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Abstract 
In order to solve the feedforward problem of traditional back-to-turn (BTT) missile autopilot, this paper 
proposed a controller design method considering the forward effect. Firstly, according to the three-channel 
mathematic model of BTT missile, we built a mathematic model of autopilot control system. Secondly, by 
employing the Nussbaum-type gain technique as well as the adding a power integrator design, and based on the 
design needs of tracking and controlling overload steadily, we proposed a global nonlinear control strategy, and 
then designed a continuous nonlinear autopilot, which solved the feedforward problem of BTT missile on 
pitching channel. Thirdly, we strictly proved the stability of the control system in finite time by applying the 
method of Lyapunov stability theory. Finally, we gave a simulation example to show that the designed control 
system not only overcome the influence of uncertain factors and the problem of the stable error, but also 
improved the tracking precision. 
Keywords: BTT, Feedforward controller, Nonlinear systems, Adaptive control, Output tracking 
1. Introduction 
No matter whether it is back-to-turn (BTT) or slide-to-turn (STT) missile, the change of the vertical or lateral 
overload of rudder is through autopilot by the deflection. When the rudder is deflected, the missile’s postures are 
adjusted accordingly, so as to change the vertical or lateral aerodynamics of missile body and missile wings; 
meanwhile, the rudder yields another vertical or lateral aerodynamics, which influences the loading of missile. 
These influences are the missile’s forward effect from the missile surface deflection to the missile body. 
The existence of the forward effect actually adds a zero-point to the system, which makes the design of the 
missile autopilot (especially the design based on the modern control theory) more difficult; thus most the 
previous missile autopilots always ignored the forward effect, which makes the system design easier but brings 
large errors to the system. Meanwhile, when the forward effect is strong, these errors are always leading to a 
failure of the design(Zhou Jun, Chen Xin-hai, Zhou Feng-qi, 1994)(Xing Li-dan, Chen Wan-chun, Yin 
Xing-liang, 2008)(Tong Chun-xia, Wang Zheng-jie, Zhang Tian-qiao, 2006). 
In this paper, in view of the pitching channel of BTT missile, we convert the mathematic model of missile body 
into a state equation, apply Nussbaum-type gain technology and back-stepping design method, propose a global 
nonlinear control strategy based on the design requirement of stable trace controlling, and design a continuous 
nonlinear autopilot to make sure the missile body vertical yn traces homing order ycn , thereby we resolve the 
problem of BTT missile’s pitching channel forward effect. Finally, we use Lyapunov stable theory to strictly 
prove that our control system can achieve the overall situation’s stability in finite time. 
2. Dynamic model of missile body 
For advanced BTT missile, since the rolling channel is not stable anymore, there exist many strong couplings 
between each channel, among these couplings, the inertia coupling and the dynamic coupling are especially 
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important. After considering the effect of inertia coupling and dynamic coupling, the three channels body 
mathematic model for BTT missile can be written as follows: 
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whereα and β are the missile’s attack angle and sideslip angle respectively; xw , yw and zw are the rotational 

angular velocities in missile body coordinate; yδ  and zδ  are the rudder’s deflexion angles on the yaw channel 

and pitching channel; xJ , yJ and zJ  are the moments of inertia in missile body coordinate; 

1a , 1a′ , 2a , 3a , 4a , 5a , 1b , 1b′ , 2b , 3b , 4b  and 5b  are the aerodynamic parameters on the pitching channel and 
yaw channel. 
Here, the vertical overload of missile body can be expressed as: 

4 5( ) /y zn V a a gα δ= +                                                              (2)                    

We can see from (2) that the pitching channel exists a forward effect from the rudder’s deflexion to the vertical 
overload. 

The design of pitching channel autopilot is to make sure the vertical overload yn  of missile body can trace 

homing order ycn effectively: 

lim( ) 0yc yt
n n

→∞
− =                                                                  (3) 

When ignoring the forward effect, the vertical overload of missile body is 

 1 4 /yn Va gα=                                                                   (4) 

For this situation, according to (1) and (4), literature(Lin W, Qian C J. 2000) concluded a pitching channel 
control law of BTT missile as follows: 

1( , , , , , , )z x y z yf V nδ α β ω ω ω=                                                       (5) 

The control law (5) can ensure 1yn  to trace ycn , and 1y ycn n=  in steady state; however, due to the  

existence of the forward effect, the actual vertical overload of missile body yn  doesn’t trace ycn  in steady 

state, and yn is  
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So we can see that the control law (5) fails to achieve the design aim of pitching channel autopilot (3). To solve 
this problem, we need to design a new forward controller. 
According to (1) and (2), the overload control system model of autopilot is  
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Taking [ ]T
y zX n w=  as the system states, and  zδ  as the control variable, we can obtain from (7) the 

pitching channel mathematical model of missile body as follows: 
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where 1 yx n= , 2 zx w=  and 1 zu δ= . The disturbing items in (8) include all the coupling effects on the 
pitching channel. 
3. Controller design with the impact of feedforward 
3.1 Controller design of the nonlinear system  
We firstly study the output tracking problem of SISO nonlinear system, which can be expressed as(Wang Q D, 
Jing Y W, Zhang S Y, 2004)(Wang Qiang-de, Jing Yuan-wei, Zhang Si-ying, 2006): 
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where 1( ,... )T n
nx x x R= ∈ , u R∈  and y R∈  are the system states, input and output respectively; ( ) 0g t ≠  

and ( )d t are two unknown limit piecewise continuous time-variation functions (their borders are unknown), iφ  
is a continuous function of its variables. In the following, combining Nussbaum-type gain technology with 
back-stepping design method, we study the output problem of nonlinear system (9). 
For the output tracing problem of nonlinear system (9), the controlling aim is to construct a robust adaptive state 
feedback nonlinear controller, so as to make the system’s output tracing error ( ) ( )ry t y t−  globally uniformly 
bounded, which is to say that: 

lim ( )rt
y y t ε

→∞
− <                                                       (10) 

Meanwhile, the controller also needs to ensure all the other signals of the closed-loop system globally uniformly 
bounded. 
For the convenience of controller design, we give some Lemmas and definitions as follows: 
Lemma 1(Wang Qiang-de, Jing Yuan-wei, Zhang Si-ying, 2006): For any positive integer m, n and any 
real-value function ( , ) 0r x y > , the following inequality exists: 

/( , ) ( , )m n m n m nm nm nx y r x y x r x y y
m n m n

+ +−≤ +
+ +

                                  (11) 

Lemma2(Wang Qiang-de, Jing Yuan-wei, Zhang Si-ying, 2006): For ( , , ( ))i x u d tφ in system (1),  there exists a 

known smooth function 1( ,... ) 1iif x x ≥  and an unknown constant 1Θ ≥ to make 

1( , , ( )) ( ,... )l iix u d t f x xφ ≤ Θ . 

Lemma 3(Wang Qiang-de, Jing Yuan-wei, Zhang Si-ying, 2006): For any real numbers 0a ≥ , 0b > and 1m ≥ , a 

inequality 1/ ( 1)/m ma b a m m b −≤ + − holds. 

We use the Nussbaum-type gain technology to overcome the difficulty of the control direction unknown, and 
submit some correlative definition and lemma as following: 
Definition 1(Nussbaum R D, 1983): Function ( )N χ is named Nussbaum-type function, if it has the following 
properties: 
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where 2( ) exp( )cos / 2N χ χ πχ= . 

Lemma 4(Nussbaum R D, 1983): Suppose ( )V t  and ( )tχ  are two smooth functions which are defined in the 
interval[0 )ft , for [0 )ft t∀ ∈  and ( ) 0V t ≥ , ( )N χ is a suitable and smooth Nussbaum-type function, if 
the following inequality holds: 

1 1
0 0

( ) ( ( ) ( ) 1)
tc t cV t c e g N e dττ χ χ τ−≤ + +∫ &                                                (13) 

where 0c  is a suitable constant, 1 0c > , ( )g t  is the variable time-varying parameter which is in a unknown 

closed interval [ ](0 )I l l I− += ∉， , thus ( )V t , ( )tχ and 
0
( ( ) ( ) 1)

t
g N dτ χ χ τ+∫ & must have borders in 

[0 )ft， . 

The controller design of nonlinear system can be described as follows: 

Step 1: Give a bounded smooth reference signal ry , let 1 1 rx yξ = −  as the error signal, then construct a 

positive-define and proper Lyapunov function 2
1 1 1( ) / 2V ξ ξ= , and a direct calculation is given as 

1 1 2 1[ ( , , ( )) ( )]rV cx x u d t y tξ φ= + −& &                                                    (14) 

Since ry  is bounded, there exists a smooth function 1 1( )γ ξ  satisfying the following inequality. 

1 1 1( , , ( )) ( ) ( )rx u d t y tφ γ ξ− ≤&                                                        (15) 

According to Lemma 3, for any constant 1 0δ > , there exists a smooth function 1 1( ) 0ρ ξ ≥ ; let 1 1 1( )a ξ γ ξ= , 

1b δ=  and 2m = , we can obtain the following result: 
2

1 1 1 1 1 1 1( ) ( )ξ γ ξ ξ ρ ξ δ≤ +                                                        (16) 

where 2 2
1 1 1 1 1 1 1( ) ( ) 4ρ ξ δ ξ γ ξ δ= +  

Combining (14) with (16), we have the following result: 

[ ]1 1 2 1 1 1 1( )V cxξ ξ ρ ξ δ= + +                                                          (17) 

After we choose *
2 1 1 1 1 1 1[2 ( )] ( )x ξ ρ ξ ξ β ξ= − + = −  as the virtual smooth controller, (17) can be rewritten as:  

2 *
1 1 1 2 2 12V cx xξ ξ δ⎡ ⎤= − + − +⎣ ⎦                                                      (18) 

Step2: Suppose at step k-1, there are a set of smooth virtual controllers and coordinate changes, which are 
defined by 
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According to Lemma 1 and Lemma 2, and based on a Lyapunov function 2
1 / 2k k kV V ξ−= + , we can acquire 

the following inequality:  
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According to 12 ( )p p ppx y x y−+ ≤ + , there exists a smooth function 1( ,..., ) 0k kρ ξ ξ ≥ , and we have  
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According to Lemma 1, it is not difficult to prove the following relations: 
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where 1k kδ δ= , ( )kρ  is a nonnegative smooth function. 

Putting the above relations and (20) together, we have 
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Clearly, the virtual smooth controller *
1(2 ( )) ( ,..., )k k k k k k kx ξ ρ ρ ξ β ξ ξ= − + + = −  can yields the following 

inequality. 
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Step 3: Using the derivation above, we conclude that at the nth step, there are a group of transformations of the 
form in the step 2, a smooth Lyapunov function 2

1 / 2n n nV V ξ−= + and a smooth controller u  can yield the 
following inequality. 
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Using the method above, it is very easy to get the equation as follows: 
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where ( )nρ  and ( )nρ  are two nonnegative smooth functions, nδ  is an unknown positive constant. We 
choose the smooth adaptive control law as follows: 
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where 0Γ > and 0λ >  are the designed constants. Based on the control law, we obtain the following 
relations: 
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3.2 BTT missile controller design with the impact of forward 
We make the rudder model of BTT missile equal to a first-order actuator model:  

1 2

zcz
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δδ
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τ τ
= − +                                                                  (29) 
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where 1τ  and 2τ  are two coefficients of rudder model, zcδ is the rudder angle order. Putting (29)and (8) 
together, we have  
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There exists an unknown constant 1 0M ≥ , render 4 1/xVa w g Mβ ≤ , such that  
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where * *
1 1 2 2 2 2 1 1 1, , ( )rx y x x xξ ξ ξ β ξ= − = − = − , * *

3 3 3 3 2 2 2, ( )x x xξ ξ β ξ= − = −  

The control aim is to design a smooth adaptive control law to make the practical output trace the reference 
signal ( )ry t ( ( )ry t M≤ , ( )ry t M≤& , and 0M ≥ is an unknown constant). According to (28), we have 
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Applying the designed controller into system (8) and (9), we can make the following conclusions: 

For any initial conditions, all the closed-loop system’s signal is bounded in the interval [ )0,+∞ . In addition, if 
adjusting the design parameter properly, we can make the output tracking error become appropriately small in a 
finite time. 
Proof: The design controller above is smooth, so the closed-loop system’s solution has a definition in the interval 
[0, )ft . We convert (28) into: 

2 ( ) ( )n n nV V g t N χχ χ δ
λ λ
Γ

≤ − + + +                                                  (34) 

From (28), it follows that  
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Since nδ  is a constant, 2 2

0

tt
ne e dτδ τ− ∫  is bounded; According to Lemma 4, ( )V t , ( )tχ  and 

0
( ( ) ( ) 1)

t
g N dτ χ χ τ+∫ &  are all bounded in the interval [0, )ft , thus the closed-loop system’s state variables are 

bounded in [ )0, ft , further it is easy to infer that the  virtual control law *
ix  and control law u  are all 

bounded. By the controller design and the conclusions above, we can see that, properly adjusting the parameter 
,λΓ  and δ  can make output tracking error appropriately small in a finite time. 

4. Simulation  
We perform a simulation taking into account of three-channel coupling. In the simulation, the initial conditions 
are set to 1(0) 0.1x = , 2 (0) 0.1x =  and (0) 0χ = ; the other parameters are designed as 1 0.1Γ = , 1 1λ =  and 

1 10δ = ; and the lateral overload yn  keeps track the square wave overload instruction ycn . The simulation 
results are shown as follows:Fig1-fig5. 
5. Conclusion 
In this paper, we studied a design method of BTT missile autopilot with the impact of feedforward; and we 
obtained the conclusions as following: 
(1) From the comparison between Fig. 1 and Fig. 2, we can see that the designed controller with the impact of 
feedforward can not only reduce the stable errors but also make tracking precision is obviously better than the 
controller without any consideration of feedforward effect.  
(2) By employing the Nussbaum-type gain technique and the adding a power integrator design, a global 
nonlinear control strategy was proposed to obtain the continuous autopilot. The stability of the control system in 
finite time was strictly proved applying the method of Lyapunov stability theory. 
(3) A simulation example is given to demonstrate that the designed control system not only overcome the 
influence of uncertain factors and the problem of the stable error, but also improved the tracking precision by 
adjusting the design parameter properly. 
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 Figure 1. Output response of vertical overload yn  to instruction ycn  with the impact of feedforward  

0 1 2 3 4 5

-2

-1

0

1

2

t(s)

ny

 

Figure 2. Output response of vertical overload yn  to instruction ycn  without the impact of feedforward 
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Figure 3. Output response of rotational angular velocity zw  to instruction ycn  with the impact of feedforward 
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Figure 4. Output response of adaptive parameter χ  to instruction ycn  with the impact of feedforward 
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Figure 5. Output response of sideslip angle β  to instruction ycn  with the impact of feedforward 

 
 
 
 
 
 


