Strongly Multiplicative Labeling for Some Cycle Related Graphs

S K Vaidya (Corresponding author)
Department of Mathematics, Saurashtra University, Rajkot 360 005, Gujarat, India
E-mail: samirkvaidya@yahoo.co.in

K K Kanani
Mathematics Department, L E College, Morbi 363 642, Gujarat, India
E-mail: kananikkk@yahoo.co.in

Abstract

In this paper we discuss strongly multiplicative labeling of some cycle related graphs. We prove that cycle with one chord, cycle with twin chords and cycle with triangle are strongly multiplicative graphs. In addition to this we prove that the graphs obtained by fusion and duplication of vertices in cycle admit strongly multiplicative labeling.

Keywords: Strongly multiplicative labeling, Strongly multiplicative graph, Cycle

1. Introduction

We begin with simple, finite, connected and undirected graph $G=(V(G), E(G))$. Here elements of sets $V(G)$ and $E(G)$ are known as vertices and edges respectively. In the present work C_{n} denotes cycle with n vertices and $N(v)$ denotes the set of all neighboring vertices of v. For all other terminology and notations we follow (Harary F., 1972). We will give brief summary of definitions which are useful for the present investigations.

Definition 1.1 A chord of a cycle C_{n} is an edge joining two non-adjacent vertices of cycle C_{n}.
Definition 1.2 Two chords of a cycle are twin chords (consecutive chords) if they form a triangle with an edge of the cycle C_{n}.
For positive integers n and p with $3 \leq p \leq n-2, C_{n, p}$ is the graph consisting of a cycle C_{n} with a pair of twin chords with which the edges of C_{n} form cycles C_{p}, C_{3} and C_{n+l-p} without chords.
Definition 1.3 Cycle with triangle is a cycle with three chords which by themselves form a triangle.
For positive integers p, q, r and $n \geq 6$, with $p+q+r+3=n$ then $C_{n}(p, q, r)$ denote a cycle with triangle whose edges form the edges of cycles C_{p+2}, C_{q+2} and C_{r+2} without chords.
Definition 1.4 If the vertices of the graph are assigned values subject to certain conditions is known as graph labeling.
For detailed survey on graph labeling we refer to 'A Dynamic Survey of Graph Labeling' by (Gallian, J., 2009).
Definition 1.5 A graph $G=(V(G), E(G))$ with p vertices is said to be multiplicative if the vertices of G can be labeled with distinct positive integers such that label induced on the edges by the product of labels of end vertices are all distinct.
Multiplicative labeling was introduced by Beineke and Hegde (Beineke L., 2001, p. 63-75). In the same paper they proved that every graph G admits multiplicative labeling and defined strongly multiplicative labeling as follows.
Definition 1.6 A graph $G=(V(G), E(G))$ with p vertices is said to be strongly multiplicative if the vertices of G can be labeled with p distinct integers $1,2, \ldots, p$ such that label induced on the edges by the product of labels of the end vertices are all distinct.
There are three types of problems that can be considered in the above context.
(i) Construct new families of strongly multiplicative graphs;
(ii) How strongly multiplicative labeling is affected under various graph operations;
(iii) Given a graph theoretic property P characterize the class of graphs with property P that are strongly multiplicative.
In (Beineke L., 2001, p. 63-75) authors have extensively studied some problems of the types (i) and (iii) and they proved that

- Every cycle C_{n} is strongly multiplicative.
- Every wheel W_{n} is strongly multiplicative.
- Complete graph K_{n} is strongly multiplicative if and only if $n \leq 5$.
- Complete bipartite graph $K_{n, n}$ is strongly multiplicative if and only if $n \leq 4$.
- Every spanning subgraph of a strongly multiplicative graph is strongly multiplicative.
- Every graph is an induced subgraph of a strongly multiplicative graph.

The present work is intended to discuss problems of the types (i) and (ii). Here we investigate three new families of strongly multiplicative graphs and strongly multiplicative labeling is discussed in the context of graph operations namely duplication and fusion of vertices in cycle C_{n}.
Definition 1.7 Let u and v be two distinct vertices of a graph G. A new graph G_{1} is constructed by fusing (identifying) two vertices u and v by a single vertex x is such that every edge which was incident with either u or v in G is now incident with x in G_{1}.
Definition 1.8 Duplication of a vertex v_{k} of graph G produces a new graph G_{l} by adding a vertex v_{k}^{\prime} with $N\left(v_{k}{ }^{\prime}\right)=N\left(v_{k}\right)$.
In other words a vertex $v_{k}{ }^{\prime}$ is said to be duplication of v_{k} if all the vertices which are adjacent to v_{k} are now adjacent to v_{k} also.

2. Main Results

Theorem 2.1 Every cycle with one chord is strongly multiplicative.
Proof: Let G be the cycle C_{n} with one chord and $v_{1}, v_{2}, \ldots, v_{n}$ be the consecutive vertices of C_{n} arranged in the clockwise direction. Let $e=v_{l} v_{i}$ be the chord of cycle C_{n}.
Let us define labeling $f: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows.
$f\left(v_{1}\right)=1$
$f\left(v_{i}\right) \quad=p_{I}$ where p_{I} is the highest prime number such that $p_{I} \leq n$.
$f\left(v_{n}\right) \quad=p_{2}$ where p_{2} is the second highest prime number such that $1<p_{2}<p_{1} \leq n$.
Now label the remaining vertices starting from v_{2} consecutively in clockwise direction from the set $\{1,2, \ldots, n\}$ except $1, p_{1}$ and p_{2} as these numbers are already used as labels.
Then f is a strongly multiplicative labeling for G. That is, G is a strongly multiplicative graph.
Illustration 2.2 Consider a cycle C_{6} with one chord. The labeling is as shown in Fig 1.
Theorem 2.3 Every cycle with twin chords is strongly multiplicative.
Proof: Let G be the cycle C_{n} with twin chords. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the consecutive vertices of C_{n} arranged in the clock-wise direction. Let $e_{1}=v_{1} v_{i}, e_{2}=v_{l} v_{i+1}$ be two chords of C_{n}.
Let us define labeling $f: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows.
$f\left(v_{l}\right)=1$
$f\left(v_{i}\right) \quad=p_{I}$ where p_{1} is the highest prime number such that $p_{I} \leq n$
$f\left(v_{i+1}\right)=p_{2}$ where p_{2} is the second highest prime number such that $1<p_{2}<p_{1} \leq n$
$f\left(v_{n}\right) \quad=p_{3}$ where p_{3} is the third highest prime number such that $l<p_{3}<p_{2}<p_{1} \leq n$
Now label the remaining vertices starting from v_{2} consecutively in clockwise direction from the set
$\{1,2, \ldots, n\}-\left\{1, p_{1}, p_{2}, p_{3}\right\}$.
Then the graph G under consideration admits strongly multiplicative labeling. That is, every cycle with twin chords is strongly multiplicative
Illustration 2.4 Consider a cycle C_{7} with twin chords. The labeling is as shown in Fig 2.
Theorem 2.5 Every cycle with triangle $C_{n}(1,1, n-5)$ is strongly multiplicative. That is
Proof: Let G be the cycle C_{n} with triangle. Let e_{1}, e_{2} and e_{3} be three chords of cycle C_{n}. Let v_{l} and v_{3} be the end vertices of e_{1}. Let v_{3} and v_{n-1} be the end vertices of e_{2}. Let v_{n-1} and v_{1} be the end vertices of e_{3}.

To define labeling $f: V(G) \rightarrow\{1,2, \ldots, n\}$ we will consider following cases.

Case 1: If n is odd
In this case we define labeling as

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq(n+1) / 2 \\
& =2(n-i+1) ;(n+1) / 2<i \leq n
\end{aligned}
$$

Case 2: If n is even
In this case we define labeling as

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n / 2 \\
& =2(n-i+1) ; \quad n / 2<i \leq n
\end{aligned}
$$

In each case described above the graph G under consideration admits strongly multiplicative labeling. That is, cycle with triangle $C_{n}(1,1, n-5)$ is strongly multiplicative.
Remark 2.6 In above Theorem 2.5 we discuss strongly multiplicative labeling for $C_{n}(1,1, n-5)$ but it is also possible to develop strongly multiplicative labeling when three chords make all possible triangle in accordance with Definition 1.3. For the sake of brevity this discussion is not reported here.
Illustration 2.7 Consider a cycle C_{10} with triangle. The labeling is as shown in Fig 3.
Theorem 2.8 The graph obtained by duplication of an arbitrary vertex in cycle C_{n} admits strongly multiplicative labeling.
Proof: Let C_{n} be the cycle with n vertices. Let v_{k} be the vertex of cycle C_{n} and $v_{k}{ }^{\prime}$ is duplication and G be the resultant graph. We define labeling $f: V(G) \rightarrow\{1,2, \ldots, n+1\}$ as follows.

Case 1: n is odd.
In this case we define labeling f as
$f\left(v_{k}^{\prime}\right)=1$
For $1 \leq i \leq n-k+1$
$f\left(v_{k+i-l}\right)=2 i+1 ; 1 \leq i \leq(n-1) / 2$

$$
=2(n-i+1) ;(n-1) / 2<i \leq n .
$$

For $n-k+2 \leq i \leq n$
$f\left(v_{k+i-n-1}\right)=2 i+1 ; 1 \leq i \leq(n-1) / 2$ $=2(n-i+1) ; \quad(n-1) / 2<i \leq n$.
Case 2: n is even.
In this case we define labeling f as
$f\left(v_{k}^{\prime}\right)=1$
For $1 \leq i \leq n-k+1$
$f\left(v_{k+i-1}\right)=2 i+1 ; 1 \leq i \leq n / 2$

$$
=2(n-i+1) ; \quad n / 2<i \leq n .
$$

For $n-k+2 \leq i \leq n$
$f\left(v_{k+i-n-l}\right)=2 i+1 ; 1 \leq i \leq n / 2$

$$
=2(n-i+1) ; n / 2<i \leq n .
$$

In each case described above the graph G under consideration admits strongly multiplicative labeling. That is, the graph obtained by duplication of an arbitrary vertex in cycle C_{n} admits strongly multiplicative labeling.
Illustration 2.9 Consider a graph G obtained by duplicating a vertex v_{1} in cycle C_{6}. The labeling is as shown in Fig 4.
Theorem 2.10 The graph resulted from fusion of two vertices v_{i} and v_{j} (where $d\left(v_{i}, v_{j}\right) \geq 3$) in cycle C_{n} admits strongly multiplicative labeling.
Proof: Let C_{n} be the cycle with vertices $v_{l}, v_{2}, \ldots, v_{n}$. Let the vertex v_{l} be fused with v_{m} where $m \leq\lceil n / 2\rceil$. Let G be the graph obtained by fusing v_{l} and v_{m}. It is obvious that fusion of two vertices in cycle C_{n} produces a connected graph which includes two edge-disjoint cycles C_{m-1} and C_{n-m+1}.

We define labeling $f: V(G) \rightarrow\{1,2, \ldots, n-1\}$ as follows.
Case 1: n is odd.
Subcase I: $m-1$ is an even number and $n-m+1$ is an odd number.
In this case we define labeling f as

$$
\begin{aligned}
& f\left(v_{l}\right)=m-2 \\
& \begin{aligned}
f\left(v_{i}\right) \quad= & m-2 i ; 1<i \leq(m-1) / 2 \\
& =2 i-m+1 ; \quad(m-1) / 2<i \leq m-1 \\
& =2 i-m-2 ; m<i \leq(m+n) / 2 \\
& =2 n-2 i+m+1 ;(m+n) / 2<i \leq n
\end{aligned}
\end{aligned}
$$

Subcase II: $m-1$ is an odd number and $n-m+1$ is an even number.
In this case we define labeling f as

$$
\begin{aligned}
f\left(v_{l}\right)=m & -1 \\
f\left(v_{i}\right)=m & -2 i+1 ; 1<i \leq m / 2 \\
& =2 i-m ; m / 2<i \leq m-1 \\
& =2 i-m-1 ; m+1 \leq i \leq(n+m-1) / 2 \\
& =2 n-2 i+m ; \quad(n+m-1) / 2<i \leq n
\end{aligned}
$$

Case 2: n is even.
Subcase I : $m-1$ and $n-m+1$ both are odd numbers.
In this case we define labeling f as

$$
\begin{aligned}
& f\left(v_{l}\right)=m-1 \\
& \begin{aligned}
f\left(v_{i}\right)=m & -2 i+1 ; 1<i \leq m / 2 \\
& =2 i-m ; m / 2<i \leq m-1 \\
& =2 i-m-1 ; m<i \leq(n+m) / 2 \\
& =2 n-2 i+m ;(n+m) / 2<i \leq n
\end{aligned}
\end{aligned}
$$

Subcase II: $m-1$ and $n-m+1$ both are even numbers.
In this case we define labeling f as

$$
\begin{aligned}
& f\left(v_{l}\right)=m-2 \\
& \begin{aligned}
f\left(v_{i}\right)=m & -2 i ; 1<i \leq(m-1) / 2 \\
= & 2 i-m+1 ; \quad(m-1) / 2<i \leq m-1 \\
= & 2 i-m-2 ; m<i \leq(n+m+1) / 2 \\
= & 2 n-2 i+m+1 ; \quad(n+m+1) / 2<i \leq n .
\end{aligned}
\end{aligned}
$$

In each possibility described above the graph G under consideration admits strongly multiplicative labeling.
That is, the graph resulted from fusion of two vertices v_{i} and v_{j} (where $d\left(v_{i}, v_{j}\right) \geq 3$) in cycle C_{n} admits strongly multiplicative labeling.
Remark 2.11
(i) when $m>\lceil n / 2\rceil$ the fusion of two vertices will repeat all the graphs which are already considered earlier.
(ii) when $d\left(v_{i}, v_{j}\right)<3$ then fusion yields a graph which is not simple and it is not desirable for strongly multiplicative labeling.
Illustration 2.12 Consider a graph G obtained by fusing vertex v_{l} with v_{6} in the cycle $C_{1 I}$. The labeling is as shown in Fig 5.

3. Concluding Remarks

On account of its diversified applications, labeled graph is the topic of contemporary interest. We have derived five new results on strongly multiplicative labeling. It is possible to investigate similar results for other graph families. There is a scope to derive analogous results in the context of different graph labeling techniques.

References

Beineke, L. W. and Hegde, S. M. (2001). Strongly Multiplicative Graphs, Discuss. Math. Graph Theory, 21, 63-75.
Gallian, J. A. (2009). A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16, \#DS 6. Harary, F. (1972). Graph Theory, Massachusetts, Addison Wesley.

Figure 1. Cycle C_{6} with one chord and its strongly multiplicative labeling

Figure 2. Cycle C_{7} with twin chords and its strongly multiplicative labeling

Figure 3. Cycle C_{10} with triangle and its strongly multiplicative labeling

Figure 4. Duplication of a vertex v_{1} in Cycle C_{6} and its strongly multiplicative labeling

Figure 5. Fusion of v_{1} with v_{6} in Cycle C_{11} and its strongly multiplicative labeling

