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Abstract 
Soil organic carbon (SOC) is a very important component of soil that supports the sustainability and quality in 
all ecosystems, especially in semi-arid region. This study was conducted to evaluate the effects of 15 different 
climatic, soil, and geometric factors on the SOC contents in different land use patterns and to determine relative 
importance of these desired variables for SOC estimation in one of the semi arid watershed zones in the western 
part of Iran. Feed forward back propagation artificial neural networks (ANN), was used to model and predict 
SOC. The performance of the model was evaluated using R2 and MBE values of tested data set. Results showed 
that 31-2-1 neural networks have highest predictive ability that explains %76 of SOC variability. Neural network 
models slightly overestimated SOC content, and had higher ability to detect management variables effects on 
SOC variability. In all ANN structure, management system dominantly controlled SOC variability in rainfed 
crop land of semi arid condition. 
Keywords: CART, Modeling, Neural networks, Soil organic Carbon 
1. Introduction 
Soil is an important resource that is vital for the sustainability of life in ecosystems, and acts as a buffer to global 
climatic change (Sparling et al 2006). The soil organic carbon (SOC) is an important component, since it plays a 
key role in soil fertility and hydrology, contaminants control, and acts as a sink or source of terrestrial C, which 
affects the concentration of atmospheric CO2. Atmospheric carbon is increased exponentially at a rate of 1.5% 
per year. Soil is regarded as an important sink and source for carbon sequestration and modifier of climate 
change. This can be done by proper land use selection and management practices (Tan and Lal, 2005).  
Application of statistical methods include multiple linear regressions and partial least square regression, in SOC 
estimation, was limited, because of oversimplification, ignorance of complex nonlinear interactions. Another 
approach in dealing with nonlinear systems is to use non-linear and nonparametric regression methods included 
regression and nonparametric regression such as artificial intelligence (AI) modeling paradigms such as artificial 
neural network (ANN). ANN has been successfully used in classification, prediction and recognition problems 
(McCullagh, 2005, Zhang, 2004). The potential benefits of these methods include greater prediction reliability, 
cost-efficient estimation and solving complex problems involving nonlinearity and uncertainty. They have been 
successfully applied in various soil studies (Spencer et al., 2004). These applications include predictions of soil 
structure, hydraulic properties, pedotransfer functions (Amini et al., 2005, Sarmadian et al., 2009), pedometric 
use in soil survey (McBratney et al. 2002), environmental correlation of soil spatial variability (Park and Vlek, 
2002)  
This study was conducted to predict SOC variability at watershed scale across rainfed land use type in a 
semi-arid condition of Iran by using artificial neural networks (ANNs). Desired variables to predict SOC were 
consisted of climatic, soil, and topographic factors as physical variables, and tillage, rotation, crop residue 



www.ccsenet.org/mas                       Modern Applied Science                    Vol. 4, No. 7; July 2010 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 26

management, ownership, and soil degradation factors, as management parameters. Since the estimation model 
was data based, selection of appropriate input and output variables was important. Thus, sensitivity analysis on 
exploratory variables was carried out to select the best input combinations for modeling and estimating SOC. 
2. Materials and Methods 
2.1 Site description 
Merek sub basin, from Karkheh river watershed, with area about 24000 ha, as an experimental site was selected 
for this study. The elevation of this site ranged from 1450 to 1850 m with annual average precipitation about 500 
mm. This area consists of agricultural rainfed lands with area about 14500 ha, dominantly under Wheat and Pea 
rotation. Climate is semi-arid and cold. Soil temperature and moisture regimes are mesic and xeric. In this site, 
soil texture is ranged from clay to silt Soils, in mountains and hill lands were covered by about 25-60% fine and 
coarse gravel. The pH varied between 7.3 and 7.9, EC ranged from 0.4 to 0.8 (dS/m), and lime content in topsoil 
was 4-60%.  
2.2 Sampling and dataset  
A sampling design based on randomized systematic method was performed with considering land use, soil, slope, 
and aspect maps. In each sampling site, soil samples were taken from topsoil (0–0.3 m depth). Figure 1 shows a 
general scheme of sampling and sample points. Totally, 245 different soil samples were collected. Soil samples 
were air dried and then sieved by 2 and 0.5 mm sieve. Soil organic carbon of these samples was determined. 
Some soil physio-chemical properties included; TNV, sand, silt, and clay percentages and SP percentages were 
determined.  
In addition to soil variables that described above, climatic variables included mean annual temperature (MAT), 
mean annual rainfall (MAR), potential evapotranspiration (ETP) were recorded and climate types(Ctype) 
determined using the Amberger method. Topographic variables (included elevation (Elev), slope (P), and aspect 
of the terrain of the sampling site) were also measured. Geometric factors such as curvature (Curv), and terrain 
parameter were derived from DEM that prepared based on digitized contour line map with 20 meter vertical lag 
apart. The transformed aspect (TA), which aligns the index along a SW-NE axis, for the sites was calculated 
according to Beers et al. (1966) using the following equation:  

)45cos( aspectTA −=                                    (1) 
TAP parameter was calculated by multiplying TA by sinus value of slope angle. This parameter was used to 
incorporate the effects of slope on direct-beam radiation. 
To investigate management system effects, 13 raw quantified and three combined scenario indices, as 
management variables were defined by using collected data from field study,. Primary 13 variables included: 
farm area and ownership, in ha (Oh), as ownership index, mannuring (Mn), legeum (L.F) and cereal (C.F.) 
frequency in rotation period, winter fallow existence(Wf), crop residual pasture, straw harvest(Sh), straw burning, 
domestic density (Dd), machinery energy consumption (E) (Mjha-1year-1), tillage index (Tindex) (Ferrara and 
Gerrsa, 2007) tillage direction index (Pdir), and accelerated soil degradation class(Er). Crop residual related 
variables were selected to define related variable as crop residue management scenario (Ssen) by classifing them 
with K-means clustering. Tillage management scenario index (Tsen) was defined by combine tillage related 
variables. Third management scenario variable was made by combining rotation related variables with K-means 
clustering. This variable, defined as rotation system (Rsen) variable. 
2.3 Data selection and preprocessing 
Selection of input data was based on theoretical contribution of physical and management variable, expert 
experiences and accessibility. Inputs were selected from climatic factors, soil physical properties, geometric 
factors and management system factors. The data set was split into a training set and a testing set. Before 
simulation, all data sets were standardized by using a linear algorithm software. Range normalization to 
transform the original data was used from [xmin, xmax] so that each data point falls in the range [-0.95, 0.95]. The 
scaling formula is: 
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Where: xmin and xmax are the minimum and maximum values that make up the series of data. Data is transformed 
so that 95% of the data points making up x fall between -0.95 and 0.95. With this technique, data outliers who 
will fall above 97.5% or below 2.5%) of the average value will not affect the normalization process. 
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2.4 Development of ANNs 
A typical ANN consists of interconnected processing elements included an input layer, one or more hidden 
layers and an output layer (which provides the answer to the presented pattern). Between input and output layers, 
there could be several other hidden layers (see Figure 2). The input layer contains the input variables for the 
network, while output layer contains the desired output system, and the hidden layer often consists of a series of 
neurons associated with transfer functions.  
The total error at the output layer is distributed back to the ANN and the connection weights are adjusted. This 
process of feed-forward mechanism and back propagation (BP) of errors and weight adjustment is repeated 
iteratively until convergence in terms of an acceptable level of error is achieved.  Several methods for speeding 
up BP have been used including adding a momentum term or using a variable learning rate. In this paper, 
gradient descent with momentum (GDM) algorithm was used. 
2.5 Sensitivity analysis 
Since the SOC estimation model was data based, selection of appropriate input and output variables was 
important. A sensitivity analysis was performed on the chosen ANN's so that a better understanding of the 
relative importance of each input on the output could be examined. Thus, sensitivity analysis was carried out to 
investigate the dynamic behavior of input variables. This was done by imposing steps changes to various inputs 
and observing their effects on the network output. These responses were used as guides to select appropriate 
input and output variables that are suitable for model development. 
2.6 Performance criteria 
For the purpose of evaluation the accuracy of the prediction models, The performance of the models was 
evaluated by a set of test data using mean square error (MSE), coefficient of determination (R2) on testing set, 
between the predicted values and the target (or experimental) values as follows (Omid et al., 2009). Additionally, 
two different measures including the mean bias error (MBE) and the correlation coefficient ( ρ ) were used. The 
MBE is a measure of bias and reveals the overestimation or underestimation. For ANN's evaluation, the testing 
sets were used to evaluate the effectiveness of techniques for predicting organic carbon.  
2.7 Software 
To design various neural networks, a commercial software package, NeuroSolutions (version 5.02), was used. 
The expression used to calculate the MSE is given by NeuroSolutions for Excel (2005). Statistical analysis was 
done by SPSS 16 and XLSTAT pro-7.5 package.  
3. Results and Discussion 
Descriptive statistic and variations of the SOC are given in Table 1. The SOC content varied from 0.34 for dry 
lands with abundant erosion, to 3.72% in low lands and manure applicated soils. The correlation coefficients ( ρ ) 
between variables are given in Table 2. The correlation between SOC and Tsen was positive and with Tindex and 
Ssen was negative, significantly ( 050.0=α ). Significant correlation between climatic variables and SOC 
amounts was predictable, theoretically. But, there is insignificant correlation between geometric variables and 
SOC. On the other hand, comparing to physical variables, correlation coefficient of majority of management 
variables and SOC were significantly high. This result indicated that management measures eclipsed physical 
condition effects on SOC variability in rainfed condition of the semi arid regions in study area. TNV content of 
soils significantly lowered SOC contents, because of biological activity restriction in lime abundant.  
3.1 ANN's structure optimization  
Finding the optimum number of hidden neurons in the hidden layer is an important step in developing MLP 
networks. In neural network design, too many hidden units cause over-fitting, while too few hidden units cause 
under fitting. A summary of findings and best networks architecture is shown in Table 5. Among the different 
configurations examined, the N–2–1 configuration, exhibited highest accuracy and least error on cross validation 
data set (MSE = 0.0768). This optimum feature has N variables as input vector, 2 neurons in its hidden layer and 
1 neuron as output vector. The performance of this network is shown in figure 3. After evaluating the optimized 
configuration with the test set, the MSE were obtained 0.107, 0.113 and 0.120, for all inputs, management, and 
physical, variables, respectively. The corresponding ρ -value was 0.88, 0.83 and 0.63. The MSE values for the 
ANN's, with different k = number of nodes in hidden layers values and epoch's, presented that when k=2 in 
calibration and validation data sets, the model was not overt trained and optimum epochs in validation set equal 
to 46, 358, and 376, in all, management, and physical input vector models (Table 3). To find the optimum 
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number of hidden units, the MSE of the network with different inputs combination was plotted against the 
number of hidden units. Figure 4 presents this plot for ANN with all variables in input layer. 
The scatter plot of the measured against predicted SOC, with different combinations and types of exploratory 
variables, in the test data set is given, respectively, in figure 5 for the ANN models, which was identified as 
being the best models for predicting SOC. 
3.2 Sensitivity analysis 
In order to test the hypothesis that not all of the inputs used were required to train the model networks effectively, 
it was necessary to measure the influence of each input variable on the output. This was done by measuring the 
mean rate of change of output when a single input was changed by some relatively small amount (0.001). The 
mean rate of change was determined by testing the model network 594 times using randomly selected input 
values. Sensitivities, defined as the MSE rate of output changes divided by rate of change of a given input. 
Sensitivity analysis results are shown in Figure 4. Results indicated that SOC variation was more sensitive to 
management condition change than physical variables.  Changing in range of all management variables, 
especially tillage related variables, caused significant SOC variation. But among physical variables only aspect 
related variables (TA and TAP) and climate type affected SOC changes. 
3.3 Comparison of ANNs  
The test data set was used to evaluate the performance of the different network models for predicting SOC. The 
results of the research are given in Tables 3, 4, and 5, shows that the ANNs models can predict SOC contents 
more efficiently by all variables combination.  But Spencer et al (2005) showed that ANNs with physical 
variables had better SOC estimation. On the other hand, ANNs showed higher ability to simulate management 
effects on SOC variability. This ability is in contract with Somaratne et al (2005) findings. The ANN models 
could contribute 45% of SOC variability to physical variables. The MBE values indicated that the network 
models slightly overestimated the SOC. This overestimation was however so small, especially for the network 
with physical input. The largest RMSE was produced by the neural network with physical predictors. 
It seems that there are differences among the ANN models to distinguish kind of predictor variables effects on 
SOC. The similarity of the different procedures suggests that the relationship between SOC and predictor 
variables is essentially nonlinear. Significant differences in R2 and evaluation indices of ANN models executed 
by different type of exploratory variables indicated that MLP-ANN algorithm can precisely detect interaction 
effects between physical and management variables.(Wang et al , 2008). 
4. Conclusions 
The newly developed, artificial neural network, can detect management effects on SOC variability. Management 
factors especially tillage scenario parameters (included kind of instruments (Tindex), and tillage frequency), crop 
residue scenario parameters and also rotation parameters (especially legeum and cereal frequency in rotation 
period) dominantly determine SOC variability in semi arid conditions of study area. The models tested in this 
study, using physically based variables included: TAP, TNV, gravel, SP, MAT and AR could account for only 
up to 40-45% of the variation in SOC in the semi arid conditions of Iran. Analysis of sensitivity accuracy 
showed that adding more physical variables slightly improved variability prediction and did not significantly 
improve the modeling results. It seems that for improving prediction power of used methods, management 
practices, especially tillage, rotation, straw, and grazing management, are essential to be considered.  
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Table 1. Descriptive statistics of SOC variable  
Descriptive 
Statistics Minimum Maximum Mean Variance 

Standard  
deviation Skewness Kurtosis C.V

SOC 0.34 3.67 1.52 0.51 0.71 1.19 1.15 0.47
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Table 2. Pearson correlation coefficients ( ρ ) between SOC and physical and management variables 

Physical variables ρ  Management variables ρ  

Elev. 0.18 Er. -0.12
P 0.07 Oh -0.23
TA -0.03 Mn. 0.35
TAP -0.14 L.F 0.28
Curv. -0.14 C.F 0.09
T.N.V -0.23 Wf 0.05
S.P 0.24 Rsen. 0.25
Gravel 0.14 Pasture 0.34
clay 0.05 Sh 0.17
silt -0.12 Burn. 0.45
sand 0.03 Dden 0.07
M.A.T -0.19 Ssen. -0.46
A.R 0.20 E -0.51
ET -0.15 Tindex -0.52
C.Type -0.19* Pdir -0.09

--- --- Tsen. 0.46
*: In bolds, the correlation is significant at α =0.05 

Table 3. ANNs performance with best architecture  

Inputs  Train CV Test Best Networks Train CV 

All variables  

MSE 

 

0.001

 

0.118

 

0.107

 

Hidden 1 PEs 9 2 

Epoch # 1000 46 

ρ  0.860 0.862 0.883 Final MSE 0.001 0.043 

Management variables  
 

MSE 

 

0.094

 

0.077

 

0.113

 

Hidden 1 PEs 10 2 

Epoch # 5000 358 

ρ  0.808 0.814 0.831 Final MSE 0.0018 0.0737 

Physical variables  

MSE 

 

0.121

 

0.083

 

0.120

 

Hidden 1 PEs 9 2 

Epoch # 594 376 

ρ  0.651 0.376 0.631 Final MSE 0.0123 0.0413 
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Table 4. Mean Bias Error (MBE) of ANNs results with different input variables 

Input variables 
MBE  

All variables Management variables Physical variables  
0.025 0.010  0.003 

 

 

Figure 1. Rainfed land of Merek watershed and sampling point distribution 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The structure of multi layer feed forward neural network 
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Figure 3. MSE of networks with all variables as inputs versus number of nodes (a) and epochs (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The result of sensitivity analysis about mean of input data for ANN with all variables 
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Figure 5. The scatter plot of the measured vs. predicted SOC using the ANNs with different inputs 
 
 
 
  


