F chart gives different message than W chart. According to F 
chart, an out-of-control signal occurs at the fifth sample and not at the forth.   

This example shows that the use of W chart alone will be misleading as we have mentioned earlier. If it is used 
together with F chart, one after another, we get more information about the history of process variability.  

4. Additional remarks  

If we look more in-depth at the data in Table 1 and observe the effect of each additional observation on 
covariance structure in relation with the shift in correlation and also with the shift in variance, we arrive at the 
following interesting phenomenon. The W chart is more sensitive than F chart to the shift in correlation while F 
chart is more sensitive than W chart to the shift in variance. This strengthens our conclusion that the use of both 
charts will be more useful than a single chart. 
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Table 1. Individual observations and the value of W and F statistics 

 

No. 1x  2x  W F 

1 4.305 8.150 0.7921 0.1553 

2 4.320 7.640 0.9816 0.0121 

3 4.330 7.750 0.9996 0.0004 

4 4.310 7.130 0.6081 0.3762 

5 3.890 8.310 0.7649 0.4770 

6 4.300 8.130 0.8108 0.1402 

7 4.370 8.030 0.8592 0.0795 

8 4.360 7.540 0.9447 0.0459 

9 4.130 7.865 0.9781 0.0443 

10 4.310 7.440 0.8609 0.0944 

11 4.270 7.740 0.9972 0.0017 

12 4.274 7.640 0.9717 0.0133 

13 4.380 7.440 0.8861 0.0991 

14 4.278 8.150 0.8035 0.1563 

15 4.258 8.050 0.8890 0.0899 

16 4.312 7.640 0.9802 0.0120 

17 4.328 8.150 0.7818 0.1556 

18 4.300 7.740 0.9995 0.0002 

19 4.320 7.540 0.9339 0.0435 

20 4.342 7.876 0.9668 0.0162 

 

 

 

Figure 1. W chart 
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Figure 2. F chart 
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