
Modern Applied Science; Vol. 11, No. 4; 2017 
ISSN 1913-1844   E-ISSN 1913-1852 

Published by Canadian Center of Science and Education 

80 
 

Patterns of Urban Heat Island Effect in Adelaide: A Mobile Traverse 
Experiment 

Ehsan Sharifi1 & Ali Soltani2 

1 Urban Microclimate Group, School of ITMS, OC1-75, Mawson Lakes Campus, University of South Australia, 
Australia 
2 Department of Urban Planning, Shiraz University, Shiraz, Iran 
Correspondence: Ali Soltani, Department of Urban Planning, Shiraz University, Shiraz, Iran. E-mail: 
soltani@shirazu.ac.ir 
 
Received: December 24, 2016          Accepted: February 16, 2017     Online Published: March 10, 2017 

doi:10.5539/mas.v11n4p80            URL: http://doi.org/10.5539/mas.v11n4p80 
 
Abstract 
Urban structure, hard surfaces and shortage of vegetation cause an artificial temperature increase in cities, known 
as the urban heat island effect. This paper determines the daily patterns of urban heat in Adelaide, Australia. The 
near-surface temperature profile of Adelaide was mapped in 60 journeys alongside a straight cross route 
connecting Adelaide Hills to the West Beach between 26 July and 15 August 2013. Results indicate that the most 
intense urban-rural temperature differences occurred during midnight in Adelaide. However, the afternoon urban 
heat had more temperature variation in the urban area. In the late afternoon, the near-surface urban heat 
fluctuates by 2°C within three kilometres and by 1.2°C in just one kilometer. Afternoon heat stress can vary 
based on space configurations and urban surface covers. Afternoon heat stress causes the highest heat load on 
urban dwellers. A better understanding of daily urban heat variations in cities assists urban policy making and 
public life management in the context of climate change.  
Keywords: Urban heat island effect, global warming, Adelaide, mobile traverse, heat stress 
1. Introduction 
Australia is likely to experience 3.8°C increase in its surface temperature by 2090 (CSIRO, 2007). Such 
larg-scale warming will have a severe impact on regional and local climate regimes, natural ecosystems, and 
human life. In the context of global warming, heat stress can reach up to 10°C in urban settings compared to 
their rural counterparts (Erell, Pearlmutter, & Williamson, 2011). Natural landscapes in and around cities are 
increasingly replaced by hard and impermeable surfaces (Girardet, 2008; Harden et al., 2014). Urban structure, 
hard surfaces and shortage of vegetation cover in cities cause an artificial temperature increase in cities, 
commonly known as the urban heat island (UHI) effect (Gartland, 2008; Stone, 2012).  
Current UHI scholarship includes extensive macro-scale urban heat mapping in cities worldwide. It also covers 
the effect of urban surface covers on the formation of the UHI effect as a nocturnal phenamenon. However, very 
limited research is available on daily variations of the urban heat in cities when the UHI effect threatens usability 
of outdoor public spaces (Kovats & Hajat, 2008; Nikolopoulou, 2004; Sharifi et al., 2016). In response to 
substantial excess heat in cities, people increasingly move into air-conditioned buildings to benefit from indoor 
thermal comfort. Resulted anthropogenic heat generated from indoor air-conditioning causes an ever-increasing 
outdoor temperature.  
In this context, this paper determines daily patterns of urban heat island effect in Adelaide metropolitan area via 
mobile traverse method. A better understanding of daily urban heat variations in cities assists urban policy 
making and public life management in the context of climate change.  
2. The Urban Heat Island (UHI) Effect 
Background literature of the UHI effect indicates that such artificial increase of urban temperature occurs 
because of changes in energy and water budget in the built environment (Erell et al., 2011; Gartland, 2008; 
Karatasou, Santamouris, & Geros, 2006; Oke, 2006b). In the early 19th century, Howard’s urban heat mapping 
in London indicates that mean annual temperature (20-years average) in London is 2.5°C higher than its 
countryside (1833, p. 32) while the peak air temperature variation of 3°C is recorded during February 



mas.ccsenet.org Modern Applied Science Vol. 11, No. 4; 2017 

81 
 

(mid-winter). Similar urban heat stress has been reported in Paris and Vienna by the 20th century (Gartland, 
2008; Stewart, 2011).  
Macro-scale urban heat investigations contribute mainly to the understanding of the UHI effect mechanism via 
comparing city centres and their rural surroundings (Oke, 1987, 1988; Paterson & Apelt, 1989; Tapper, 1990). 
Numerous case studies strongly support the relatively higher temperature in highly developed urban areas 
including city centres (see a few examples in Table 1). However, the accuracy and applicability of many of these 
case studies are under criticism in more advanced urban climate research by highlighting instrumental and 
measurement variations (Oke, 2006b; Stewart, 2011).  
Gartland (2008, p. 2) enumerates five common characteristics for the UHI effect: 
• UHIs are warmer than their rural surroundings 
• Urban air temperatures get higher due to human-made modifications of urban surface covers 
• The urban-rural temperature differences increase in calm and clear weather (at night time and in winter) 
• More development and less greenery correlate to the intensity of UHIs 
• UHIs create a dome of warmer air above urban cities 
 
Table 1. Reported magnitude of the UHI effect in selected literature since the 1980s 

Location Reported UHI intensity (°C) Reference 
Calgary, Canada 10.1 (winter) (Nkemdirim & Truch, 1978) 
Malmo, Sweden 6 (summer) (Bärring, Mattsson, & Lindqvist, 1985) 
Essen, Germany 7 (maximum) (Swaid & Hoffman, 1990) 
Shanghai, China 3-4 (Djen, Jingchun, & Lin, 1994) 
Singapore 8.4 (maximum) (Nichol, 1996) 
Melbourne, Australia 4 (maximum) (Morris & Simmonds, 2000) 
Granada, Spain 6 (winter) (Montávez, Rodríguez, & Jiménez, 2000) 
Athens, Greece 3.1 (summer) (Santamouris et al., 2001) 
London, UK 1-3 (Watkins, Palmer, Kolokotroni, & Littlefair, 2002) 
Phoenix, USA 10 (maximum) (Hawkins, Brazel, Stefanov, Bigler, & Saffell, 2004)
Hong Kong, China 8 (maximum) (Giridharan, Lau, Ganesan, & Givoni, 2007) 
Singapore 5.4 (winter) (Wong & Yu, 2008) 
Phoenix, USA 0.8 (summer) (Lee, Lee, & Wang, 2012) 
Adelaide, Australia 3-4  (Guan et al., 2013) 

 
Heat islands are uneven in their spatial distribution and magnitude (Oke, 2006b; Wong & Yu, 2008), and can 
vary based on the space configuration and urban features in smaller scales (Erell et al., 2011). Distribution of 
nocturnal UHI effect varies from diurnal heat stress. The magnitude of urban-rural temperature differences is 
usually reported to be higher at night time (Runnalls & Oke, 2000). As such the UHI effect is frequently known 
as a night time phenomenon in urban climatology (Arnfield, 2003; Erell et al., 2011; Gartland, 2008; Ichinose, 
Matsumoto, & Kataoka, 2008; Oke, 1988, 2006a; Yow, 2007).  
UHI literature indicates that the urban-rural temperature differences start to develop during the day under clear 
sky due to the maximum chance of solar gain (Arnfield, 2003; Ashie, 2008; Erell, 2008; Gartland, 2008; 
Karatasou, Santamouris, & Geros, 2006; Oke, 1987, 1988, 2006b; Ryu & Baik, 2012; Tapper, 1990; Yow, 2007). 
Calm weather conditions cause the warm air to be withheld in the built environment for an extended time 
(Gartland, 2008; Morris, Simmonds, & Plummer, 2001; Oke, 2006b; Wong & Yu, 2008). Urban structure, 
surface materials, metabolism and lack of adequate landscape are cited as key contributors to the UHI effect 
(Gartland, 2008; Oke, 2006b). Due to the heat-trapping urban structure and surface covers, the stored heat 
remains in the built environment during the night (Erell et al., 2011; Gartland, 2008; Rizwan, Dennis, & Liu, 
2008) and causes the urban areas to have extended heat stress at night. 
2.1 Scales and Metrics of the UHI Effect 
The importance of scale in UHI research has been emerged after the development of remote sensing thermal 
imagery in the 1980s. Remote sensing has added surface temperature mapping to the conventional air 
temperature measurement in UHI research (Arnfield, 2003; Gartland, 2008). To date UHI studies are represented 
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surrounded by parklands and outer suburban areas. Recent research on the urban heat in Adelaide suggests that 
the existence of parklands is effectively mitigate the urban heat of the CBD (Clay et al., 2016; Guan et al., 2013).  
The midnight urban heat in Adelaide has the most intense temperature differences (urban-airport) in Adelaide 
(refer to the higher values of mean, minimum, and maximum in Table 4). However, the afternoon urban heat has 
more temperature variance (point-to-point variation), especially during the late afternoon (refer to higher values 
of sample variance, standard deviation, and skewness in Table 4).  
The averaged near-surface urban heat was the highest in Adelaide during the midnight traverses. However, the 
6°C higher temperature during winter nights, when the suburban temperature may be as low as 9°C, is not a 
threat (in fact, it could be an advantage). Nevertheless, the midnight urban heat could be a threat during summer 
heatwaves with midnight minimum temperatures of more than 30°C. The afternoon urban heat may be even 
more harmful during summer when solar radiation is more intense, days are longer, and the temperature profile 
is considerably higher than winter. The 2.4°C temperature variations in the late afternoon could make an 
acceptable outdoor thermal environment uncomfortable to attend, or push the boundaries of thermal discomfort 
towards stronger heat stress (the pilot study had been done in winter due to the higher probability of urban heat).  
The near-surface urban heat measurement in Adelaide indicate that:  
• Due to urban geometry, some urban spaces store more heat compared to others. Such heat load variations 
may occur over walking distances (500-1000 m) in urban spaces with different spatial configurations.  
• The urban heat is lower during the afternoon compared to midnight. However, near-surface temperature 
fluctuation is higher during the afternoon.  
• The afternoon urban heat could be more harmful to humans during summer, although it provides better 
thermal comfort conditions during the winter. 
6. Policy implication 
This mobile traverse urban heat study of Adelaide supports the argument of heat stress variability in the built 
environment during daily cycles and within short distances. The UHI measurements are commonly performed 
during the night – when the urban-rural temperature differences are at their maximum. Thus, they fall short in 
addressing the issue of excess heat stress on human participants. However, having thermally comfortable urban 
microclimates is a fundamental characteristic of healthy and vibrant public spaces (Gehl, 2010, 2011). Therefore, 
urban planning professionals and decision makers are required to consider diurnal heat stress alongside nocturnal 
urban heat islands in planning healthy cities.  
Results of this study suggest that the maximum urban heat stress occurs during the afternoon when both overall 
temperature and daily urban heat are at their peak. Such daily heat stress in canopy layer decreases in urban 
parklands and near water bodies. However, daily heat stress peaks in hard-landscapes urban settings. Thus, urban 
greenery and surface water can assist achieving more liveable and healthy urban environments. 
7. Conclusions  
Diurnal heat stress varies in the built environment during daily cycles and within short distances. The midnight 
urban heat in Adelaide had the most intense urban-rural temperature differences in winter. However, the 
afternoon urban heat has more temperature variation (point-to-point variation), especially during the late 
afternoon. The highest temperatures were recorded during the early afternoon (summer urban heat might be 
different). If similar patterns occur during summer heatwaves, the afternoon heat stress can cause significant 
outdoor thermal discomfort. The highest urban heat was recorded in the western industrial-residential suburbs 
that have less vegetation and more hard surfaces.  
Diurnal heat stress in canopy layer decreases in urban parklands and near water bodies. However, daily heat 
stress peaks in hard-landscapes urban settings. Thus, urban greenery and surface water can assist achieving more 
liveable and healthy urban environments. A better understanding of daily urban heat variations in cities assists 
urban policy making and public life management in the context of climate change. 
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