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Abstract

This paper is devoted to the numerical treatment of a class of higher-order multi-point boundary value problem-
s(BVPs). The method is proposed based on the Lagrange interpolation collocation method, but it avoids the 
numerical instability of Lagrange interpolation. Numerical results obtained by present method compare with other 
methods show that the present method is simple and accurate for higher-order multi-point BVPs, and it is effective 
for solving six order or higher order multi-point BVPs.
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1. Introduction

Collocation method as a numerical calculation method for solving differential equations, it has many merits, such
as calculation formula is simple, program implementation is convenient. Use Lagrange interpolation collocation
method to solve differential equations, when select too many nodes, Lagrange collocation formula will be not
numerical instability, the famous Runge phenomenon illustrates the problem[1]. But barycentric interpolation col-
location method has excellent numerical instability[2]. In this paper, we select suitable number of the second kind
Chebyshev point as interpolation nodes, use barycentric interpolation collocation method establish the dierential
matrix of function to solve multi-point boundary value problems(BVPs).
As we know, boundary value problems(BVPs) arise in many fields(see[11-16]). In[3], Henderson and Kunkel
proved the uniqueness of solutions for the following linear differential equations with nonlocal boundary condi-
tions: 

u(m)(x) +
m−1∑
i=0

ai(x)u(i)(x) = f (x)

u(i−1)(x j) = bi j, 1 ≤ i ≤ m j, 1 ≤ j ≤ k
u(xk+1) − u(xk+2) = bm

(1)

where ai(x) ∈ C[a, b], m j are positive integers such that
k∑

i=1
mi = m − 1, a < x1 < x2 < . . . < xk+2 < b, bm, bi j are

real numbers.
In [4],[5], Lin and Wu use the reproducing kernel to solve the following boundary value problems(BVPs). In [6],
Li use another reproducing kernel method to solve this problem. u(4)(x) +

3∑
i=0

ai(x)u(i)(x) = f (x)

u(i−1)(ξ1) = bi, 1 ≤ i ≤ 3, u(ξ2) − u(ξ3) = b4

(2)

In this work, we use barycentric interpolation to solve (1) , several numerical examples are given to demonstrate the
efficiency of the present method. The present method compared with the others methods, reveals that the present
method is more effective and convenient.

2. Barycentric Interpolation

2.1 The Differential Matrix Of Barycentric Interpolation
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According to the ideas of the collocation method, the all-order derivatives of function at nodes can be approximate
as linear weighted sum of the function value at node. Consider the function u(x) which defined in interval [a, b],
the values of function u(x) at nodes, a = x1 < x2 < . . . < xn = b, ui = u(xi), i = 1, 2, . . . , n, and the all-order
derivatives of u(x) at the nodes can be expressed as the linear weighted sum of the function value,

u(m)
i = u(m)(xi) =

dmu(xi)
dxm =

n∑
j=1

D(m)
i j u j,m = 1, 2, . . . (1)

Written in matrix form is,

u(m) = D(m)u (2)

There, u(m) = [u(m)
1 , u

(m)
2 , . . . , u

(m)
n ]T is the column vector of the m order derivatives m of unknown function at n-

odes, matrix D(m) is m order differential matrix of unknown function, the element of D(m), D(m)
i j is the weighted

coefficient, u(m) = [u(m)
1 , u

(m)
2 , . . . , u

(m)
n ]T is the value of unknown function at nodes.

Barycentric interpolation primary function is denoted by L j(x), the barycentric interpolation of u(x) can be ex-
pressed as,

u(x) =
n∑

j=1

L j(x)u j (3)

So, the one order and two order derivatives of u(x) can be expressed as,

u′(x) =
n∑

j=1

L′j(x)u j, u′′(x) =
n∑

j=1

L′′j (x)u j (4)

Barycentric interpolation primary function is,

L j(x) =

w j

x−x j

n∑
k=1

wk
x−xk

(5)

There, w j =
1∏

j,k
x j−xk
, j = 1, 2, . . . , n is barycentric interpolation weight, it based on the distribution of interpolation

nodes. Multiply x − x j, (i , j) at both sides of (5) at the same time, after deformation is,

L j(x)
n∑

k=1

wk
x − xi

x − xk
= w j

x − xi

x − x j
(6)

To facilitate, let,

s(x) =
n∑

k=1

wk
x − xi

x − xk
(7)

Calculate derivative about x at both sides of (6) at the same time, we get,

L′j(x)s(x) + L j(x)s′(x) = w j(
x − xi

x − x j
)′ (8)

L′′j (x)s(x) + 2L′j(x)s′(x) + L j(x)s′′(x) = w j(
x − xi

x − x j
)′′ (9)

Calculate derivative about x at both sides of (7) ,

s(xi) = wi (10)
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s′(xi) =
∑
k,i

wk

xi − xk
(11)

s′′(xi) = −2
∑
k,i

wk

(xi − xk)2 (12)

Take formula (10)∼(12) into the formula (8) and (9), we know L j(xi) = 0(i , j), so we can get,

L′j(xi) =
w j

wi

xi − x j
, j , i (13)

L′′j (xi) = −2
w j

wi

xi − x j
(
∑
k,i

wk
wi

xi − xk
+

1
xi − x j

), j , i (14)

If i = j, we know
n∑

j=1
L j(x) = 1, calculate derivative about x at both sides, we get

n∑
j=1

L(m)
j (x) = 0, so,

L′i (xi) = −
∑
j,i

L′j(xi) (15)

L′′i (xi) = −
∑
j,i

L′′j (xi) (16)

Now, we can get one and two order differential matrix,

D(1)
i j = L′j(xi),D

(2)
i j = L′′j (xi) (17)

Using mathematical induction, we can get the recursion formula of m order differential matrix,
D(m)

i j = m(D(m−1)
ii D(1)

i j −
D(m−1)

i j

xi−x j
), i , j

D(m)
ii = −

n∑
j=1, j,i

D(m)
i j

(18)

2.2 The Barycentric Interpolation Collocation Formula of Multi-Point BVPs

Think about fuction (??) 
u(m)(x) +

m−1∑
i=0

ai(x)u(i)(x) = f (x)

u(i−1)(x j) = bi j, 1 ≤ i ≤ m j, 1 ≤ j ≤ k
u(xk+1) − u(xk+2) = bm

(19)

Where ai(x) ∈ C[a, b], m j are positive integers, such that
k∑

i=1
mi = m − 1, a < x1 < x2 < . . . < xk+2 < b, bm, bi j are

real numbers.
Let interval [a, b] dispersed as a = x1 < x2 < . . . < xn = b, let u1, u2 . . . , un as the value of function u(x) at disperse
nodes x1, x2 . . . , xn, using the barycentric interpolation collocation can get approximate function u(x),

u(x) =
n∑

j=1

L j(x)u j (20)

Take formula (20) into the differential equation, we can get,

n∑
j=1

L(m)
j (x)u j +

n∑
j=1

m−1∑
i=0

ai(x)L(i)
j (x)u j = f (x) (21)
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Let (21) accurate established at disperse nodes, we can get n equations,

n∑
j=1

L(m)
j (xk)u j +

n∑
j=1

m−1∑
i=0

ai(xk)L(i)
j (xk)u j = f (xk), k = 1, 2 . . . , n (22)

i.e.

n∑
j=1

D(m)
k j u j +

n∑
j=1

m−1∑
i=0

ai(xk)D(i)
k j(xk)u j = f (xk), k = 1, 2, . . . , n (23)

Writ (23) in matrix form is

LU = F

There

L = D(m) + AiD(i),U = [u1, u2, . . . , un]T , Ai = diag[ai(xk)]

F = [ f1, f2, . . . , fn],D(m) = [D(m)
k j ]n∗n, k, j = 1, 2, . . . , n

Take formula (20) into initial conditions,
n∑

k=1
D(i−1)

jk uk = bi j

n∑
j=1

L j(xk+1)u j −
n∑

j=1
L j(xk+2)u j = bm

(24)

2.3 Applying Method of Initial Boundary Conditions

Use collocation method to solve the differential equation problem, the key is how to use the initial conditions.
There are three method. The first method is displacement method. That is, we use the functions of (24) displace
from the first to m functions of (23). The second method is supplemental method. That is, the functions of (24)
add after functions of (23).The third method is elimination method. That is, we get u1, un from (24), i.e. use
u2, u3 . . . , un−1 express u1 and un, and then take them into from the second to n − 1 functions of (23). About
multi-point BVPs,we always use displacement method and supplemental method.

3. Numerical Experiment

In this section, six numerical examples are studied to demonstrate the accuracy of the present method.
Example 1[4−6] Considering following fourth-order boundary value problems.

u(4)(x) − exu(3)(x) + u(x) = 1 − excoshx + 2sinhx
u( 1

4 ) = 1 + sinh( 1
4 ), u′( 1

4 ) = cosh( 1
4 ), u′′( 1

4 ) = sinh( 1
4 )

u( 1
2 ) − u( 3

4 ) = sinh( 1
2 ) − sinh( 3

4 )

The exact solution is uT (x) = 1 + sinhx. The numerical results are presented in Table 1. Figure 1.

Example 2[6] Considering following fifth-order boundary value problems.
u(5)(x) + sin(2x)u′′′(x) − u′(x) + cos(2x)u(x) = −sinx. 0 ≤ x ≤ 1
u(0.1) = sin(0.1), u′(0.1) = cos(0, 1),
u(0.4) = sin(0.4), u′(0.4) = cos(0.4),
u(0.7) − u(0.9) = sin(0.7) − sin(0.9).

The exact solution is uT (x) = sinx. The numerical results are presented in Table 2. Figure 2. Example 3[7]

Considering following fourth-order boundary value problems.
u(4)(x) + u(3)(x) = f (x). 0 ≤ x ≤ 1

u(0) = 0, u( 1
4 ) = 0,

u( 1
2 ) = 0, u( 3

4 ) − u(1) = 0,
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Table 1. Comparison of absolute errors for Example 1
x Present method Present method Reproducing kernel
x uT (x) u21(x) |uT (x) − u21(x)| Method in [6]

0.0000 1.0000 1.0000 2.043×10−11 3.74077×10−7

0.1464 1.1470 1.1470 1.290×10−11 2.56562×10−8

0.2061 1.2076 1.2076 9.540×10−12 1.91517×10−9

0.3455 1.3524 1.3524 1.610×10−12 1.83869×10−8

0.4218 1.4344 1.4344 2.300×10−12 9.63508×10−8

0.5000 1.5211 1.5211 5.500×10−12 2.50467×10−7

0.6545 1.7022 1.7022 7.740×10−12 5.34168×10−7

0.7270 1.7927 1.7927 6.010×10−12 3.83703×10−7

0.8536 1.9610 1.9610 3.280×10−12 1.18927×10−6

0.9045 2.0330 2.0330 9.890×10−12 2.6199×10−6

1.0000 2.1752 2.1752 2.800×10−11 7.28022×10−6
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Figure 1. Present numerical method for Example 1, the first picture shows the exact solution and numerical
solution, the second picture shows the numerical error when we select 21 nodes

Table 2. Comparison of absolute errors for Example 2
x Present method Present method Reproducing kernel
x uT (x) u21(x) |uT (x) − u21(x)| Method in[6]

0.0000 0.0000 0.0000 3.851×10−10 1.51117×10−9

0.1464 0.1459 0.1459 4.139×10−10 1.46647×10−9

0.2061 0.2047 0.2047 3.058×10−10 1.08674×10−9

0.3455 0.3387 0.3387 7.290×10−11 1.60481×10−9

0.4218 0.4094 0.4094 3.750×10−11 1.82578×10−9

0.5000 0.4794 0.4794 9.570×10−11 4.63265×10−10

0.6545 0.6088 0.6088 4.292×10−10 9.86968×10−9

0.7270 0.6646 0.6646 6.019×10−10 1.68006×10−8

0.8536 0.7536 0.7536 6.649×10−10 2.04954×10−8

0.9045 0.7861 0.7861 5.213×10−10 1.31484×10−8

1.0000 0.8415 0.8415 2.167×10−10 2.92067×10−8

Table 3. Comparison of errors for Example 3
N Present method Method in [7] Method in [7]

||uT (x) − u(x)||2 |eN(0.25)| |eN(0.5)|
16 2.4437×10−9 8.3708×10−5 3.6148×10−6

32 8.6524×10−13 2.1097×10−5 8.7657×10−7

64 6.0749×10−11 5.2848×10−6 2.1744×10−7

128 3.1058×10−8 1.3219×10−6 5.4254×10−8
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Figure 2. Present numerical method for Example 2, the first picture shows the exact solution and numerical
solution, the second picture shows the numerical error when we select 21 nodes
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Figure 3. Present numerical method for Example 3, the first picture shows the numerical error when we select 17
nodes, the second picture is 33 nodes, the third picture is 65 nodes, the fourth picture is 129 nodes
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The exact solution is uT (x) = x(x − 1
4 )(x − 1

2 )e−4xln4. The numerical results are presented in Table 3. Figure 3.

Example 4[7] Considering following fourth-order boundary value problems.
u(4)(x) + u(3)(x) = f (x). 0 ≤ x ≤ 1

u(0) = 0, u′(0) = 0,
u( 1

2 ) = 0, u( 3
4 ) − u(1) = 0,

The exact solution is uT (x) = x2(x − 1
2 )e4ln( 9

32 )x. The numerical results are presented in Table 4. Figure 4.

Table 4. Comparison of errors for Example 4
N Present method Method in [7] Method in [7]

||uT (x) − u(x)||2 |eN(0)| |eN(0.5)|
64 6.6165×10−10 5.2848×10−5 2.1744×10−8

128 7.1460×10−8 1.3219×10−6 5.4254×10−8
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Figure 4. Present numerical method for Example 4, the first picture shows the numerical error when we select 65
nodes, the second picture is 129 nodes

Example 5 Considering following sixth-order boundary value problems.
u(6)(x) + u(x) = 12xcosx + 30sinx. − 1 ≤ x ≤ 1

u(−1) = 0, u( 1
2 ) = − 3

4 sin( 1
2 ),

u′(−1) = 2sin1, u′( 1
4 ) = 1

2 sin( 1
4 ) − 15

16 cos( 1
4 ),

u′′(−1) = −4cos1 − 2sin1, u′′(1) = 4cos1 + 2sin1

The exact solution is uT (x) = (x2 − 1)sinx. The numerical results are presented in Table 5. Figure 5.

Table 5. The numerical results of Example 5
error ||uT (x) − u16(x)||2 ||uT (x) − u21(x)||2 ||uT (x) − u26(x)||2

absolute error 2.4078×10−11 5.3904×10−10 2.9905×10−9

relative error 2.6464×10−11 5.1308×10−10 2.5460×10−9

Example 6 Considering following eighth-order boundary value problems.

u(8)(x) − u(x) = −48ex − 16xex.0 ≤ x ≤ 1
u(0) = 0, u( 1

2 ) = 1
4 e

1
2 ,

u′(0) = 1, u′( 3
4 ) = − 5

16 e
3
4 ,

u′′(0) = 0, u′′(1) = −4e,
u′′′(0) = −3, u′′′(1) = −9e,

The exact solution is uT (x) = x(1 − x)ex. The numerical results are presented in Table 6. Figure 6.
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Figure 5. Present numerical method for Example 5, the first picture shows the numerical error when we select 16 
nodes, the second picture is 21 nodes 

 
Table 6. The numerical results of Example 6 

 
 

 
 
Figure 6. Present numerical method for Example 6, the first picture shows the numerical error when we select 21 

nodes, the second picture is 26 nodes 

 

4. Discussion 
In this paper, we devote to the numerical treatment of a class of higher-order multi-point solving higher-order 
multi-point BVPs. The numerical results demonstrate that the method is quite accurate and efficient for linear 
higher-order multi-point BVPs. This makes it easy to solve the higher-order multi-point BVPs. It is worthy to 
note that this method can be generalized to more higher order BVPs. All computations are performed by the 
MatlabR2013a software package. 
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