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Abstract  
With the growth of the internet networks today, security of data exchange is considered as an important task. 
Therefore, the use of security tools is increasing day by day. Intrusion detection systems are among these tools. 
They are only able to labela message received from a network as‘alert’,but they are unable to describe system 
status. Some methods have been developed to solve the above problem through correlating the alerts received 
from intrusion detection systems. By correlating the interrelated alerts, the methods would be able to describe 
system status. One of the steps of correlation methods of alerts is to classify them. System status can be 
described better when classification is performed efficiently. Here, we present a method for classifying alerts.  
Keywords: intrusion detection systems, alerts, classification, correlation 
1. Introduction  
Today, with the numerous attacks and sabotages occurringover networks and threatening performance of many 
customers and its users,security centersattempted to look for solutions tomaintain security over the network more 
than ever. Various security tools, such as firewalls, intrusion detection systems, etc. are used to improve security 
level on a network (Kruegel, Valeur & Vigna, 2005).  
One of the major problems of intrusion detectionsystems is issuance of many alerts with low-levelabstraction. To 
solve this problem, we need to have some methods to issue alerts with higher abstraction level while reducing 
alerts and removing wrong alerts (Kruegel, Valeur & Vigna, 2005).  
With respect to the verylarge volume of data passing over the network, importance and confidentiality of the data, 
necessity to maintain security and protect users’ data in today’s world, there is a pressing need to have a security 
system to be able to manage network and protect system against possible damages.  
In typical systems, the tools such as firewalls, antivirus software, and intrusion detection systems attempt to 
protect a network and defend against possible attacks. These tools are suitable solutions to reduce the impacts of 
computer attacks; however, they cannot be considered as an inclusive approach to protect and prevent network 
form possible damages. One of the tools that gained attentions recently is intrusion detection systems. They are 
able to detect and issue analert. Two problems concerning intrusion detection systems are 1- A large number 
ofreceivedalerts, 2- Wrongalerts (Wang, Liu & Jajodia, 2006).  
With respect to the above items and the fact that the issuedalerts have low abstraction levels, as a network 
manager would have no understanding of system status, we need a system to enable us to detect relationships 
between these alerts. This is realized by collecting alerts from intrusion detection systems and providing network 
manager with a high-level vision for the attacks taken placeover thenetwork.  
‘Correlation of alerts’ means establishing a relationship betweensomealerts and promoting them to higher-level 
alerts whose management is more convenient for network manager.  
As data mining means extraction of useful information out of a large volume of data, it can be used as a method 
for correlatingalerts. Some of the models proposed for correlatingalerts enjoy data mining techniques; however, 
all these methods have some drawbacks that make us keep looking for some efficient methods with low 
computational and memory overhead.  
The rest of the article discusses the following items: Section two reviews literature, the proposed method is 
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explained in section three, conclusions are brought about in section four, and section five discusses the results.  
2. Literature 
In reference (Zhu & Ghorbani, 2006), correlation probability between two alerts is calculated based on similarity 
of features of source IP, destination IP, destination port, type of alert, and timestamps using Multi-Layer 
Perceptron(MLP) neural network and Support Vector Machines (SVM). In this method, when a new alert is 
received, anultra-alert that includes an alert with maximum correlation probability with the new alert is specified 
using MLP and SVM. If the detected correlation probability was less than correlation threshold, the new alert is 
not correlated with any alerts. If the calculated probability exceeded threshold, correlation probability of the new 
alert is calculated with all the available alerts in the detected ultra-alert.After that, the alert is correlated with the 
new alert whose difference of probability with the highest probability detected earlier is less than criterion of 
correlation sensitivity. If there is no alert for correlation, a new alert is placed in a new ultra-alert. 
Following figure shows a framework presented for alert correlation in (Sadoddin & Ghorbani, 2009). 
Unprocessed alerts are received continuously by integration unit. This unit correlates alerts to graph structures 
based on their connection information with respect to the source and destination of the alerts. Each structural 
pattern may show attack strategies or maybe the normal pattern created due to positive false alerts. The created 
patterns may change dynamically as long as they become fixed. The fixed structural patterns are transferred to 
the next unit to create a set of transactions for the following processes.  

 
Figure 1. A framework for correlation between alerts (Sadoddin & Ghorbani, 2009) 

 
In this method, features of source IPs, destination IPs, attack classes,and timestamps are used for different alerts. 
Feature of portis not used in this method asfrequent patterns are shown by data graph structures, which are nodes 
of network hosts and edges of the alerts issued between hosts. On the other hand, a port is not an unreliable 
feature source (as each intruder can easily change his/her port) and value of destination port in most attacks is 
not important.  
In the method presented for creating candidate frequent patterns, transactions are created based on the 
connection information of corresponding alerts. Here, one method is presented for exploringfrequent patterns 
incrementally and maintaining them in the reduced data structure (FP-tree). 
FP-Growth algorithm was used for exploring sequential structures. FP-Growth algorithm uses FP_Tree, which is 
a compressed data structure for storing frequent candidate patterns  
A concept called ‘source’ was used in (Xu & Ning, 2005) to show prerequisite and consequence of an attack. A 
‘source’ can be a port, a service, etc. Prerequisite of an attack, input source, and its consequences is called 
‘output source’. In this method, the causal relationships between resources were prepared in the form of rules 
and they are used to create correlations between alerts.  
Two alerts are correlated when the output source of either of them include one of the input sources of the other 
and/or lead to them.   
Minor compliance was used in this article. That is, if the result of an alert meets at least one of the prerequisites 
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of another alert (regarding time relationship), those alerts will be correlated. 
3. Proposed Method 
Correlation of alerts has several steps as follows. First, alerts are classified after preprocessing. Then an attack 
scenario is created using the available alerts in a group. An attack scenario is strongly dependent on the earlier 
knowledge and classification quality.Earlier knowledge is meant the knowledge collected from professionals that 
can help to create an attack graph (that expresses attack scenario). The richer and more accurate the knowledge is, 
the presented scenarios will be better. Therefore, we intend to focus on a part to be able to solve the problem 
using data mining techniques. As a result, we will concentrate on how to classify and correlate alerts.  
Our proposed method encompasses the following steps: 

1. For all the receivedalerts, we do the following steps. 
2. Classification of alerts using the fuzzy method explained below. 

First, we calculate output for a pair of alerts using MLP neural network as a correlation engine. We teach the 
above neural network using training samples.  
If the relevant output were bigger than the predefined threshold, we would go through step 3; otherwise, we 
create a new ultra-alert and put above alert in it. 
We connect the received alert to all the available ultra-alertsand we use the second output power of the 
correlation engine as membership degree of the alert to the present ultra-alerts. 
A. Using Neural Network as a Correlation Engine 
As explained in the method of Zhu and Ghorbani, a multi-layer neural network can be used as a correlation 
engine. First, we teach the neural network using the following training samples.The features we used here are: 
1- Source IP address, 2- Destination IP address, 3- Destination port number, and 4- To examine if destination IP 
address of the earlier alert is identical with the source IP address of the current alert   
After teaching the above network, it is used as follows. Here, we compare the features extracted from the 
received alerts and the ending alerts in infra-alerts and give their values to the correlation engine. The network 
output shows correlation probability of the two alerts. If this value exceeded the predefined threshold (We 
assumed threshold value equal to 0.5.), we connect it to the ending alert in the above ultra-alert. In this method, 
one alert may appear in several ultra-alerts. We use output of correlation engine as membership degree of an alert 
to the relevant ultra-alert.  
B. Using Fuzzy Classification to Establish Relationship between Alerts 
When output of correlation engine exceeds threshold value for the received alert and final alert in anultra-alert, 
we put the alert in that ultra-alert and use output of the correlation engine as membership degree of that alert to 
the ultra-alert.  
After examining all alerts, we will have several ultra-alerts that may have common alerts (but with different 
membership degree). 
4. Experiments 
It can be proved that this method leads to a better categorization. To do so, we assume that we received alert α1. 
Probability of correlation of this alert with the two alerts, which are within two different ultra-alerts, close to one 
another and it exceeds the threshold (0.5) we defined - for instance, probability of 0.6 for its correlation with the 
alert in the first ultra-alert and 0.56 for its correlation with the alert in the second ultra-alert. As noticed, such 
difference is negligible. According to other classification methods, assume that we put this alert in the first 
ultra-alert, while, in fact, it is related to the second ultra-alert. It is due to the fact that correlation engine is 
unable to show their correlationfavorably. This might be due to the accuracy of a learning machine (Learning 
machine’s accuracy cannot be hundred percent.) and/or due to lack of appropriate training. Therefore, by losing 
this alert in the second ultra-alert, we may not be able to extract attack scenario. (Assume a condition in which 
such mode is repeated several times.) 
Now, assuming that we can have this alert in both ultra-alerts, we will be able to compensate defect of attack 
scenario by having the pertinent alert. We can consider constructingan attack scenario in a way to ignore 
construction algorithm of their scenario as soon as we observe the irrelevant alerts. It means that placing an alert 
in such ultra-alert cannot lead to confusion about attack scenario.  
We implement all algorithms using MATLABsoftware. 
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All algorithms are accessible in the "Appendices" part. 
We tested our algorithm on 30 sample alerts out of all the alerts of "DARPA 2000" dataset and the result was as 
follows: 
 
Table 1. Information Exports from DARPA 2000 Dataset 
Destination Protocol Length Info 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TCP 60 Telnet Data 
Falcon.eyrie.af.mil TELNET 60 63281>telnet [ACK] Seq=2 Ack=2 Win=33580 Len=0 
Falcon.eyrie.af.mil TCP 60 Telnet Data… 
Delta.peach.mil TCP 60 Telnet Data… 
Falcon.eyrie.af.mil TELNET 60 63281> telnet [ACK] Seq=4 Ack=4 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281> telnet [ACK] Seq=5 Ack=5 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281>  telnet [ACK] Seq=6 Avk=6 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281>  telnet [ACK] Seq=7 Ack=7 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281>  telnet [ACK] Seq=8 Ack=8 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281> telnet [ACK] Seq=9 Ack=9 Win=33580 Len=0 
Falcon.eyrie.af.mil TCP 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
Falcon.eyrie.af.mil TCP 60 63281> telnet [ACK] Seq=10 Ack=10 Win=33580 Len=0 
Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
Delta.peach.mil TELNET 60 Telnet Data… 
 
Table 2. Cell structure returns 

1 0 0.0 
2 1 0.9275
3 1 0.7550

 
Table 3. Data For Learn 

1 1 0 1 1 1 1 
1 1 0 0 0 0 0.75
1 1 0 0 0.5 0.5 0.85
0.5 1 0 0 0.5 0.5 0.8 
0.5 0.5 0 0 0.1 0.3 0 
0 1 0 0 0.1 0.2 0 
1 0.5 0 1 0.5 0.3 0.65
0 0 0 0 0 0 0 
0.5 1 0 0 1 1 0.85
0.5 0.5 0 1 1 1 0.8 
1 1 0 1 0 0 0.9 
0.5 0.5 0 0 0.5 0 0 
0 0 0 1 1 1 0.65
0 0 1 1 1 1 0.9 
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0 0 1 0 0.5 0 0.8 
0 0 1 1 0.5 0.5 0.85
0 0 1 0 0 0 0.8 
0.5 0.5 0 0 0.5 1 0 

 
Table 4. CorrelationAl Algorithm Output “correlationAl (dataIDS) 

1 0 0 
2 1 0.773381779
3 0 0 
4 0 0 
5 0 0 
6 0 0 
7 0 0 
8 0 0 
9 0 0 
10 0 0 
11 1 0.807486488
12 0 0 
13 0 0 
14 0 0 
15 0 0 
16 0 0 
17 0 0 
18 0 0 
19 0 0 
20 0 0 
21 0 0 
22 0 0 
23 0 0 
24 0 0 
25 0 0 
26 0 0 
27 0 0 
28 0 0 
29 0 0 
30 0 0 

 
Table 5. FuzzyModel Algorithm Output “f = fuzzyModel (dataIDS) 

1 0 0 
2 1 0.773382
3 2 0.773382
4 3 0.999973
5 4 0.773382
6 5 0.773382
7 6 0.999973
8 7 0.773382
9 8 0.773382
10 9 0.999879
11 10 0.807486
12 11 0.807486
13 12 0.999879
14 13 0.773382
15 14 0.773382
16 15 0.999879
17 16 0.807486
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18 17 0.807486
19 18 0.999879
20 19 0.773382
21 20 0.773382
22 21 0.999879
23 22 0.807486
24 23 0.807486
25 24 0.999973
26 25 0.807486
27 26 0.807486
28 27 0.999879
29 28 0.773382
30 29 0.773382

 
Using neural network and predefined threshold in (Zhu & Ghorbani, 2006), the alerts were classified into several 
groups. While we placed them in a group using their own method, this result was acceptable because all the 
alerts were somehow related to each other.  
5. Conclusion 
Here, we aimed to present a better method for correlating alerts. In our method, first, we use MLP as a 
correlation engine. This engine specifies probability of correlation of two alerts. Then we classified alerts using 
an algorithm and present them in the form of anultra-alert. The advantage of this method is that one alert can be 
placed in several ultra-alerts simultaneously. If one alert is placed in another group by mistake, such advantage 
will not lead to non-extraction of attack scenario of anultra-alert.  
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Appendices 
Appendix 1: correlationAl FUNCTION 
function hyperAlertList = correlationAl(ListOfAlert) 
corrThreshold = 0.5; 
corSensity = 0.1; 
hyperAlert = zeros(1,3); 
hyperAlertList = cell(1,1); 
idxHyperAlert = 0; 
preAlert = 0; 
for m=1:size(ListOfAlert,1) 
alert = m; 
maxCorr = 0; 
if(idxHyperAlert==0) 
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idxHyperAlert = idxHyperAlert+1; 
hyperAlert(1,1) = alert; 
hyperAlertList{1,idxHyperAlert} = hyperAlert; 
else 
for n=1:size(hyperAlertList,2) 
hyperAlertS = hyperAlertList{1,n}; 
for k=1:size(hyperAlertS,1) 
                    probCorr = corrCal(ListOfAlert(hyperAlertS(k,1),:),ListOfAlert(alert,:),preAlert); 
if(probCorr>maxCorr) 
maxCorr = probCorr; 
maxIdxHyperA = n; 
maxIdxA = k; 
end 
end 
end 
if(maxCorr>corrThreshold) 
hyperAlertSelected = hyperAlertList{1,maxIdxHyperA}; 
flagFind = 0; 
for i=1:size(hyperAlertSelected,1) 
if(i==maxIdxA) 
continue; 
end 
                        probCorr = 
corrCal(ListOfAlert(hyperAlertSelected(i,1),:),ListOfAlert(alert,:),preAlert); 
if((maxCorr - probCorr)<corSensity) 
                            l = size(hyperAlertSelected,1); 
hyperAlertSelected(l+1,1) = alert; 
hyperAlertSelected(l+1,2) = i; 
hyperAlertSelected(l+1,3) = probCorr; 
hyperAlertList{1,maxIdxHyperA} = hyperAlertSelected; 
flagFind = 1; 
end 
end 
if(i==1) 
                        l = size(hyperAlertSelected,1); 
hyperAlertSelected(l+1,1) = alert; 
hyperAlertSelected(l+1,2) = i; 
hyperAlertSelected(l+1,3) = probCorr; 
hyperAlertList{1,maxIdxHyperA} = hyperAlertSelected; 
flagFind = 1; 
end 
if(flagFind==0) 
hyperAlert(1,1) = alert; 
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idxHyperAlert = idxHyperAlert+1; 
hyperAlertList{1,idxHyperAlert} = hyperAlert; 
end 
end 
end 
preAlert = ListOfAlert(m,:); 
end 
end 
 
Appendix 2: correlationAl2 FUNCTION 
function correlationAl2(listOfAlert) 
stackObj = stack; 
threshold = 0.1; 
    r = randi(size(listOfAlert,1)); 
stackObj = stackObj.inqueue(listOfAlert(r,1)); 
graphAttack = listOfAlert(r,1); 
idxGraphAttack = 1; 
visitedGraph = zeros(size(listOfAlert,1),1); 
 
%acm = calculateACM(listOfAlert); 
loadacm; 
 
isEmpty = stackObj.top; 
while(isEmpty>0) 
stackObj = stackObj.dequeue(); 
alert =  stackObj.dequeuedElm; 
for i=1:size(acmMatrix,2) 
forwardCorrStr = acmMatrix(alert,i)/sum(acmMatrix(alert,:)); 
if(forwardCorrStr>threshold) 
if(visited(i,1)==0) 
stackObj = stackObj.inqueue(listOfAlert(i,1)); 
visitedGraph(i,1) = 1; 
end 
graphAttack(idxGraphAttack,2) = i; 
graphAttack(idxGraphAttack,3) = acmMatrix(alert,i); 
idxGraphAttack = idxGraphAttack+1; 
end 
end 
isEmpty = stackObj.top; 
end 
end 
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Appendix 3: readData FUNCTION 
function readData()     
    [data,path] = uigetfile('m2.csv'); 
data = dataset('xlsfile',sprintf('%s\%s', path,data)); 
end 
 
APPENDIX 4: fuzzyModel FUNCTION 
function hyperAlertList = fuzzyModel(ListOfAlert) 
corrThreshold = 0.5; 
%corSensity = 0.1; 
hyperAlert = zeros(1,3); 
hyperAlertList = cell(1,1); 
idxHyperAlert = 0; 
preAlert = 0; 
for m=1:size(ListOfAlert,1) 
alert = m; 
%maxCorr = 0; 
if(idxHyperAlert==0) 
idxHyperAlert = idxHyperAlert+1; 
hyperAlert(1,1) = alert; 
hyperAlertList{1,idxHyperAlert} = hyperAlert; 
else 
for n=1:size(hyperAlertList,2) 
hyperAlertS = hyperAlertList{1,n}; 
%for k=1:size(hyperAlertS,1) 
                l = size(hyperAlertS,1); 
                probCorr = corrCal(ListOfAlert(hyperAlertS(l,1),:),ListOfAlert(alert,:),preAlert); 
if(probCorr>corrThreshold) 
hyperAlertS(l+1,1) = alert; 
hyperAlertS(l+1,2) =  hyperAlertS(l,1); 
hyperAlertS(l+1,3) = probCorr; 
hyperAlertList{1,n} = hyperAlertS; 
%                     for i=1:size(hyperAlertS,1)-1 
%                         probCorr = 
corrCal(ListOfAlert(hyperAlertS(i,1),:),ListOfAlert(alert,:),preAlert); 
%                         hyperAlertS(l+1,i+1,1) = i; 
%                         hyperAlertS(l+1,i+1,2) = probCorr^2; 
%                         hyperAlertList{1,n} = hyperAlertS; 
%                     end 
else 
hyperAlert(1,1) = alert; 
idxHyperAlert = idxHyperAlert+1; 
hyperAlertList{1,idxHyperAlert} = hyperAlert; 
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end 
end 
end 
preAlert = ListOfAlert(m,:); 
end 
end 
Appendix 5: featureMatching FUNCTION 
function [f1,f2,f3,f4] = featureMatching(hyperAlertS,alert,preAlert) 
addressIP = xlsread('data\addressIP.xlsx'); 
hyAlIP = zeros(1,8); 
alertIP = zeros(1,8); 
   %% Calculation of f1,f2 
for k=3:4  
for i=1:size(addressIP,1) 
if(hyperAlertS(1,k)==addressIP(i,1)) 
for j=2:5 
hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
if(alert(1,k)==addressIP(i,1)) 
for j=2:5 
alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
end 
%alIP = num2str(alertIP(1,5)); 
%hyAIP = num2str(hyAlIP(1,5)); 
for i=1:8 
match = 0; 
for j=i:8 
if(alertIP(4,j)==hyAlIP(4,j)) 
match = match+1; 
else 
break; 
end 
end 
matchT(1,i) = match; 
end 
matchT = sort(matchT,'descend'); 
if(k==3) 
            f1 = (24+matchT(1,1))/32; 
else 
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            f2 = (24+matchT(1,1))/32; 
end 
end 
%%End of Calculation of f1,f2 
  %% Calculate another features 
if(hyperAlertS(1,5)==alert(1,5)) 
        f3 = 1; 
else 
        f3 = 0; 
end 
 
if(preAlert(1,4)==alert(1,3)) 
        f4 = 1; 
else 
        f4 = 0; 
end 
%%End of Calculate another features 
end 
Appendix 6: featureMatchForCls FUNCTION 
function [f1,f2] = featureMatchForCls(hyperAlertS,alert) 
addressIP = xlsread('data\addressIP.xlsx'); 
hyAlIP = zeros(1,8); 
alertIP = zeros(1,8); 
   %% Calculation of f1,f2 
for k=3:4  
for i=1:size(addressIP,1) 
if(hyperAlertS(1,k)==addressIP(i,1)) 
for j=2:5 
hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
if(alert(1,k)==addressIP(i,1)) 
for j=2:5 
alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
end 
%alIP = num2str(alertIP(1,5)); 
%hyAIP = num2str(hyAlIP(1,5)); 
for i=1:8 
match = 0; 
for j=i:8 



mas.ccsenet.org Modern Applied Science Vol. 10, No. 9; 2016 

202 
 

if(alertIP(4,j)==hyAlIP(4,j)) 
match = match+1; 
else 
break; 
end 
end 
matchT(1,i) = match; 
end 
matchT = sort(matchT,'descend'); 
if(k==3) 
            f1 = (24+matchT(1,1))/32; 
else 
            f2 = (24+matchT(1,1))/32; 
end 
end 
%%End of Calculation of f1,f2 
Appendix 7: learnAl FUNCTION 
%This function learn a neural network to produce a probability of 
%correlation between two alerts. 
%Notice that the p and t parameters must be this way: p is a matrix which 
%it's rows show the features and it's columns show the elements. t also 
% is a matrix which it's rows show the class(Label)s and its columns show 
% elements. 
function learnAl() 
load('dataNet.mat'); 
    MinAndMax = zeros(4,1); 
    MinAndMax = [MinAndMax ones(4,1)];  
net = newff(MinAndMax,[4,1],{'tansig','tansig'}); 
init(net); 
    net.trainParam.show = 50; 
    net.trainParam.lr = 0.05; 
    net.trainParam.epochs = 300; 
    net.trainParam.goal = 1e-5; 
    p = dataForLearn(:,1:4); 
    p = reshape(p,4,18); 
    t = dataForLearn(:,7); 
    t = reshape(t,1,18); 
net = train(net,p,t); 
savenetMlpnet; 
end 
Appendix 8: STACK FUNCTION 
classdef stack 
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properties 
table = zeros(1,1); 
top = 0; 
dequeuedElm = 0; 
end 
methods 
function obj = inqueue(obj,value) 
            obj.top = (obj.top)+1; 
            t = obj.top; 
obj.table(t,1) = value; %('farshid'); 
end 
 
function obj = dequeue(obj) 
            t = obj.top; 
            obj.dequeuedElm = obj.table(t,1); 
obj.table(t) = []; 
            obj.top = (obj.top)-1; 
end 
end 
end 
Appendix 9: corrCal FUNCTION 
 
function corrProb = corrCal(hyperAlertS,alert,preAlert) 
addressIP = xlsread('data\addressIP.xlsx'); 
hyAlIP = zeros(1,8); 
alertIP = zeros(1,8); 
   %% Calculation of f1,f2 
for k=3:4  
for i=1:size(addressIP,1) 
if(hyperAlertS(1,k)==addressIP(i,1)) 
for j=2:5 
hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
if(alert(1,k)==addressIP(i,1)) 
for j=2:5 
alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 
end 
end 
end 
%alIP = num2str(alertIP(1,5)); 
%hyAIP = num2str(hyAlIP(1,5)); 
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for i=1:8 
match = 0; 
for j=i:8 
if(alertIP(4,j)==hyAlIP(4,j)) 
match = match+1; 
else 
break; 
end 
end 
matchT(1,i) = match; 
end 
matchT = sort(matchT,'descend'); 
if(k==3) 
            f1 = (24+matchT(1,1))/32; 
else 
            f2 = (24+matchT(1,1))/32; 
end 
end 
%%End of Calculation of f1,f2 
  %% Calculate another features 
if(hyperAlertS(1,5)==alert(1,5)) 
        f3 = 1; 
else 
        f3 = 0; 
end 
 
if(preAlert(1,4)==alert(1,3)) 
        f4 = 1; 
else 
        f4 = 0; 
end 
%%End of Calculate another features 
    %% Load the Correlation Engine and Calculate probability of correlation  
load ('netMlp.mat'); 
        f = [f1;f2;f3;f4;]; 
corrProb = sim(net,f); 
%%End of Load the Correlation Engine and Calculate probability of correlation 
End 
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