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Abstract

In this work, a single port exponential tapered toothed log periodic antenna based on graphene artificial magnetic
conductor (AMC) is suggested for ultra-wideband (1-10) THz operation. The resonance frequency of the
proposed antenna can be tuned by changing the connected DC voltage which leads to variation in the chemical
potential of the graphene.The radiating toothed log periodic antenna consists of gold patch placed on 25x25
graphene patches which act as an AMC surface unit. Exponential taper is used to satisfy impedance matching
between the antenna and the feeder over the frequency range. The simulation results reveal that 90% of
frequency range satisfies s;; < —10 dB when the chemical potential isleV.

Keywords: Graphene, artificial magnetic conductor, terahertz antenna, toothed log periodic antenna, UWB
antenna

1. Introduction

Graphene has been named the simplest complex material whichhas drawn increasing attention in recent years
due to its unique properties and advantages. In fact, graphene is used in many fields including mechanical,
thermal and electrical applications (Geim & Novoselov, 2007; Grigorenko, Polini & Novoselov, 2012). The
surface conductivity of the graphene can be varied by changing the applied electrical potential (Sensale-
Rodr’iguez, Yan, Liu, Jena & Xing, 2013; Low & Avouris, 2014), thus many graphene based-devices such as
antennas, filters, absorbers, and polarizer's have been suggested for bands in microwave, terahertz and optical
frequencies (Fallahi & Perruisseau-Carrier, 2012; Andryieuski, & Lavrinenko, 2013). Graphene-based THz and
photonic antennas were also developed in (Wu, Tuncer, Naeem, Yang, Cole, Milne & Hao, 2014; Xu, Lu, Jiang
& Dong, 2012) for different applications.

The graphene can be used to design THz antennas, as radiating part (Esquius-Morote, G'omez-D'1az &
Perruisseau-Carrier, 2014; Tamagnone, G omez-D"1az, Mosig & Perruisseau-Carrier, 2012), parasitic component,
or high impedance surfaces (HIS) usually based on AMC configuration (Dragoman, Muller, Dragoman, Coccetti
& Plana, 2010; Tamagnone, Gomez Diaz, Mosig & Perruisseau-Carrier, 2013). The AMC is a planar array of
periodic surface which can improve the control of electromagnetic wave radiation. Thus this structure has been
broadly utilized in the design of some types of antennas such as low profile leaky wave antenna operating at
microwave regime with high efficiency and gain in correlation with conventional ground plane. Also adding
active HIS (Huang, Wu, Tang & Mao, 2012) elements loaded with varactor diodes to the antennas enables them
to beam steering and easy frequency tuning (Guzman-Quiros, Gomez-Tornero, Weily & Guo, 2012; Sievenpiper,
Schaffner, Song, Loo & Tangonan, 2003). It is also possible to insert periodic graphene patches as antenna
ground. A tunable terahertz antenna based on graphene AMC with relatively narrow bandwidth was presented in
(Wang, Zhao, Hu & Zhang, 2013). In (Wang, Li, Zhao & Hu, 2013) many shapes of grapheme-based AMC were
studied and compared. The graphene biased reflective array was also applied for antenna configuration to get
frequency tuning and beam reconfiguration (Esquius-Morote, G'omez-D’1az & Perruisseau-Carrier, 2014;
Tamagnone, Gomez Diaz, Mosig & Perruisseau-Carrier, 2013).

In this work, a single port novel tunable UWB antenna depending on AMC array is proposed. The antenna has
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log periodic toothed shape with exponential tapered transmission line implemented over graphene patche array
which acts as an AMC. The applied voltage is used to tune this antenna in order to wide its bandwidth.

2. Background
2.1 Graphene Conductivity

The graphene can displayed as an infinitesimally flimsy surface which is portrayed by surface
conductivity s (w, T, uc, T ). The graphene conductivity Drude model in intraband can be written by (Wang,
Zhao, Hu & Zhang, 2013)
__e’kpTt [ pc 1:_11c

0s(0) = [ 4 o1 (e bt 4+ 1)] (1)
Where 7 is the scattering time, o is the angular frequency, y.is the chemical potential in eV, which can be
changed by chemical doping process or by using DC voltage, e is the electron charge, T is the absolute
temperature, kg is Boltzmann constant, and h is reduced Planck’s constant.

The graphene surface impedance can be expressed as

1

as(w)

Zs(w) =

2

2.2 Graphene-Based AMC

The graphene is used as an AMC unit cell which consists of a periodic of square patches with dimension D and
the gap between adjacent patches is g as in Figure 1 (Wang, Zhao, Hu & Zhang, 2013).

The patch array at terahertz band surface impedance can be written as (Wang, Li, Zhao & Hu, 2013)

y =i (Zi-o) =2 (3a)

—go  wCesf - JjoCg(w)

where C, represents the capacitance between adjacent graphene patches

Cery = =2o(&r +1) D In[cscGD)] (3b)

Here &,is the permittivity of free space, &, is the substrate relative permittivity, and Cgfy is the capacity for the
background and patch geometry.
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D
(a) AMC unit cell (b) AMC graphene patches array

Figure 1. Graphene-based artificial magnetic conductor (Wang, Li, Zhao & Hu, 2013)

The circuit model representing the equivalent circuit of graphene patches array mounted on grounded substrate is
shown in Figure 2 (Wang, Zhao, Hu & Zhang, 2013).
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Figure 2. Equivalent circuit model for a graphene patches array mounted on groundedsubstrate
2.3 Log Periodic Antenna

Log periodic antenna (LPA) is still interesting although many decades passed. It provides frequency
independence properties for the antenna over wide band of frequency. In fact, theoretically log periodic antenna
is a class of antennas for which pattern and impedance independent on frequency for unlimited band of
frequencies. The impedance and pattern of LPA structures is shaped so thatrepeat periodically in relation with the
frequency logarithm, as in Figure 3.

_ Rn+1

¢ =t o)
=N

5= ®)

where Ry and 1y are the distance from the center of the antenna to the outer and inner radiuses of the tooth N
respectively, T is the ratio between two outer radiuses of successive teeth, and § is the ratio between inner radius
to the outer radius for any tooth. The structure shape and scaling factor t can be used such that the changing of
the impedance and pattern over each period is small, the result being an extremely wideband antenna. The
feeding of the two parts of the antenna is at the vertices either by a coaxial line or by a balanced two-wire line.
The upper and lower frequency limits are achieved when the shortest and longest teeth, respectively, are
around0.25 wavelength long.
o/

Figure 3. Log periodic toothed antenna

2.4 Impedance Matching
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Tapered line is used in this work to increase the matching between the antenna and the feeder. Typically the
characteristic impedance of the transmission line is 50Q,while the input impedance of the proposed wideband
antenna is 200Q. Thus an exponential line taper is used to match the 50Q of the feeder to the 200Q of the
antenna, as shown in Figure 4. The exponential line is characterized by (Pozar, 2011)

Z(z)=Z,e® for0< z < L 6)
where Z, = Z(0) and

a = ;G ()

Here Z (L) is the characteristic impedance of the transmission line at distance L, i.e., Z;=Z (L).

Characteristic impedance
Z(2) A
Z Ll

% |
0 L

Figure 4.Variation of the characteristic impedance along the exponential taper
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>
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3. Proposed Antenna Model

In our work, the proposed log periodic toothed antenna has a structure of @ = 120°%, 8 = 45% where o is the
tooth angle, B is the bow angle and T = 62 = 0.5, as shown in Figure 5a.

This proposed antenna is based on AMC and composed of 25 x 25 array of periodic square conductive graphene
sheets. A log periodic toothed antenna from gold material is placed on the graphene-depend AMC ground plane,
as shown in Figure Sb. A grounded SiO,material of thickness 10 um is representing the AMC substrate. A
silicon wafer of thickness 300 um is used under the substrate. A50 nm from polycrystalline silicon material is
placed above the quartz is thick layer and Al,O;o0f 10 nm-thick film in sequence, (Wang, Zhao, Hu & Zhang,
2013).The AMC unit consists of 25 x25 graphene square shape patches with g = lumand D = 9um . The
graphene patches are connected by a 60 nm-wide graphene to keep all AMC units at the same . when a DC
voltage is connected between the polycrystalline silicon and the AMC. A 2 um-thick SiO, material is placed on
the graphene AMC, and the gold antenna is placed on Sio, layer (Wang, Zhao, Hu & Zhang, 2013).

Bowtie Antenna

$102 ~Graphen
| N N § |
Povcrvstaline siicon

[$——— ALO;

SI10:

Ground

(a) Top view (b) side view

Figure 5. Proposed AMC-basedantenna structure
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4. Simulation Results and Discussion

Simulation results are obtained using CST Studio ver.2014 for many values of chemical potential y;. Results
related to p. = 0.1eV and 1leVare given in this section, while the results relate to other values of . are given
in the Appendix. Figure 6a shows the scattering parameter S;; in dB of the proposed antenna for u. = 0.1eV.
The operating bandwidth extends from (1.0 - 2.8) THz, at which S;;< -10 dB, while Figure 6b shows the
broadband gain of the proposed antenna when p = 0.1eV. The antenna has gain> 5 dB for the entire frequency
band (6.1 - 10) THz.

0

S-Parameter [Magnitude in dB]

— 51,1

-15

-25

-35

1 2 3 4 5 6 7 8 9 10
Frequency / THz

Gain (IEEE),3D,Max. Value (Solid Angle)

Frequency / THz

(b) Antenna gain

Figure 6. Proposed antenna characteristics when p = 0.1eV.

Figure 7a shows the scattering parameter S;; in dB of the proposed antenna for u, = 1leV. The operating
bandwidth extends from (2.4 -8.3) THz and from (9-10) THz . Further, there are resonance frequencies at(1, 1.5,
and 2 )THz at which S11< — 10 dB.

Figure 7b shows the broadband gain of the proposed antenna for u. = 1eV. It has very good gain between -2 and
10 dB for the entire frequency band.

S-Parameter [Magnitude in dB]

— 51,1

------------------------------------------------------------------------------------------------------------------------------------------------------

Frequency / THz

(a) Scattering parameter Sy,
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14 Gain (IEEE),3D,Max. Value (Solid Angle)

Frequency / THz

(b) Gain spectrum

Figure 7. Proposed antenna characteristics when p, = 1leV

Figure 8 summarize the frequency bands at different values of chemical potential u. = (0.1 — 1)eV. The
cumulative bandwidth, calculated as the sum of the bandwidths of different bands at which S;;< -10dB, is
mentioned in Table (1).

Frequency bands with chemical potential (0.1-1) eV
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Figure 8. Frequency bands for different values of chemical potential u. = (0.1 — 1)eV

Table 1. Variation of the cumulative bandwidth with p,

Chemical potential p.(eV) Cumulative bandwidth (THz)

0.1 1.80
0.2 2.50
03 6.45
0.4 6.80
0.5 6.90
0.6 6.92
0.7 7.20
0.8 7.20
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0.9 7.30
1 7.35

5. Conclusions

In our work, a tunable antenna based on graphene as artificial magnetic conductor has been designed to achieve
UWRB operating frequency band, (1 — 10)THz at which S;;< -10 dB.The antenna itself has been formed as log
periodic toothed antenna wherean exponential transmission line taper is used to increase the matching between
the antenna and the feeder. The simulation results reveal that the antenna cumulative bandwidth increases by
increasing the chemical potential. The highest cumulative bandwidth of S;;< -10dB of the proposed antenna is
equal to 6.86 THz at pu, = lel.
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Appendix

This Appendix presents related to the spectrum of the scattering parameter S11 and the gain for the proposed
antenna when pc varies from 0.2 eV to 1 eVat step of 0.1 eV
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Figure Al. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.2 eV
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Figure A2. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.3 eV
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Figure A3. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.4 eV
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Figure A4. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.5 eV
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(b) Antenna gain

Figure A5. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.6 eV
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Figure A6. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.7 eV
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Figure A7. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.8 eV
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Figure A8. Antenna scattering parameter S;; (a) and antenna gain (b) when p.=0.9 Ev
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