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Abstract

Uncertainty within supply chains increases the risk of not meeting objectives. Warehouses can absorb some of
these uncertainties, by accumulating inventory. This accumulation has led many to consider warehouses as a
source of waste in supply chains. Hence, there is limited research that seeks improving intrinsic warehouse
efficiency; particularly in the context of Lean concepts and Value Stream Mapping (VSM). Since, warchouses
seek to absorb uncertainty in supply chain by holding inventory; this uncertainty absorption may introduce
variability to warehousing function itself. Therefore a methodology is required, which can capture the embodied
dynamic within warehousing function. This paper reflects Lean concepts and, in particular, VSM to warehousing
context and introduces some methods and guidelines to assure the proper application of VSM in what is an
uncertain and dynamic system. In this paper, warehousing function is formulated based on some abstract
processes which vary on their output status. This formulation facilitates identifying value-adding activities as one
of the most substantial steps, yet confusing in application of VSM in warehousing context. The suggested
methods enable fundamental statistical/mathematical analysis, which leverage VSM to a more dynamic
evaluation tool. Application of the introduced approach will facilitate the decision making process for warehouse
systems evaluation and improvement. The resultant methodology is applied to a factual case and this serves to
demonstrate its practical application. It is worth mentioning that the findings applications, which can be termed
‘dynamic VSM’, are not limited to warehouses but can also be applied to any dynamic environment with
non-deterministic processes.
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1. Introduction

If supply chains are considered as distribution networks, then warehouses represent the main nodes of those
networks. Hence, warehouses can exert a substantial leverage on supply chain service quality(Gray, Karmarkar,
& Seidmann, 1992). This crucial role emphasizes the importance of study in the field of warehouse performance
evaluation. Since warchouses like other industrial facilities perform series of coupled processes, the evaluation
method should also fit this complex structure. Thus, an approach is necessary which can capture the holistic
dynamic interaction among processes while also analysis them individually.

There is a close alignment between performance evaluation and improvement and Lean tools and methods. In
short, ‘Lean’ seeks to improve the performance of operations by eliminating waste (Detty & Yingling, 2000;
Hofer, Eroglu, & Rossiter Hofer, 2012; Liker & Convis, 2011; Pavnaskar, Gershenson, & Jambekar, 2003;
Womack & Jones 2003).VSM is one of the better known Lean tools in the implementation of Lean concepts to
production and more recently service industries. VSM is useful in the visualization of core value chain processes,
which assists managers in identifying opportunities to achieve required objective. This map provides a high level
view of the interdependencies and interactions across different processes as resources, products, or information
passes each stage of the stream. This comprehensive illustration enables analysis and evaluation of process chain
with respect to desired key performance indicators (KPIs). These VSM properties, and also the promising results
that have been achieved by VSM implementation in manufacturing industries, make VSM a promising candidate
for warehouse performance evaluation, too. Therefore, this research aims to investigate the application of VSM
in a warechousing context, as well as the modifications that might be necessary.

2. Literature Review
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Generally the research in warehousing can be divided to two fields; design and performance evaluation, with the
former topic commanding a broader foundation of research. In this context, design refers to physical design,
equipment selection, as well as operational design. Evaluation refers the assessment of the performance of
existing designs with respect to various key performance metrics. Since this current research focuses on
performance evaluation, only the literature in that area is reviewed. However complexity of warehousing
systems made researchers, in either topic, to narrow down the scope of research, and study warehouse design or
evaluation topics partially, such as individual analysis of layout or operational policies. Interested readers can
find design topics in related literatures (Berg & Zijm, 1999; J. Gu, Goetschalckx, & McGinnis, 2007; J. X. Gu,
Goetschalckx, & McGinnis, 2010; Rouwenhorst et al., 2000a)

One of the very first studies in warehouse evaluation proposes the application of ‘zero-based analysis. This
approach suggests to divide resource consumption to three parts; necessary work, losses and cost. The former
refers to required resources in ideal case, losses are expressed as a percentage of the necessary work and the later
are monetary units. So, ‘zero based analysis develops a reference system in the form of utopian loss-free system
such that the reference point is only dependent on the product. The main drawback of this approach is inability to
evaluate time-based or quality of service parameters. In addition, the scope of mentioned study is limited to the
manual processes. Thus, this approach may have shortcomings on its application to those warehousing processes
which require multiple resource type (Henrik, Mats, & Lars, 1994)

As mentioned, this research aims to investigate the application of VSM in warehousing context for the purpose
of warehouse evaluation. Hence, the literatures regarding VSM application in warchousing is critically reviewed.
There is a large volume of literature concerning Lean and specifically the application of VSM in manufacturing
industries and more recently supply chain, but limited and scarce in warehousing(Ben Naylor, Naim, & Berry,
1999; Bozer, 2012). When VSM is applied to supply chains, warehouses are generally represented as an
inventory ‘black box’. This approach neglects to reflect any detailed information in regards to warehouse
performance. However, in order to have a lean supply chain, warchouses, as one of the main entities in logistic
networks, should be lean as well (Jones, Hines & Rich, 1997) (Bozer, 2012)

In context of applying lean concepts in logistics management, Myerson suggests considering warehouse function
as assembly line constituting several activities. Thus, warehouse efficiency can be improved by some general
guidelines such as improving tools and equipment availability (Myerson, 2012).

Mustafa introduces a framework to apply Lean concepts in warehouses. The proposed framework is limited to
some theoretical guidelines without providing enough details regarding implementation of Lean tools and
techniques. Moreover the guidelines are not generic enough without formal representation which makes it hard
to apply them in different situations (Mustafa, 2015).

Garcia carried out one of the earliest applications of VSM in warehousing(Frank C. Garcia, 2013). In the
mentioned paper, the scope is limited to unit-load warehouses, however a significant proportion of industrial
warehouses operate under-unit-load, which actually requires more considerations in VSM application due to
changing the unit of operation in warehousing processes. Moreover, some inconsistencies exist in the published
VSM, such as different work in progress units among different stages. The importance of unit consistency in
evaluation of process chains and how to achieve it in warehousing context is well discussed in section 2.

In another work, Dotoli advocates analyzing warehouse operations in three steps with different methods (Dotoli,
Epicoco, Falagario, Costantino, & Turchiano, 2015). In first step, the Unified Modelling Language (UML) is
used to describe the warehouse logistics. Then in the next step, VSM is applied to identify non value-adding
tasks. In the final step, a mathematical formulation assists on ranking all identified types of wastes which were
termed in that paper anomaly. The paper more focuses on ranking anomalies and hence it does not map KPI
values as a basis for comparison. Additionally, the research scope is limited to production warehouses, and other
types of warehouses are shown as work-in-progress (WIP) boxes without including detailed information about
their operational performance.

Bozer attempted to analysis the reflection of some lean concepts in warehousing after investigating lean
application in couple of case studies(Bozer, 2012). However the analysis and discussion of value-adding and
non-value-adding activities, in the mentioned report, is one of the most important works in this area, but it is not
easy to generalize some of the concluded results to all warehouse types. For example, Bozer defines any
increment of inventory above a determined minimum level, as warehouse inefficiency. If the study scope is
narrowed down to the warehouse, and not whole supply chain, this argument cannot be true for warehouses
which their inbound and outbound activities are dictated from the supply chain. Consider, if customer order
reduces considerably after receiving new supply consignment, inventory level will exceed the determined
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minimum level. On the other hand, consider if the demand increases and consequently inventory level in
warchouse decreases. This reduction does not reflect any improvement in warchouse efficiency. Hence, if
supplier or customer changes their behavioral pattern, which lead to increment in inventory level, this is not
warehouse inefficiency, but can be inefficiency in supply chain planning or poor demand forecasting. Although
the mentioned report puts forward a useful theoretical framework, it does not propose guidelines to utilize Lean
concept with application of VSM in warehousing. Due to the complexity of warehouse operations, the paper
suggested that processes should be evaluated individually. Moreover, in the mentioned report suggested
considering value adding activities, as which, they help to achieve the objectives of the next process. This
approach contradicts with Lean concept, because with this approach, any type of waste, inventory or extra
transportation can be considered as value adding activity because they support the next process.

Reviewing the current literature shows the critical lack of an integrated approach for warehouse evaluation. Most
of the current literature and practices are ad-hoc or not generic enough to be applicable to a broad range of
different cases (Gagliardi, Renaud & Ruiz, 2007) (Rouwenhorst et al., 2000b) (Baker & Canessa, 2009). Since
VSM has demonstrated promising results by its application in manufacturing industry, this research attempts to
analysis how to apply VSM in warehousing context.

3. Method

Since a considerable VSM study foundation exists in the literature, the fundamentals of VSM are not explained
in detail in this paper, but the interested readers are referred to related literature (Rother, Shook, Womack &
Jones, 1999).

Generally, Lean divides activities into two classes; those that add value and those that do not. Value added work
can simply be defined as; “those activities that change the physical shape or assembly of a product”. Due to the
nature of warehousing, generally warehousing activities do not change the shape or assembly of items.
Nevertheless, in warehouses, changes do occur with regards to the item unit type. Reviewing the current
literature, warehousing processes can be divided into five abstract classes; receiving, storing, picking, sorting,
and shipping(de Koster, Le-Duc, & Roodbergen, 2007) (Abdoli & Kara, 2016). An overview and a brief
description of each process class and their objectives are given respectively in Figure 1 and Table 1. In Figure 1
and Table 1, SKU refers to Stock Keeping Unit.

7~ N\ / \

Stored/pick-able items Ship-able items
SKUs/SKUs

( I SKUs-Order/Order

* Receiving * Storing * Picking « Sorting * Shipping

Warehouse-able items ) Picked items Dispatched items
Supplier consignment/SKUs SKUs/SKUs-Order Order/Order

./ N

Figure 1.Warehousing processes objectives

Table 1. Warehousing Processes Description

Process name Description

Receiving Acquisition of inbound goods, and converting them into articles that are in the appropriate
condition for being stored or admitted in warehouse. The value created is transforming
inbounds items into ‘warchouse-able’ items.

Storing Allocates inbound items to warechouse storage, being available for such time as a customer
order triggers them for dispatching. availability

Order picking Retrieving customer requested items from storage

Sorting Qualifies the picked items to satisfy order requirements to be shipped.

Shipping Enables dispatching of orders from the warehouse, such as loading the orders to truck (not
transshipment

To identify the value-adding activities within warehousing, this paper suggests reconsidering the role that
warehouses play in the supply chain level at first.
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Then, it is recommended that the warehousing objectives should be defined with respect to the introduced
enabler abstract processes. This is an important step for utilizing Lean concepts by application of VSM in
warehousing. Considering a pool of possible processes and sub-processes, the warehousing function,Wy, can be
represented as it shown in (1) and (2).

Wy = {(a; P)}; ie(1, ...,5} (1)

{1 Jif Pz is the enabler process for warehousing function
a. =
i

0, otherwise

Pi = {(ﬁkﬂspk)}; k€{1, . K} (2)

B = 1, if sub - process k is needed in Pl
k- 0; otherwise

Where:

K: number of all sub-processes
P;: Process i

SP;, : Sub-process k

For example; Warehouse A is assigned (from supply chain level) to change the status of items as follows;
warchouse-able items, stored items, picked items, dispatched items, while warehouse B is assigned only the first
and last of these activities. If a, is assumed as the membership value of storing process, it will be 1 and 0
respectively for warehouse A and warehouse B.

To distinguish value-adding from non-value adding activities within in each abstract process class, here, it is
suggested to define those activities as non-value adding, if they perform after the item transits to the required
status from that abstract process class. So, each sub-process of a process should be analyzed with respect to its
abstract process and thus a value-adding activity in one process can be non-value-adding in another.
Value-adding activities are generally recognizable, but sometimes non value-adding activities and waste are
intertwined with value-added activities, making it difficult to clearly distinguish them from each other. Therefore
some of these ambiguities will be discussed further.

Because of the long history of considering inventory as source of waste in Lean, it may seem bizarre not to
consider warehouse inventory as waste. Basically, in finished goods warehouses, storing the items and carrying
some inventory levels, let’s term it dedicated capacity, is the main role of warehouse, such that inventory assists
to absorb the risk of demand variation in the supply chain. Hence, it can’t be so true to consider any level of
inventory, even equal or less than dedicated capacity, as warehouse waste or inefficiency. Moreover, as explained,
if warehouse does not have control over its inbound or outbound flows, changes in these flows may lead to
inventory accumulation which exceeds the warehouse dedicated capacity. However, in the context of supply
chain analysis, this exceeded inventory is waste and could happen due to inefficiency in so many forms such as
poor supply planning. But, in the context of warehousing, the mentioned case of exceeded inventory from
dedicated capacity is not due to warehouse inefficiency. In other word, the inventory accumulation, as waste in
lean concept, can be in two forms; warehouse waste or supply chain waste. Warehouse waste is generated due to
in-efficiency in warehousing operations whereas supply chain ones generated due to in-efficiency in supply
chain planning level. However the supply chain waste could accumulate in warehouse, but these wastes should
not be considered as warehouse waste. This research aims to apply Lean concepts by application of VSM in
warehouse which its role is well defined in supply chain level. Hence, only that level of inventory, which occurs
due to internal warehousing processes inefficiency, is suggested to be considered as warehouse waste.

As with manufacturing systems, most transportation between processes can be considered to be
non-value-adding activity. In the current literature, picking and storing are considered to be the most time and
cost consuming processes in warehousing, as a function of travel distance. Since, this paper suggests defining
value-adding activities as those which directly change the item status, the travel of a picker from its dwell point
to a storage module to pick items can be considered non-value-adding. Some examples of different
picking/storing policies support this argument. Consider double command storing/picking process; the operator
in first part of travel, stores the items in storage modules and in the way back to dwell point, picks the orders
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items from the storage modules. Double command process removes two empty travel of operator, back empty
travel of operator to dwell point in storing process and empty travel of picker from dwell point to storage module.
By operating on double-command mode, the items still achieve their intended status (being stored and being
picked), through these two warehousing processes but with shorter transportation. This reasoning strongly
supports the above mentioned novel argument regarding considering the item status as the criteria to distinguish
the value-adding and non-value-adding activities in warehousing process.

3.1 Analyzing Warehousing Processes Operational Units

In general, the application of VSM seeks to measure an entire value stream with respect to the final process
objective(s). In manufacturing systems, finished goods are the ultimate goal of production and their
specifications are known in advance; thus inbound raw materials are easily translated into a number of possible
finished goods. In warehousing, the ultimate objective is fulfilling customer orders, the specifications of which
are not-known in advance. Nonetheless, in order to develop a holistic analysis for warehousing, defining an
identical scale for all processes is critical which enables a consistent comparison. Therefore, this research sets
out to analyze the existing operational unit(s) of warehousing processes and then examine the possible
approaches for dealing with this issue for proper application of VSM in warehousing context, in section 2.2.

The transformation in item unit happens through warehousing processes, as demonstrated in Figure 2. Receiving
and shipping are the warehouse interfaces with other network nodes, relative to suppliers and customers
respectively. Hence, these processes deal with different units for the same item type; respectively supplier
consignment units and customer order units.

Order based

v

SKU based

Supplier consignment based |

v

Receiving Storing Order picking Sorting Shipping

Figure 2. Different units in warehousing processes

Receiving process may include sub-processes, such as de-palletizing, which aim to change the supplier
consignment units to SKUs. Once item units have been transferred to SKUSs, the remaining sub-processes in
receiving operate on an SKU base, as illustrated in Figure 2. As explained in table 1, storing process utilizes
SKUs (warehouse-able items from receiving) without changing the item unit.

When the warehouse receives an order from a customer, depending on its operational policy, pick lists will be
assigned to order pickers. Thus the picking process operates on SKUs but is also based on customer order
definitions. Depending on the process design, the picking process can be carried out from either an SKU or an
order basis. The sorting process qualifies the picked SKUs to meet the order specification. Hence it also operates
on dual basis; SKU and order. Finally, the shipping process dispatches orders and this generally operates on an
order basis but may also include some sub-processes that operate on SKU basis as well.

3.2 Formulating Warehousing Process to Identical Operational Base

As shown in Figure 2, SKU footprint can be observed in all warehousing processes. In addition, SKUs are
utilized as an indicator for warchouse inventory levels as well as for both inbound and outbound activities.
Moreover, since the SKU represents the most aggregated level of planning unit in warehousing context it is
feasible to conduct process evaluation by using SKU as the scale unit. This research introduces some guidelines
for the measurement of different types of warehousing processes with respect to SKUs.

At a very high level, processes can be categorized in to two categories, SKU-based and not SKU-based. Each
category can also be subdivided, based on the process parameter type, into three sub-categories; fixed, constant,
and variable. In the fixed sub-category, process parameters such as process time, are direct/determined functions
of the number of operational units. For example, in the labelling process, the activity time or consumables are a
direct function of the number of labelled SKUs. In the constant sub-category, the process parameters are
independent from the number of operational units. Finally, in the variable sub-category, the process parameters
may vary from one process to another. An example of a variable parameter might be travel distance
(consequently process time) in the picking process, which may vary for different orders depending on required
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items in customer order.

As an initial step to formulate different process types on SKU base, warehousing processes should be
decomposed into all possible sub-processes. Utilization of given representation in (1) and (2) can facilitate this
step considerably.

The second step is to categorize all warehousing sub-processes into SKU-based/fixed, SKU-based/variable,
SKU-based/ constant, not-SKU-based/ fixed, not SKU-based/variable, not SKU-based/constant.

For SKU-based processes, since they already operate based on SKU, there is no need to convert the process
operational unit. In regards to not SKU-based processes, these may operate in three general conditions as
follows;

1-Input SKU, output not-SKU: In this case, the number of inputs can be used to formulate process parameters as
a function of SKU.

2-Input not SKU, output SKU: In this case, output number can be used to formulate process parameters as a
function of SKU.

3-Input not SKU, output not-SKU: Here either ‘expected’ or ‘Min-Max frontier’ strategies can be utilized to
estimate the average or a range for the number of SKUSs in the process. The explanation of these strategies is
given in section 2.2.1.

Up to this point all processes types could be converted to SKU base. It is worth noting that process parameters
can vary from one operation to another. For example, the process parameters which are employed to measure
typical process outcomes in VSMs are operation time, failure rate, resource and required consumables.
Sometimes, the process parameter is a standalone KPI itself, such as process time. But, generally process KPIs
are functions of process parameters. As shown in a generic representation in (4),g is a function which maps the
process parameter PP to a KPI. In general, each specific KPI can be calculated based on a specific function and
specific process parameter(s).

KPI = g(PP) 4)

Depending on the process parameter type (fixed, constant, variable), some further manipulation is required in
order to formulating process parameters to SKU base, which is explained in section 2.2.1, 2.2.2 and 2.2.3.

3.2.1 Processes with Variable Parameters

For this process type, two methods are suggested; ‘expected’ and ‘Min-Max frontier’. These approaches, as
mentioned, can also be utilized when the number of operational units in a process is not determined.

Expected: Sometimes upon close examination of the historical data, a pattern can be observed and thus it may be
possible to map the variable parameter to a probabilistic distribution function. The process parameter may then
be represented as a function of some other variables as shown in (5).

PP: Process parameter defined as random variable
PP ~ D; PP has the probability distribution D
P(PP = pp): Probability that the PP has a particular value of pp.
PP = f(x4,.,.,%3) 5)
In the ‘expected’ approach, it is suggested to use an ‘expected value’ of the variable process parameter to

estimate the related KPIs as shown in (6) to (10). PPS refers to the set of all possible values for pp. PP" and
KPI™ are respectively the estimated values for PP and KPI.

E(PP)= Y,,epps(PP X P(pP)) ; PPS:V acceptable values for pp (6)
E(PP) = 3. copsf (X1,-,%2) X P(pP) (M

PP~ = E(PP) ®)

E(KPI) = E(g(PP)) = g(E(PP)) ©)

KPI* = g(PP") (10)

It is worth noting that the benefits of this approach are not limited to the estimation of variable process
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parameters. This approach enables broad range of statistical analysis of KPIs. For example, if the modal value of
a process parameter is more desirable than its expected value, KPIs can be easily interpreted with respect to the
probability distribution function of the parameter.

Another advantage of this approach is that it enables one to analysis the occurrence chance of an acceptable KPI.
For example, sometimes smaller values of PP guarantee meeting the desirable KPI. In this case, by utilizing the
probability cumulative function(F(a)), the probability of meeting the desired KPI can be formulated as shown in

(11).
IfPP <a - KPI=g(pp <a) <b — KPlisacceptable, F(a) =P(PP <a)
F(a) = P(KPI < b); the probability of meeting KPI (11)

Thus, this approach enables one to capture the dynamic nature of a process, such that, scenarios may be
developed and tested based upon different possible process outcomes. As mentioned, the order picking process is
a good example of a process with variable process time and many researches have formulated the picking time as
a function of travel distance (de Koster et al., 2007) By adjusting these generic formulas to warehouse specific
conditions, the expected travel distance (accordingly process time) can be formulated. Generally, the picking
time, PT;, can be a function of many parameters, such as; a;: picking aisles length, a,,: picking aisles width ,
ay: picking aisles height , T: number of aisles, dw: dwell point position, D: dock position, s: demand
skewness,o,: order size, 0g4,: order diversity. Hence, the picking time and its estimated value can be presented as
follows:

PT=f(a;,a,,ayT,dw,D,s,0,,04) , PT~ E(PT;)

The abovementioned parameters for the picking process can be divided into two general categories; deterministic
and non-deterministic. Some parameters are fixed, such as the number of aisles whereas some parameters, such
as order diversity or order size, may vary from one order to another. These non-deterministic parameters
introduce variability to the process time. As mentioned, observing historical data can reveal order profile patterns,
which can then be mapped to a probability distribution function. Hence, the chance of receiving different order
sizes with different diversity can be formulated. As shown in (12), the expected value is formulated based on two
elements. First element is the probability of receiving orders with specific size and diversity as a function of
non-deterministic parameters. The second element is the accordance picking time with respect to the received
specific order and deterministic parameters. The order diversity can range from one to maximum order size. The
former represents a single order line, whilst the later indicates one single item per SKU in the order.

S —
E(PT)=Y._ ZBV=5 P(oy,04,) X f(ay a,,, a5, T, dw, D, s, 0,04, (12)

Min- Max frontier: If the explained ‘expected’ approach is not applicable, or for ease of calculation, Min-Max
frontier approach is suggested. In this approach the possible minimum and maximum values of variable process
parameters should be estimated. These thresholds constitute a feasible range for the variable parameters and
accordingly for the process KPlIs, as represented in a generic form in (13) and (14).

PP,yin < PP < PPy (13)
KPIn < KPI < KPI, . (14)

Recalling the picking process, considering the furthest and closest storage modules, the longest and shortest
travel distances (consequently process times), can be obtained. Although this approach determines some
thresholds and not one specific value for the variable parameter, it nevertheless provides an acceptable insight
from variable process parameter to interpret the related KPI.

3.2.2 Processes with Fixed Parameters
Since in this process type, process parameters are a direct function of the number of operational units, x, it is
quite straight forward to formulate KPIs when a process is aligned to a SKU base. The generic form of this
approach is shown in (15) and (16).
PP = h(x) (15)
KPI = g(h(x)) (16)
3.2.3 Processes with Constant Parameters

If the number of operational units is constant, X,,nsiant> KPIs can be calculated on a SKU base by using the
constant process parameter; as shown in (17) and (18).
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PP = | X X onstant; L cOnstant coefficient a7

KPI = g(U X Xconstant) (18)

If the number of operational units is variable, the ‘expected’ or ‘min-max frontier’ approach can be applied to
estimate the number of operational units and from that, the relevant KPI can be calculated. In case of variable
number of operational units, the variable parameter is x.

The generic representation of applying ‘Expected’ method to estimate KPI, when the operational unit is variable,
is shown in (19)-(22). Consider the case that fork lifts carry different SKU numbers from docks to a stacking
area with constant carrying time. If historical data reveals that carrying SKUs follows a uniform distribution with
definable minimum and maximum SKUs, using the distribution parameters the expected number of carrying
SKUs can be considered for estimating process parameters/KPIs.

PP =~ E(h(x)) (19)
PP = h(E(x)) (20)
PPA = h(x") 21
KPI* = g(h(x")) (22)

As mentioned, ‘Min- Max frontier’ can also be utilized to estimate the variable number of operational unit, x. In
this approach the maximum and minimum number of operational inputs is considered, which provides a range
for process parameters and accordingly KPIs as shown in (23)-(25).

Xnin < X < Xmax (23)
pp = {h(x)lvxe{xmin,xmax }} - {PPmin' PPmax} (24)
KPI = {g(PP)lvppe{PPmin,PPmax }} _’{KPImin' Kplmax} (25)

If the ‘min-max frontier’ approach is applied to more than one process, the possible combination of min and max
values for all processes should be taken to account and the corresponding global min and max should be chosen
for the KPI. For example, consider that ‘min-max frontier’ approach is applied to estimate process time of
storing and picking process, P, and P; . The storing and picking process time , PT, and PT;, can sit within
the ranges given below, by considering the effective parameters; such as furthest and closest storing/picking
modules, maximum and minimum order size and diversity.

4 min < PT, < 12min, 5min < PT; < 12min

Hence, by application of the ‘min-max’ strategy on these two processes, their total process time, PT, results in
the below range.

PT ={9,16,17,24} — 9min < PT < 24 min

Utilizing explained methods in 2.2, all warehousing processes can be formulated in such a way that all types of
processes can be measured with an identical scale unit, the SKU.

3.3 Formulating Order-Based KPlIs

Generally, it is more preferable to measure process KPIs with respect to the eventual objectives of a process
chain. In the application of VSM to manufacturing systems, everything should be measured with respect to
finished goods, for which specifications are predetermined. In the warehousing context customer order fulfilment
is the main objective which the orders specifications are not known in advance and can vary from one order to
another. This ambiguity was the main reason that the SKU was chosen as the common unit for process
evaluation in section 2.2.1. Nevertheless, it is still preferable to interpret warchousing KPIs with respect to
customer order profile. Hence, SKU-based KPIs must be transformed into order-based KPIs. It is again
suggested to utilize either the expected or min-max approach for order profile estimation. Estimation of order
profile is different to demand forecasting. In demand forecasting the total number of customer orders over a time
period are forecasted. Whereas, order profiling seeks to find patterns within orders, such as order size or item
diversity, respectively; s, dv.

If ‘Expected’ approach is utilized, probability distribution functions, such as P;, P,, can be assigned to variable
parameters of orders, such as order size and diversity, s, dv. By estimating these parameters, as shown in (26),
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the process KPIs can be converted from SKU-based to order-based,KPI,;,, as shown in the generic formulations
in (27)-(30).

st = E(Py),dv" = E(P,) (26)
KPI,, = g(PP|S, dv) 27)
KPI,, = g(PP| (P, P,)) (28)
KPI,," ~ g(PP| E(P,),E(P,)) (29)
KPI,~ ~ g(PP|s™, dv™) (30)

In a simple example, if the process time for single SKU was calculated 5 minutes and the expected order size
was 20 (assuming single order line); then the expected process time for order can be approximately 100 minutes.

As mentioned, for simplicity, ‘Min-Max’ approach can also be utilized to convert SKU based KPIs to order
based KPIs. In this case, the described logic regarding the Min-Max strategy in 2.2.1 applies here too. Min-Max’
approach provides a range for order based KPIs as shown in (31)-(34).

Smin < S < Smax (€2))]

AVpin < dv < dvyay (32)

PPy, = {PP|Smin < S < Spaw Wiin < AV < AV} = {PPpin PBnax } (33)
KPlo, = {g(0D)IVPPE{PP yin, PPinas } }={KPlnin, KPlnay} (34)

In general, if the ‘expected’ strategy is applied to estimate a KPI, one should be more conservative about the
interpretation of the KPI since there is always the possibility of error due to the inherent uncertainty in estimated
parameters. This issue may be resolved by defining an acceptable significance level and confidence interval for
the estimated parameters. Sensitivity analysis can also assist in analyzing the effects of parameter variation on
the whole process chain.

3.4 Product Families Creation

Generally VSM is applied to product families, rather than to individual products(Nielsen, 2008). Therefore,
creating product families in the warehousing context is discussed in this section. In manufacturing context, the
product type specification is usually the source of product family differentiation. However in warchousing there
are multiple sources of differentiation; customer’s orders, suppliers or item specifications. Each of these may
imply some effects in different stages of warehousing abstract function, as illustrated in Figure 3. It is worth to
mention that the given illustration in Figure 3 is based on a general warehousing process configuration and some
exceptions may not exactly follow this representation.

Item type

< »

) . Supplier
Differentiation source | PP > < Customer order »
!

Receiving Storing Picking  Sorting  Shipping

Figure 3. Impact range of differentiation sources in warehousing

As shown in Figure 3, three main sources; supplier, SKU and customer order can cause differentiation in SKUs
required processes in a warehouse. SKU differentiation source has the highest impact range. Because, each
specific item may vary in required operations in each of the five mentioned abstract process classes, which
affects the whole life cycle of an item in its warehousing journey.

Different suppliers can affect the required processes for a single SKU up to picking process, in order to make
warehouse-able and stored items from supplier consignment. In other word, the impact range of supplier
differentiation source is upstream processes of order picking. For example, consider a warehouse that receives
SKUO001 from two suppliers. Supplier A provides this SKU type in cartons whilst B provides the product on
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pallets. Hence the receiving process may change depending on the supplier; whether the inbound product
requires de-palletizing sub-process or not.

As soon as the items are stored, their status will change to SKU, and generally, any other process afterward will
be applied because of customer order. Any stored SKU that meets the customer order specification can be picked
and any history of upstream processes is not considered. In other word, the impact range of customer order
differentiation source is downstream processes from order picking. As an example, in dispatching the mentioned
SKUO001, one customer needs standard packaging whilst the other requires special packaging. Here the packing
process will vary for the same SKU. In this simple case for one specific SKU, four different process
configurations exist which should be added to the variation in process configuration due to different SKU types.
Since warehouses generally deal with numerous item types, suppliers and customers, it would be much easier to
follow the causes of differentiation in order to develop product families. The suggested approach can be
demonstrated hierarchically, as shown in Figure 4. The arrows indicate the sources of differentiation.

[tem type
-S-I-J,-}_)Rl_i_(‘{ ______ ) Family I Famiiy II
Customer I;amily I/ Family I/II Family I/1
______________________ I
Family I/1/1 Family I1/1 Family II/11

Figure 4. Schematic view of making item family for warehousing items

4. Case Study

The studied warehouse is a distribution center for an international healthcare company. It receives 70% of its
SKUs from a domestic factory replenishment center and these constitute the fast moving items of the distribution
center. The items received from the replenishment center can be grouped in one family, since they have the same
supplier and share same processes and resources and these have been chosen for this study. This warehouse runs
all five main warehousing processes and so it is a good candidate for a comprehensive study. In this case,
item-unit changes from supplier consignment to pallet, from pallet to SKU and from SKU to customer order. The
receiving process includes two sub-processes; unloading and stacking; P;4, P;,. Storing, picking, sorting and
shipping are respectively shown P,, P;, P, and Ps. Using (1), the warehouse processes can be formulated as
follows:

Wf = {((1,P11), (1,P12)), (1, P;), (1, P3), (1,P4), (1, P5)}

P, is an automatic sub-process, which receives 5 loads each weekday morning, each containing 33 pallets of 10
SKUs and is followed by stacking process. Considering the given objectives for receiving processes in Table.1,
both the receiving sub-processes are considered as value adding, since they convert supplier consignments to
warehouse-able items. For the sake of brevity, it is sufficient to provide some example calculations with the rest
are shown as results in Figure.5. Since the SKU quantity is constant in each load, the receiving process can
easily be formulated to a SKU basis as follows;

P4-time for truck load=30 minutes,P-time per SKU=30/33%10= 0.091 minute.

In the storing process, the forklift driver first drives to the stacking area, then picks pallets, drives to the storing
area, puts the pallets in the racks and then comes back. As explained earlier, the driving component of this
process can be considered as non-value-added but necessary activities, whilst the positioning of items in racks is
considered as the main storing process. The transportation and P, have variable run time depending on item’s
position in the storage area, aisle position, and shelf height. Observing historical data, a Pareto-distribution with
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proper shape and scale parameters, can be a good estimator for the storing process time, PT,.
PT,~Pr(t)— PT," = E(Pr(t))
PT," = 3 minutes/pallet

PTy_ skt pasea”™ = 3/10=0.3 minutes

The warehouse has a static time window in which to receive orders and after that P; starts. Pickers pick
required items and sort them in sorting matrix in preparation for shipment. Pareto-distribution with proper shape
and scale parameters can also be a good estimator for picking process, by considering the storing policy, storage
area configuration and other related parameters.

PT5~Pr(t)

PT3_gxy pasea™ = 0.5 minutes

As demonstrated in Figure 5, instead of showing a single value for the estimated parameters, these are
represented as distribution functions. For clarity, the adjusted Pareto diagrams are rotated 90 degrees and the
dashed-lines show the expected values of each distribution. One may consider each value in the distribution
function, for KPI estimation, by considering its corresponding probability.

Analyzing the order profile, the order size varies from 3 to 11 SKU per order with average of 9, which larger
orders are more common. Since the sorting area is small, hence arranging larger orders is not measurably longer
than smaller orders; sorting process is almost identical free from order size. The sorting process can be converted
to SKU base by considering its expected value of operational units.

PT,= 5 minutes

PT4—SKU based A= (PT4 |01‘der SiZ€:9) ~(0.56 minutes

For the purpose of demonstration in this case study, the typical metrics in the VSM are primarily examined, such
as process time; however other KPIs can also be easily formulated. The current state map of the described
warchouse, with restructured SKU-based processes, is illustrated in Figure 5. In order to demonstrate
order-based KPIs, the process parameters are divided to 9 (average order size), shown as the bottom line in
Figure 5.

4.1 Discussion

As discussed earlier, the duration of stay of a SKU in the warehouse is not an indicator of warehouse inefficiency.
In this case study, from receiving to storing, all processes operate on push mode and only customer orders send a
pull signal to trigger picking process. This makes picking as the decoupling point, and the pacemaker of the
warehousing function. Hence, as illustrated in Figure.5, the stored items are shown in supermarket, instead of
wrongly showing them as work in progress (WIP). The lead time in the supermarket indicates the time interval
from receiving an order to picking it from the racks. In other words, lead times before the decoupling point
indicates the SKU’s waiting time to progress to successive process, whereas the cumulative values of lead times
after decoupling point represent the order lead-time.

The total process time of each single SKU is expected to be 1.906 minutes. However, depending on
non-deterministic process parameters, this value can vary. The variation of storing and picking process time and
their transportation sub processes have led to a non-smooth process chain as captured and shown in the dynamic
VSM representation in Figure.5. This variation sometimes results in either idle time or resource bottleneck.
Upon closer inspection, sorting and picking tend to be the most time consuming processes, which is reasonable
since the studied warehouse is a customer-facing warehouse. Moreover, since picking is the pacemaker it is a
good candidate for improvement. Combining the storing and picking processes as one process may help to
absorb some variation from both processes and providing the warehouse operates with greater stability. This
approach promises to increase process efficiency as discussed in the literature and to warehouse managers in the
exemplar organization concur that application of double command storing-picking process would improve
efficiency and also create smoother flow. Demonstrating such a future state map is not in the scope of this paper
but would follow the same procedures set out in this paper.
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Figure 5. Dynamic VSM applied in a real case study

5. Conclusion

The application of VSM in a warehousing context was studied in this paper. As one of the main contributions of
this paper, a novel abstract classification of warehousing processes was given, based on process output status.
This abstract classification enables the description of warehousing functions based on their processes. This
approach simplifies the distinction of value-adding, non-value-adding activities and waste, which are intertwined
in a warechousing context. In addition, this representation of item unit transformation in warehousing processes
enables the development of a common scale and unit for process chain evaluation. ‘Min-Max frontier’ and
‘expected’ methods were proposed to deal with the non-deterministic or uncertainty in warehousing processes.
These methods represent non-deterministic values (such as random process parameters) with a probabilistic
distribution function or a range, instead of demonstrating one single value in VSM. This novel approach helps to
overcome the embodied uncertainty in an entire value stream including variation in supply (such as consignment
size), variation in process parameters (such as travel distance in picking process) and customer order (order size
and type). It is worth mentioning that the suggested approach in this paper can be undertaken to apply VSM in
any process chain containing variable process parameters and is not limited to warchousing context. The
introduced dynamic VSM, with embodied statistical and mathematical analysis, can reflect the dynamic nature
of processes and also give a comprehensive and understandable insight of a process chain KPIs. All of these
results can greatly support the decision making process regarding process design, configuration and
improvement. At the end, research regarding the application of the proposed methodology in systems which run
as process chain in other domains can be a potential future research. Formalization of the introduced concepts
and methods for the general application of the proposed methodology can be studied as well.
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