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Abstract 

A rank based bearing estimation method of a passive array is proposed in this paper. Adding a random signal to 
an array data model to increase the rank and changing the location of the signal to reduce the rank, is the main 
action. To obtain the optimum estimation in noisy environments a criteria function is introduced. The peaks of 
the function give us the best candidate for location of the main targets. An array of three sensors with two 
independent targets is simulated to demonstrate the qualification.  
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1. Introduction 

Processing the signals received on an array of sensors to find location of emitters is one of the greatest 
interesting problems in sonar and radar applications (Kumaresan, R. Trufts, D. W. 1983). A general case 
considers an arbitrary number and location of sensors and emitters in an arbitrary noise environment with 
arbitrary mean and covariance. As a real condition in most practical cases, we deal with independent sources and 
independent noise so that the correlation between emitters and noise and emitters is zero (Huang, Y. D. and 
Barkat, M. 1991). This property is the basis of many high resolution bearing estimation techniques under 
assumption of zero mean and independency of noise and emitters (Schmidt, 1979). Our proposed method is 
concentrated on a half wavelength M+1 dimensional array with P independent emitters under the condition of P 
≤ M and zero mean Gaussian normal noise. We begin our discussion with introducing a data model for an M+1 
dimensional array and one emitter. After explaining the basic concepts in this area we will present our method. 

1.1 The data model 

According to the figure-1 the received wavefront on first sensor is x0 according to the following equation 

 (1) 

where a(t) is the time varying envelope of the emitter that is attended by 1/r, r is the distance, v is wave 
velocity ,ω is working frequency and n0 is the noise on this sensor(Harabi, F. Changuel, H. and Gharsallah, A. 
2007). This signal is received on the second sensor with ∆r/v sec delay according to the next relation 

 (2) 

In this equation v=λ/T is the wave velocity where λ and T are the length and period of the wave respectively. 
After some simplification and considering d=λ ⁄ 2 and ∆r=dsin﴾θ ﴿we have 
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 (3) 

 (4) 

The term ∆r/v in exponential function creates ψ = π dsin﴾θ﴿ delay on the sensor signal. Computing the M+1 
signals of the array we have the following data model 

 

 
 (5) 

Now as general model, we arrange the equation to consider P emitters for an array of M+ 1 sensor. 

 

 

 (6) 

We should denote some important problems in the data model that is considered in our method. It is supposed 
that the location of the targets is constant during the process while the envelope signal is changing with time. 
This factor limits us to estimate the bearing of low speed targets. Continuing the investigation we consider 
matrix model of data as follow 

 (7) 

1.2 Basic Concepts 

The vector A1(ψ1) which is the first column of the incident matrix A, is the incident vector of the first target at 
angle ψ1. Each column of matrix A is an incident vector of the related target so this matrix can be interpreted as 
signal subspace of all the targets that is perpendicular to noise subspace. The rank of matrix A is the number of 
the independent columns that is equal to the number of independent targets (Nuttall, 1976). If there are two 
correlated targets in the system one of the columns in matrix A is linear combination of the others so the rank 
will be decreased consequently. The determinant of the matrix A is zero because the rank is lower than M and 
this matrix has at least one zero eigenvalue (Donelli, M., S. Caorsi, F. DeNatale, M. Pastorino, and A. Massa, A. 
2004). The vector S is the vector of time dependent magnitude of target signals and N is the received noise 
vector. It should be denoted that this assumption that noise samples are independent of each other is reasonable 
in most practical applications. Most important is that we do not have A, S and N separately and we can only 
obtain the X vector in practice. The process to decompose the noise and signal subspaces as the basis of many 
high resolution algorithms is consisted of two correlation and averaging steps. So these two steps together are 
such transformation that distinct the signal and noise subspace from the correlation matrix. The mapping trend 
begins by taking the K frame of data under the satisfactory sampling rate to compute the K coloration matrices. 
Averaging then achieves the final correlation matrix with necessary specification that enables us to factorize the 
matrix to two separated signal and noise subspaces. To show the very interesting property of the process, we first 
consider the correlation matrix R before the averaging step. Considering the equation (7) the coloration is 
computed as 

 (8) 

After the simplification we have  

 (9) 
The determinant of matrix R is zero so the determinant of all term should be zero. As the conclusion of averaging 
process, some important changes are happened: 

1- SST is the correlation matrix of emitters that its entries changes under the averaging process such that the 
multiplication terms of different targets tends to be zero because they are independent. This event changes its 
determinant to a non-zero value because the non-diagonal terms go to zero while the diagonal ones remain. 

2-SNT and NST are the correlation matrices between noise and signal and all the elements tend to be zero after 
the averaging process. 
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3- The interesting change is happened on the noise correlation matrix NNT. The diagonal entries tend to variance 
of the noise σ2, the others go to mean and determinant is non-zero after the averaging step so NNT is σ2I. 

As matrix A is independent of the averaging process, its determinant doesn’t change so the determinant of 
ASSTAT is remained zero while NNT has found a non-zero determinant. The conclusion is that the averaged 
correlation matrix Rf will have a non-zero determinant. At this condition we obtain 

 (10) 

According to this relation σ2can be interpreted as the eigenvalue of - Rf or σ2 is minimum eigenvalue of Rf. To 
find eigenvalues of Rf we have 

 (11) 

where λ is eigenvalue of Rf . The above relation is equal to 

 (12) 

This relation means that eigenvalues of the matrix ASSTAT are λ- σ2 or the eigenvalues of Rf are the eigenvalues 
of matrix ASSTAT plus σ2. Therefore for P nonzero eigenvalues of ASSTAT as λp, the correlation matrix Rf has λp 
+ σ2 eigenvalues while the Q=M+1-P remained eigenvalues of Rf, are σ2. The consequent of the above analysis 
is that the signal subspace can be recovered by P number of λp + σ2 eigenvalues and related eigenvectors while 
the noise subspace by Q number of σ2 eigenvalues and related eigenvectors as the following equation 

 (13) 

The first term of the equation above recovers the signal subspaces of the correlation matrix Rf in which the 
eigenvalues are the combination of targets and noise. As we deal with signal to noise relation, under strong noisy 
condition the eigenvalues that reconstruct signal subspace will be influenced and changed according to the 
equation (13). The second term that recovers noise subspace and is perpendicular to signal subspace means that 
the internal product of each vector in the signal subspace with the noise subspace is zero. MUSIC (Multiple 
Signal Classification) as a high resolution bearing estimation method uses this property to find the location of 
targets (Schmidt, 1979)(Liggett, 1973). As the incident vectors are perpendicular to the noise subspace this 
algorithm search to maximize the following cost function 

 (14) 

The signal vectors that maximize J would be the best candidates for the bearing of the targets.  

1.3 Rank of Correlation Matrix  

The rank of a matrix is the number of independent columns or rows that can be detected by the number of 
non-zero eigenvalues under a singular value decomposition process. As practical point of view in the case that 
signals to noise ratio is weak, computing the rank would be difficult. This difficulty is appeared because the level 
of noise increases and some of the minimum eigenvalues are places on threshold band of decision. This problem 
decreases the capability of detecting the matrix rank. In the conditions that the rank plays important roles, using 
appropriate method is necessary. As in the proposed algorithm in this paper the rank of correlation matrix has the 
main role, a proper rank detecting method is essential (Saidi, Z. and Bourennane, S. 2007). An adaptive threshold 
level for decision can decrease the problem by introducing a variable level related to the variance of noise. 
Independent of the methodology, having reasonable and stable criteria to estimate rank is important. Our idea in 
this research is to consider a threshold approximately equal to minimum eigenvalue. 

2. Methodology 

Our proposed method in this article is in the base of the following items: 

1- The targets are independent so their correlation is zero 

2- The rank of the correlation matrix is equal to the independent targets 

The center of concentration of our novel method is that when a target is placed in the direction of another for 
either independent or correlated condition, the rank of the correlation matrix decreases by one. This property 
gives the idea of adding an independent target to the data model so that with changing its location, the rank of 
new correlation matrix reduced by one when it is placed in direction of any targets. Adding an independent 
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source to the data model to increase the rank of correlation matrix and changing its angle from zero to 180 
degree to reduce the rank is the basis for finding the main targets. As the estimation of the rank of the correlation 
matrix is in the base of computing its eigenvalues, the difficulties of detecting problem are appeared especially 
when the variance of noise is high. In using this method the following factors are important: 

1-Adding new target to the data model should not change the model so the amplitude should not be high. 

2- Computing the number of eigenvalues that are approximately equal to minimum 

2- Comparison with the original condition should be done under the appropriate criteria 

To implement the method we first compute the eigenvalues of the original correlation matrix. Then we add an 
independent signal to model with proper amplitude and the angle of zero. To detect the rank we change the angle 
and search to maximize the following function 

 (15) 

λnew and λold are minimum eigenvalues of the new and original correlation matrix respectively. The new 
minimum eigenvalues λnew will be computed for each angle to cover the 180 degree band. The result is a function 
J that is maximized at the angle of the main targets. The term λold is used to give relative sensibility. The 
amplitude of the added signal is considered to be about 1/10 of the first diagonal entry of the original correlation 
matrix to prevent of considerable change in data model. As the added signal should be independent of each target, 
the best candidate is a random signal. In conclusion we add a noise with variable location to the model and 
change the location from -90 to 90 to compute J. The peak locations of J give us the reduction of rank by one 
and consequently the location of the targets.  

3. Implementation 
To implement the algorithm, we first introduce the adding technique. A source at location zero degree means that 
its related signal is received on array by the same phase so when it is in location φ, we should add this signal to 
our data model as follow 

 

 

 (16) 

The added signal is a K sample of a sine wave at working frequency ω. This signal is modulated by a random 
signal a(t) and shifted by phase φ. a(t) is a random signal because it should be independent of any arbitrary target 
to satisfies the translation property as discussed in the data model section. We add this signal with one degree of 
resolution in a range of -90 to 90 degrees. In each step the new correlation matrix is constructed and decomposed 
to its subspaces to compute criteria function J as a function of φ. Reduction of the rank will happen in peak 
points of J so we can plot J to obtain the result. A data model for an array of three sensors and two targets is 
simulated to test the method. We locate our target at 21 and 30 degrees as the first test. The conclusion of 
implementation of the proposed method in 0 db signal to noise ratio is demonstrated in figure-2. The behavior of 
criteria function is very sharp because the rank is a discrete quantity so it cannot be changed gradually. In the 
second test according to figure-3, we locate two targets very close at 28 and 30 degrees. The figure clearly shows 
the capability of the method to detect very near targets in 0 db signal to noise ratio by a passive array of three 
sensors. 

4. Conclusion 

A high resolution rank based bearing estimation method in passive array is proposed in this paper. The method 
works in the base of adding a variable location random signal to the real data model and search to find the 
locations that reduces rank of the correlation matrix by changing the angle of the added signal. Rank estimation 
is done by decomposing correlation matrix to its signal and noise subspace and computing minimum eigenvalues 
of the matrix. A cost function is introduced to show the location of the main targets where it is maximized. An 
array of three sensors is simulated to show the capability of the method in detecting very near targets in 0 db 
signal to noise ratio. The graphs demonstrated in the figure-2 and figure-3 clearly show that this technique is 
enable to distinct two near targets by a simple array. In the first case, there are two targets at 21 and 30 degree 
respectively. Figure-2 clearly shows that the algorithm has detected two targets sharply. The result of the second 
case in figure-3 demonstrates that the resolution of the method in three element arrays is approximately 2 
degrees in 0 db signals to noise condition. As the resolution can be increased by using more number of elements 
in an array it can be concluded that this method can achieve more accurate results in a larger array.   
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Figure 1. The Passive Array of Sensors 
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Figure 2. Rank Based Estimation for 21 and 30 Degrees in 0 db Signal to Noise Ratio 

 

Figure 3. Rank Based Estimation for 28 and 30 degrees in 0 db Signal to noise Ratio 

 


