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Abstract 
In order to have safe and economy construction, different sources of uncertainty should be properly characterized 
and considered in structural design and verification. A reliability analysis is run to assess the consistency of 
design process, including the uncertainty. A full probabilistic approach is an appropriate means in considering the 
aleatory portion of uncertainty. In dealing with epistemic uncertainty in reliability analysis, modern mathematical 
tools like fuzzy logic is required. The non-deterministic design in a case study on Unreinforced Masonry shear 
Wall (URMW) by applying fuzzy numbers has performed. Instead of uncertain deterministic data of material 
strength, a range of possible numbers in the form of fuzzy numbers introduced to the model, considering the 
experiences and the expert knowledge. The predicted capacity which is fuzzy number provide more insight into 
behavior of URMW. Moreover, the study on significant influence of each variable on the ultimate capacity of 
URMW is easier. Several reliability analysis are run using only stochastic method with using fuzzy numbers. The 
effect of model uncertainty on assessed reliability is highlighted. The distinction between linear and non-linear 
application of partial safety factors is assessed. The result illustrate the fluctuation of reliability level of URMW 
for a wide range of applied normal force and different materials. 
Keywords: fuzzy numbers, reliability, uncertainty, unreinforced masonry, shear wall 
1. Introduction 
The main function of structural Unreinforced Masonry Wall (URMW) is to bear the axial load. The behaviour of 
URMW subject to a pure axial force (centric load) is the matter of many scientific assessments. However, in real 
boundary condition, the interconnection of other structural elements (such as effect of floor slab on wall) or 
external horizontal forces (such as wind load) may cause some in-plane or out-of-plane eccentricity in URMW. 
Traditionally, researchers may relied on the tools provided by probability theory to deal with problems in which 
uncertainty plays a substantive role. In recent years, it has become clear that dealing with uncertain models and 
imprecise data and running analysis based on a pure probability method is not adequate. The epistemic 
uncertainty does not have statistical nature, accordingly probabilistic methods are not appropriate in assessing 
the reliability level. 
Moreover, the structural reliability encounters with very low level failure probability (e.g. ≈ 10 ). This 
makes the analysis of reliability very sensitive to input data, especially when the extreme value distributions are 
of concern. In this regard, the contribution of uncertainty model becomes very crucial. For instance, a small 
number of sample elements (as it happens usually in structural experiments) can lead to significant 
approximation (inaccuracy) in statistical parameters and therefore inaccurate results of probabilistic analysis.  
Nevertheless, the theory of fuzzy sets introduced by L. A. Zadeh (1965) makes experiences and expert 
knowledge accessible for controlling undesired scatter nature or lack of data. Combination of stochastic 
modelling and fuzzy set provides even more powerful bases for reliability analysis. the non-precise data in form 
of fuzzy numbers were first addressed in the 1980ies and the first articles combining fuzzy imprecision and 
stochastic uncertainty were run by see Lotfi A. Zadeh (1984) and Kacprzyk and Fedrizzi (1988). 
The purpose of this study is twofold: to apply Fuzzy numbers in URMW design and to insert fuzzy numbers in 
Randomness method in order to assess the reliability of URMW subject to in-plane shear load designed 
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according to Eurocode 6 (DIN, 2012). 
2. Uncertain Data 
Due to fluctuating nature of surrounding conditions, all available quantities of material properties recorded from 
experiments are imprecise. With similar reasons, all the forecast values in predicting load parameters are 
inaccurate. The prediction in both load combination and resistance models may be even more uncertain, due to 
additional approximation involved in the idealized model, which is used to simulate or describe the real sense of 
the matter. This phenomenon is named uncertainty and is discussed in different fields of science.  
In general, uncertainty can be of two epistemic and aleatoric uncertainty categorised. Epistemic uncertainty is 
objective and is related to the insufficient data or lake of knowledge. The epistemic uncertainty may be 
decreased by raising the quality and quantity of observations. In contrast, aleatory uncertainty is subjective and is 
related to random and stochastic behaviour of individual element when the same inputs yield scattered outcome 
in the same system. 
The common categorization of uncertainty is applied to conclude that the aleatory part of uncertainty could be 
evaluated by the probability theory since it satisfies the statistical laws, and possesses purely objective 
information, and it might be referred to as “randomness”.  
The idea that statistical variation in a parameter could be considered in quantification of uncertainty and the 
specifying design values are not new and many standards have recognized this for some time. Within the 
probabilistic approach to structural safety and performance specification, a basic variable, X, may be 
characterized by two quantities, an “average” value and a “scatter measure”. The former corresponds to an 
expected value or mean, the latter, to a distribution and coefficient of Variation, .. As it will be observed, 
probabilistic approach provides appropriate platform to implement aleatoric uncertainty.  
On the contrary, “fuzziness” results from epistemic uncertainty, which is not characterized by random properties 
but subjective influences and is dealt with on the bases of fuzzy set theory. Fuzziness possesses subjective and 
objective information.  
In logical sense,   uncertainty measurement intends to work towards reducing epistemic uncertainties to 
aleatoric uncertainties. Kiureghian and Ditlevsen (2009) caegorize uncertainties within a model since it then 
becomes clear  which uncertainties have the potential of being reduced.  
In most applications, engineers confront with both randomness and fuzziness. Because of incompleteness and 
imprecision, the observed uncertainty does not fulfil all preconditions of stochastic uncertainty, but instead it 
exhibits partial stochastic properties. More information and examples could be found in Möller and Beer (2004) 
and Cai (1996). Depending on application, there exist other techniques and tools to estimate and maintain 
uncertainty and provide an acceptable accuracy in the outcome like Karhunen–Loève’s, polynomial chaos 
expansions and evidence theory, Blake (1966).  
2.1 Interval Data 
Many measurements (e.g. material strength) are connected with numerous amount of uncertainties. An example 
is the working life time of a structure that in general may not be described by one real number because the end of 
the life time is not a precise number ( ∈ ℝ) but more or less non-precise. This kind of non-precise data may 
easily be described by interval arithmetic. 
The intervals ([  , ] ⊆ ℝ) are uniquely characterized by the indicator functions, [  , ]. The indicator function 
 of a classical set  is defined by: (x) =  1               for  ∈  0               for  ∉                                      (1) 

Viertl in (1996) and in (1997) developed an approach to describe the non-precise observations named 
non-precise numbers, in a mathematical manner where ∗ are modelled by characterizing functions ( ), 
which characterize the imprecision of an observation. A characterizing function ( ) is a real function of a real 
variable with the following properties: 
(1)  ∶  ℝ → [0 , 1] 
(2) ∃  ∈ ℝ ∶  ( ) = 1 
(3) ∀  ∈ (0 , 1]  the set ∶=  ∈ ℝ ∶  ( ) ≥ = [  , ]  is a finite closed interval, named -cut 

( -level) of the ( ) 
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Interval mathematics and convex modelling offer additional modelling techniques, although these only allow for 
a binary assessment of the membership of elements in a set. In this content, the rough sets theory is 
contributively consider the existing zone between membership and non-membership. Fuzzy set theory in 
addition to rough sets theory allows the assessment of elements of a set based on a normalized scale ranging 
between zero and unity.  
2.2 Fuzzy Sets and Fuzzy Numbers 
According to B. Möller, W. Graf, and M. Beer (2000) the theoretical basis of fuzzy set was first introduced by L. 
A. Zadeh (1965) and later was extended by Bandemer and Gottwald (1989). Here a quick review on fuzzy set is 
presented by Chachi and Taheri (2011). 
Let  be a universal (convex, normalized) set, then the fuzzy set (or uncertain set), Ã of  is defined by its 
membership function Ã :   →  [0,1]. The membership function is at least segmentally continuous. From the 
uncertain set Ã , the crisp sets are derived. Ã =  〈  ∈  | Ã( )  ≧  〉                                      (2) 
The set is named the −level set of Ã for  ∈  (0,  1], and Ã  is the closure of the set 〈  ∈  | Ã( )  0 〉. It is assumed that: 1)  is endowed with a topological structure; and 2) the universal set  is a set of real 
numbers (i.e. =  ℝ). The fuzzy set Ã is called a fuzzy number, if each Ã  is a nonempty closed interval for 
all  ∈  (0,  1], it will be presented by (ℝ). The set of all fuzzy numbers are associated with  ℝ. In fuzzy set 
theory, the characterizing function is named membership function. A common kind of fuzzy number is the 
triangular fuzzy number with a linear membership function, which is denoted by triplet number, =  〈 , , 〉, 
where , ,  are the left, the centre and the right spread values of Ã, respectively; the centre, , which can be 
referred to as the mean value has unit membership, see Fig.  1–a.  
The membership function and the -level set of a triangular fuzzy number Ã are defined in Eqs. (3), where,  (. ) is the indicator function. Ã is named as fuzzy point (crisp number) with value , provided that 
membership function of the set is Ã( ) =  ( ). It is easy to observe that, Ã  =   for all  ∈  [0,1]. The 
mathematical expression of the above is presented in Eqs. (3) 

                      (3) 
A general membership function, which can be any continuous convex function meets the conditions (1) and (2) 
of intervals is shown in Fig.  1–b. There the non-precise interval numbers are special fuzzy subsets of ℝ, in 
another word, the fuzzy subsets are generalization of intervals. In every convex uncertain set Ã , each −level 
set  is an interval [  , ] where, = min〈  ∈  | Ã( )  ≥  〉                                (4) = max〈  ∈  | Ã( )  ≥  〉                                (5) 

Figure 1. a) membership function of triangular fuzzy number; b) general convex membership function of fuzzy 
number 
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It should be mentioned that in static and dynamic application the non-convex fuzzy variables and non-convex 
fuzzy random variables might appear. Reuter (2009) improved the analysis methods and specification of fuzzy 
numbers to allow the modelling of uncertain data as non-convex fuzzy variables and non-convex fuzzy random 
variables. This was achieved by developing a generalized discretization algorithm by extending the simulation 
methods of convex fuzzy random variables. 
Möller and Beer (2004) extended non-deterministic methods in order to account for non-stochastic uncertainty. 
The epistemic uncertainty of a parameter is characterized and implemented into analysis by means of the 
“membership function”. Therefore defining membership function is a key step in calculation. Membership 
functions for structural parameters may be specified based on experiments. In addition to the measured values, it 
is necessary to consider the extent of samplings, possible errors in measurements and other inaccuracies, 
estimates made by experts, experience gained from comparable problems and so on.  
Based on fuzzy set theory, B. Möller et al. (2000) developed and formulated a general method for fuzzy 
structural analysis in terms of α-level optimization with the application of a modified evolution strategy. The 
fuzzy verification is a sort of deterministic analysis. The objective of this approach is to supplement probabilistic 
methods in a means that uncertainties in their natural form (characteristics) may be accounted for more 
appropriately.  
According to the subject under study, the designer specifies the membership function, μ ( ), for each parameter 
or uncertain variable. Then, the realistic simulation of a structure with the aid of a crisp (or uncertain) algorithm 
applied to fuzzy values for input and model parameters is performed. Several algorithms for static and dynamic 
fuzzy structural analysis are adopted as a deterministic fundamental solutions.  
By the means of this realistic simulation algorithm the complex loading processes are treated in an 
incremental-iterative manner with respect to all essential nonlinearities. The fuzzy analysis algorithm maps  
fuzzy input values  and  fuzzy model values, , into  Z  result values, which are fuzzy values as well, 
by means of the extension principle in combination with the Cartesian product between fuzzy sets by L. A. 
Zadeh (1965) and B. Möller et al. (2000). However, the extension principle is hardly practicable in the case of 
complex mapping operators, as its application requires discretization of the support of the uncertain input set (e.g. 
using a point mesh). This leads to numerical problems. In order to develop an appropriate method for processing 
fuzzy input values and fuzzy model parameters the concept of α-optimization is adopted by B. Möller et al. 
(2000).  
2.3 α-Level Optimization of Fuzzy Values 

Fuzzy values may be discretized with the aid of α-level sets. The α-level sets   ,  ,  =  1, … ,  of the 
fuzzy input values , … , , … ,  form the n-dimensional crisp subspace , of the x-space. For  =  0 
the crisp support subspace is obtained.  
If the fuzzy input values are convex uncertain sets and among them no interaction exists, an n-dimensional 
hyper-cuboid is obtained. The non-convex fuzzy input values lead to a disjoint subspace . If there is 
interaction, the shape of the subspace  generally departs from the shape of the n-dimensional hyper-cuboid.  
All fuzzy input values are discretized through the same number of αk-levels with  =  1, … , . For each fuzzy 
input value =   on level  the α-level set ,  is then assigned to  and the total of ,  form the 
crisp subspace . With the aid of the mapping operator =  ( , , … , ) it is possible to compute 
elements of the α-level sets ,  of the fuzzy result values  ̃ =   , =  1, . . . ,  on the α-level . The 
mapping of all elements of  yields the crisp subspace  of the z-space. 
Once the smallest element , and the largest element ,  of the α-level set ,  are found, the two points 

of the membership function = μ  become known. The search for smallest and largest elements may 

be formulated as an optimization problem. for this purpose the following objective functions must be satisfied: = ( , , … , )   ⇒    | ( , , … , )  ∈                     (6) = ( , , … , )   ⇒    | ( , , … , )  ∈                     (7) 
These equations are satisfied by the optimum points . For each fuzzy result value, precisely two optimum 
points in the crisp subspace  belong to each α-level . The optimization process for all α-levels  and 
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all fuzzy result values  is referred to as α-level optimization. 
In the optimization problem presented by B. Möller et al. (2000), for each of the  fuzzy result values ̃   on 
each one of the  α-levels  must be solved twice, i.e. (2 ·   ·  ) times in total. A multiple solution for the 
optimization problem is necessary. The α-level optimization thus demands a robust optimization technique which 
is independent of the type and behaviour of the objective function or restrictions and is capable of finding global 
optima in a realistic manner. Standard optimization methods are only partly appropriate for this purpose. For this 
reason a compromise solution is developed by combining the evolution strategy, the gradient method and the 
Monte-Carlo method. 
The combination of directed and non-directed search techniques is found to be advantageous when compared to 
a purely directed search technique seeking for global optima. A mixed technique is less sensitive in relation to 
less "well-behaved" objective functions. By taking advantage of existing information concerning the behaviour 
of the objective function the number of "unnecessary'' computations of objective function values (leading to 
lower results) is reduced. If the available information is insufficient, then the random-oriented methods are 
applied. Fuzzy numbers have been and are successfully used in steel and concrete structures’ design as well as in 
monitoring or indicating damage of the buildings. Fuzzy analysis is capable for static loading processes and 
dynamic processes. Fuzzy analysis not only take into account the corresponding uncertainty in the inputs, but 
also provide additional information in output for the designer. For detailed information and illustrative examples 
refer to B. Möller et al. (2000), (2000) and (2001). 
The fuzzy structural analysis promote the of load-bearing behaviour assessment subject to considered 
uncertainties. The "α-level optimization" algorithm is quite a promising technique in this regards. Some attempts 
are made to apply fuzzy analysis as alternative to stochastic methods, Möller, Beer, and Liebscher (2005). 
Nevertheless, the aleatory uncertainty require the probabilistic tool to handle. 
3. Verification of URMW with Fuzzy Data 
There exist many basic theoretical approaches to predict the in-plane shear capacity of URMW. According to 
Kranzler (2008), the first studies on masonry shear strength were conducted by Kelch and Norman (1931) 
followed by, Benjamin and Williams (1958), Vogt (1961) and Zelger (1964) who focused on recalculation of 
experimental data and derived a shear strength  directly from the test data. More recent studies in Germany 
consist of Mann and Müller (1978), Simon (2002) and Kranzler (2008). 
Kranzler conducted massive FEM analyse and analytical calculations for various geometrical aspect ratio of wall 
by considering several unit size and masonry materials. Meanwhile, he integrated the available methods at the 
time and compared this outcome with the experimental results. He suggested that parameter  accounts for the 
structural system of the wall. In general, a distinction may be drawn between the two boundary cases: for totally 
(full) restraint at top and the bottom of the wall, = 0.5 and for cantilever wall with no restraint at the top  = 1.0.  
Kranzler states that most of the theoretical models are derived from the equilibrium at a single unit in the panel 
centre and assume small units compared to the panel dimensions. In the middle of the panel, the assumption of a 
diagonal shifted stress blocks with similar state of stress for adjacent units is justified. However, at the bottom 
and the corner areas of a panel (where the calculation of the bearing capacity is mostly run), the resulting state of 
stress is not the same as the assumed one. Accordingly, he proposed additional criteria regarding wall boundary 
conditions and units’ size.  
The fuzzy input data for the basic variables of a case regarding Clay Brick wall (URMW CB1) designed by 
German National Annex of Eurocode 6 (DIN EN 1996-1-1/NA DIN EN 1996-1-1/NA (DIN, 2012)) are provided 
in Fig. 2. The analysis is run by α-level discretization method in WinFuz (Note 1) software that is developed in 
the Technische Universität Dresden. The interval of normal force, , around each verification point is set in a 
manner to provide a continuous interval over 0 < < 0.7  range. 
 



www.ccsenet.org/mas Modern Applied Science Vol. 10, No. 6; 2016 

152 
 

 

Figure 2. Fuzzy input data, (a) CB 1, masonry compressive strength, (b) CB 1, unit tensile strength, (c) CB 1, 
masonry initial shear strength, and (d) normal force of i=9,  = 〈0.55,0.6,0.63〉 

 
Figure  3 illustrates the result of fuzzy interval verifications for URMW CB 1 at several normal force intervals: 
 

 

Figure 3. Fuzzy output data, of CB1 verification for several normal forces: (a) i=1, n = 〈0.0,0.005,0.0065〉,(b) 
i=2, n = 〈0.0065,0.025,0.037〉,(c) i=9, n = 〈0.55,0.6,0.63〉 and (d) i=10, n = 〈0.63,0.667,0.73〉) 
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The result of fuzzy interval verifications over the entire normal force interval is illustrated in Fig. 4. The upper 
part of diagram (in blue) shows the behaviour of URMW when the partial safety factor,  γ  is set to unity. The 
lower part (in red) indicate the design capacity of the wall where the partial safety factor of  γ = 1.5 is 
considered. 

 
Figure 4. Verification of URMW (CB 1) with Fuzzy data 

 
4. Fuzzy Random Variables 
As mentioned before, the combining fuzzy imprecision and stochastic uncertainty is suggested and exercised by 
researchers. In fact, the first comprehensive uncertainty modelling was developed according to fuzzy random 
variables theory. Randomness and fuzziness are considered simultaneously and the real-valued random variables 
and fuzzy parameters are included as special cases. For numerical evaluation, a formulation is developed in 
Technische Universität Dresden based on α–discretization according to B. Möller et al. (2000) which is applied 
for structural reliability analysis. 
5. Reliability with Fuzzy Data 
Applying the uncertain computational models containing fuzzy model parameters result in a fuzzy limit state 
surface, expressed as follows: = 0  ≡   〈( = 0 ; μ( = 0) |  ∈ 〉                        (12) 
Similar to deterministic limit state, the fuzzy limit state surface subdivides the space of the fuzzy probabilistic 
basic variables into a fuzzy survival region and a fuzzy failure region. 
In order to compute the elements = 0, it is necessary to discretize the fuzzy model parameters (i.e. 
selection of an α-level and selection of elements from the α-level sets). By this means, possible values of the 
fuzzy model parameters are defined. These values serve as input data to a (non-linear) analysis algorithm 
through which the crisp limit state surface = 0  is computed. The respective analysis algorithm is referred 
to as the deterministic fundamental solution. The quality of the deterministic fundamental solution has a decisive 
influence on the safety assessment results; thus, the system behaviour of the structure has to be simulated in a 
realistic numeric manner. The assessment of the points  in the space of the fuzzy probabilistic basic variables 
regarding failure or survival are carried out through membership functions. The membership function of the 
fuzzy failure region is expressed as follows: μ( ≤ 0)  = 1                         ∀  | ≤ 0μ( = 0                 ℎ                         (13) 

In this context, the fuzzy probability of failure could be expressed as:  =  − ≤ 0                                     (14) 
Fuzzy reliability  is a fuzzy number defined as: =  −                                      (15) 
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where,   is standard normal probability distribution and   is the fuzzy failure probability. As explained 
before, the output of a fuzzy analysis is a fuzzy number. However, in current codes of practice, only real 
numbers are given as the reliability measure targets. In order to interpret the fuzzy reliability index, , Möller, 
Graf, and Beer (2003) considered the following distinction:  
1. The verification according to Eqs. (15) is fulfilled, given that none of the elements of  are smaller than the 

standard target.  ,  ≥                                        (16) 
2. The verification according to (15) is not fulfilled, given that all elements of  are smaller than target: , <                                       (17) 
3. The verification according to (15) is considered as “partially fulfilled”, given that the target value is an 

element of , like:  ∈  ∧ ,  ≠                                       (18) 
5.1 Structural Target Reliability Index 
Codes of practice encompass different target reliability values. The proposed target reliability index in JCSS 
(2011) for ultimate limit states is tabulated in Table 1.  
 
Table 1. Tentative target reliability indexes, β (and associated target failure rates), related to 50 years reference 
period and ultimate limit state JCSS (2011) 

 Reliability indexes, β, according to consequences of failure 
Relative cost of safety measure minor moderate major 
A (large) 1.7 2.0 2.6 
B (medium) 2.6 3.2 3.5 
C (small) 3.2 3.5 3.9 

 
Target values of reliability index in DIN EN 1990:2002 (DIN, 2011) for various design situations, and for 
reference periods of 1 year and 50 years, are tabulated in table 2. The values of   in tables correspond to 
levels of safety for reliability class RC2 (see DIN EN 1990:2002 (DIN, 2011) Annex B) structural members. 
 
Table 2. Target reliability indexes, β, related to life time reference period and ultimate limit state DIN EN 
1990:2002 for Class RC2 structural members which is associated with the second consequence classes (CC2 
Medium) (DIN, 2011) 

 Reliability indexes, β, according to consequences of failure 
Relative cost of safety measure small some 
Ultimate 4.7 3.8 
Fatigue - 1.5 to 3.8 * 
Serviceability (irreversible) 2.9 1.5 

 * depends on degree of inspectability, reparability and damage tolerance 
 
It should be noted that the partial factors given in EN 1990 up to EN 1999 generally lead to a structure design 
with a β value greater than 3.8 for a 50 years reference period. In this study = 3.8 is chosen as the target 
value. 
Further reference in different consideration on the specific case of fuzzy structural reliability analysis includes: 
Beer, Tong, Mingqiang, and Ferson (2011), Montazerolghaem, Sickert, Graf, and Jäger (2011), Yubin, Zhong, 
and Guangyuan (1997), Cai (1996), Grosse (2007), Möller, Graf, Hoffmann, and Sickert (2007), Möller et al. 
(2003), Reuter (2009), Pannier, Waurick, Graf, and Kaliske (2013), Graf, Götz, and Kaliske (2014) and Möller, 
Graf, Sickert, and Reuter (2007).  
The probability of failure and reliability level of URMW designed in accordance to DIN EN 1996-1-1/NA DIN 
EN 1996-1-1/NA (DIN, 2012) corresponding to the different exemplary walls, made of Clay Brick (CB), 
Calcium Silicate (CS) and Autoclaved Aerated Concrete (AAC) are assessed in this article.  
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It should be noted that in this study lognormal distribution is adopted with respect to the uncertainty in resistance 
model. In General, in order to characterize uncertainty in probabilistic models, the observed (experimental) 
capacity is compared with predicted value and then the relevant uncertainty in model is derived. 
 

 
Figure 5. 3D-Reliability of CB URMW (ψ=1.0) through Fuzzy-Random data designed due to DIN 

EN1996-1-1/NA 
 

 

Figure 6. 3D-Failure probability of CB URMW (ψ=0.5) through Fuzzy-Random data designed due to DIN 
EN1996-1-1/ NA 

 

 
Figure 7. 3D-Reliability of CS URMW (ψ=1.0) through Fuzzy-Random data designed due to DIN 

EN1996-1-1/NA 
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Figure 8. 3D-Failure probability of CS URMW (ψ=0.5) through Fuzzy-Random data designed due to DIN 
EN1996-1-1/NA 

 

 
Figure 9. 3D-Reliability of AAC URMW (ψ=1.0) through Fuzzy-Random data designed due to DIN 

EN1996-1-1/NA 
 

 

Figure 10. 3D-Failure probability of AAC URMW (ψ=0.5) through Fuzzy-Random data designed due to DIN 
EN1996-1-1/NA 

 
6. Conclusion 
The effect of imprecision and incompleteness of data, which are the constituent of epistemic uncertainty, is 
assessed. It is found that the epistemic uncertainty has major influence on the results (of the reliability level of 
URMW). The expert opinion should be a part of design to ensure the reliable outcome. It is observed that fuzzy 
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set is a very powerful and appropriate means in implementing the epistemic uncertainty, even though it demands 
numerical efforts.  
Since the uncertainty in engineering problems is related to both epistemic and aleatory components, therefore a 
combination of fuzzy and randomness for specific analysis like safety and reliability assessment is 
recommended. 
The actual reliability of different unreinforced masonry walls, where all kind of uncertainty and variation in 
parameters is considered, is assessed according to current German national Annex of EC6. The assessed 
reliabilities in form of fuzzy numbers provide more insight into behavior of URMW. The founding in the current 
research may be taken into consideration by code writers to promote the design process described in the codes of 
practice.  
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