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Abstract 
Earthquake is considered as the main destructive and collapsing factor of structures in near-fault zones, so design 
new structures and retrofitting existing structures in order to decrease structural responses is an unavoidable 
matter. One of the structural response reduction methods is using of TMDs. In this paper, a two-dimensional 
10-storey steel structure as three structural models without PTMD, with a PTMD at the highest level and ten 
PTMDs with different characteristics at all levels with the Modal-FNA time-history analysis method under 
acceleration records with directivity and without directivity of Parkfield 2004 earthquake at the angle of the 
maximum acceleration response in the first mode period of structure after rotating the acceleration records at the 
station with directivity and its corresponding angle at the station without directivity were compared to each other 
in terms of the roof displacement, the input energy and the base shear. It was observed that the structure behavior 
in the case of using only one PTMD is better, but in the case where ten PTMDs with relative smaller masses 
were used compared to the case where only one PTMD was used is also with roof displacement reduction.  
Keywords: earthquake directivity, near-field earthquake, Pendulum Tuned Mass Damper, tuned mass damper 
1. Introduction 
Nowadays, due to the low quality construction and control in developing countries and also the occurrence 
possibility of with directivity and pulse-type earthquakes in near-fault zones, retrofitting of existing structures is 
an undeniable priority. Furthermore, these structures are a place for comfort and convenience of people to live 
and work. Vibrations resulted from structural responses between 0.1g to 0.25g could disrupt the operation of the 
interested structure (Kareem, Kijewski, & Tamura, 1999). Some sensitive people even feel small accelerations as 
0.05g (Kareem et al., 1999). In this paper, the Pendulum Tuned Mass Damper (PTMD) system which is one of 
the common tuned mass dampers studied under the Parkfield 2004 with directivity earthquake at the most critical 
force applying angle. Other common TMD systems are: Translational TMD, Active TMD and Semi active TMD. 
The reasons of choosing PTMD compared to the other types are its simple preparation and installation cost, 
simplicity of adding to existing in operation structures without spending much time, proper performance, simple 
set up, the absence of any external actuator which reduces the initial cost of installation and maintenance, no 
need to apply energy to the system by the actuator and eliminating the possible delay in active tuned mass 
dampers (Kareem et al., 1999). The semi active system as shown in Figure 1 has both advantages of the active 
and passive systems. This system actively controls the stiffness and damping of the tuned mass damper with less 
need to the energy compared to the active system in Figure 2 (Nagarajaiah & Varadarajan, 2005). But, the 
disadvantages of this system are complexity, initial costs, maintenance as well as being dependent to the external 
actuator. 
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