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Abstract 
Long-memory parameter estimation using log-periodogram regression relies largely on the frequency bandwidth 
and the order of estimation. Literature shows that a data-dependent plug-in method for the bandwidth 
significantly increases the MSE’s. In a long memory time series with mild short range effect, a simple approach 
to determine the bandwidth size is suggested based on the spectral analysis. Monte Carlo simulation results and 
empirical applications show that the proposed bandwidth selection performs satisfactorily. 
Keywords: long memory, log-periodogram, spectral density, optimal bandwidth 
1. Introduction 
There has been research on estimation of long memory parameter in time series using periodogram-based 
semi-parametric estimate, namely the local Whittle (Kunsch, 1987; Robinson, 1995a), average periodogram 
(Robinson, 1994) and log-periodogram (Geweke & Porter-Hudak, 1983; Robinson, 1995b). Semi-parametric 
estimation procedures are desired in the time series analysis of financial measurements sampled at high 
frequencies (Barros, Gil-Alana & Payne 2014; Bollerslev et al., 2013; Garvey & Gallagher, 2013) as they allow 
the estimation of the long-run characteristics (low frequency behaviour) of the time series without the knowledge 
of the short-run (high frequency) structure. Amongst these methods, log-periodogram (LP) regression proposed 
by Geweke and Porter-Hudak (1983) (GPH) has become a popular tool for statistical inference in empirical 
research due to its simple implementation, pivotal asymptotic normality and robustness as a result of the local 
condition (Arteche & Orbe, 2009). Nonetheless, it has been criticized due to its finite-sample bias 
(Agiakloglou,Newbold & Wohar 1993). To reduce the bias, Andrews and Guggenberger (2003) (AG) proposed a 
bias-reduced log-periodogram estimator (BRLP) , ∈ Ζ . Literature shows that the rate of convergence to 
zero of the mean-squared error (MSE) of  is of order  and it is of order  with . Also, the rate 
of convergence of the latter exceeds that of the local Whittle estimator (Robinson, 1995a) and the average 
periodogram (Robinson, 1994), provided the spectral density is sufficiently smooth. Nonetheless, as a 
semi-parametric parameter estimate, the bandwidth  plays an important role on the performance of . A 
large bandwidth reduces the variance at the cost of increased bias, and the estimates of the memory parameter 
vary significantly with the choice of . To balance the squared bias and variance, optimal bandwidth selection 
is usually proposed to minimize the approximation of the MSE or the root mean-squared error (RMSE). 
There are basically three formal procedures to optimal bandwidth. Hurvich and Deo (1999) proposed a plug-in 
method that minimizes an asymptotic approximation of the MSE, Giraitis, Robinson and Samarov (2000) 
introduced an adaptive LP that chooses  to adapt to an unknown local to zero spectral smoothness, and 
Arteche and Orbe (2009) suggested a bootstrap-based bandwidth choice that minimizes a local bootstrap MSE. 
The adaptive LP does not give unique choices of the bandwidth but only the bandwidths with an optimal growth 
rate. The bootstrap-based bandwidth is claimed to be robust, if the signals from the data are not misinterpreted. 
Nonetheless, it is noted that this technique depends largely on the choice of resampling width and the range of 
bandwidths considered for optimization. On the other hand, the plug-in method for selecting the number of 
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frequencies to minimize asymptotic MSE of  or is easy to implement but it is usually not adequate as it 
depends on the unknowns to be estimated (Andrews & Guggenberger, 2003; Arteche, 2004; Delgado & 
Robinson, 1996; Henry & Robinson, 1996; Henry, 2001). Besides, as the convergence rate is measuring the 
asymptotic properties that will not be reflected in finite samples, an improvement in the search for an optimum 
bandwidth is deemed crucial. It is believed that such effort is encouraging as much of the research work rely on 
the long-memory parameter estimation that is done by arbitrary choice of bandwidth (Charfeddine, 2014; Choi, 
Yu, & Zivot, 2010; Garvey & Gallagher, 2013). In a long memory time series with mild short range effect, the 
search for the optimum bandwidth can be done easily with spectral analysis. The following section reviews the 
log-periodogram regression estimator. Section 3 considers an alternative approach for the bandwidth selection 
using the spectral analysis. Section 4 provides a simulation study in finite samples, section 5 illustrates the 
proposed method with empirical examples and section 6 offers the concluding remarks. 
2. Log-periodogram Regression Estimator 
The spectral density of a semi-parametric model for a stationary Gaussian long-memory time series { : =1, … , } is given by ( ) = | | ∗( ), as ⟶ 0 (1) 

Where ∈ (−0.5, 0.5) determines the low frequencies property. Specifically when 0 < < 0.5, the series 
exhibits long memory. ∗(∙) is an even, positive continuous function on [− , ] with 0 < ∗(0) < ∞. It 
determines the high frequencies properties of the series, relating to the short-term correlation structure. A model 
that takes a fractional difference of order , a -order autoregressive (AR) and -order moving average (MA), 
abbreviated as ARFIMA ( , , ) introduced by Granger and Joyeux (1980) and Hosking (1981) is a special 
case of long-range process satisfying Eq. (1). Based on this, Robinson (1995b) wrote the GPH estimator  in 
the form of regression model below. log ( ) = (log ∗(0) − ) + + log ∗∗(0) + for = 1, … ,  

(2)  

Where = ∑ exp , = , = −2log , = log + , 

= 0.577216 … is the Euler constant and  is a positive integer smaller than or equal to , [ ] being the 

largest integer part of .  

To avoid the bias in  (Hurvich et al., 1998) due to the error term { } that is not i.i.d. (Hurvich & Beltrao, 
1993; Kunsch, 1986; Robinson, 1995b), AG proposed a bias-reduced log-periodogram regression (BRLP) that 
gives , which is basically adding regressor , ≥ 1 to the pseudo-regression model Eq.(2). The asymptotic 

bias of  is of order , compared to that of the GPH estimator which has the order of . As 

such, a larger bandwidth size is preferred for  because with  being the effective sample size to estimate , 
the standard deviation of the estimator declines at the approximate rate √ , which in effect, yields low RMSE. 

Various effort have been made to determine the suitable bandwidth size . For the plug-in method, Hurvich et 
al. (1998) suggested an optimal bandwidth choice for , of which following the lines of Delgado & 
Robinson (1996), it can be estimated using Taylor expansion of ∗  about = 0. As ∗ is unknown, this 
method is not fully automatic and the estimation can be poor for some ∗( ) functions. For  estimator, AG 
proposed the plug-in MSE optimal choice of bandwidth. This method has the similar problem in GPH estimator, 
that is, ∗( ) is unknown, and a non-parametric estimation is involved, which leads to an increase in the MSE 
of . Essentially, there is still no clue as to how large a bandwidth size should be taken. As the performance of 
the estimator varies according to the bandwidth size, a more efficient approach for the data-dependent choice of 
bandwidth is desired in finite samples. 
3. An Alternative Bandwidth Selection Method for Long-memory Time Series 
The spectral density is the variance per unit frequency (Chatfield, 2004), of which the auto-covariance function 
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( ) can be expressed as a cosine transform of the spectral density, shown in Eq.(3). ( ) = ( ) cos( )       (3) 

In other words, ( )  is the contribution of the variance of a time series with frequencies in the range ( , + ). As persistence or positive autocorrelation is the characteristic of a long-memory, the variance in the 
time series due to the long range effect is explained at the low frequencies, and it diminishes on the high 
frequencies. On the other hand, a process with mild short range effect has quite a flat spectral density, 

particularly on the interval ∈  ,  (see Figure 1). 

 
Figure 1. Spectral density of short- and long-range effects 

 
The characteristic of a stationary long-memory process with mild short-range effect can be examined via the 
autocorrelation function (ACF) and its spectral density. Briefly, Figure 2 shows the characteristics of 
ARFIMA(0, , 0), ARFIMA(1, , 0) and ARFIMA(0, , 1) processes with the plots of the average modified 
periodogram, ACF and partial autocorrelation function (PACF). Basically, a long-memory process with mild 
short-range effect has dominant long-memory characteristics, of which the autocorrelations are not too big, and 
the ACF decay hyperbolically with its spectral density diverges at zero. However, a significant short-range effect 
increases the strength of the autocorrelations at low lags, and the ACF may tend to decay more rapidly (see 
Figure 2(b)). For a detailed discussion of the characteristics of long-memory process, see Baillie (1996). 

(a) (b) 

(c) (d) 

Figure 2. Characteristics of various ARFIMA processes 
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To obtain an accurate long-memory parameter estimation, we should include as much the information pertaining 
the long range behaviour as possible. GPH suggested a bandwidth size = √ , but Qu (2011) showed that a 
larger bandwidth = [ . ]produces better results as the spurious long-memory affects the periodogram only 
up to = √ . This is supported by the empirical analyses (Charfeddine, 2014; Choi et al., 2010; Garvey & 
Gallagher, 2013), of which a bandwidth size larger than √  is adopted. Concentrating on the scenario of 
long-memory process of which the short-range effect is mild, this paper proposes to include as much the 
frequencies as possible up to the point of where the spectral density is low enough to be defined as noise. This 
approach is practicable as the spectral density ∗ of a mild short-range effect is rather flat on the interval ∈ √ , . From Eq.(1), we can deduce that  is not affected by ∗ on the interval ∈ √ , . 

Hence, the inclusion of as many frequencies with significant power spectrum as possible in the BRLP model is 
warranted. The spectral densities on the high frequencies are very low, and the signals are indistinguishable from 
the noise. These signals are regarded as insignificant, and they are to be removed like noise elimination. The 
challenge to this is to define a level of spectral density that is low enough to be treated as noise. As the effect of 

spurious long-memory is dominant on < √ , one may take ( ) = √  as the reference for the variance 

per unit frequency that explains the long-memory trait. The noise is then defined as those spectral density that 
has less than 5% of the amplitude at , computed as = 0.05 ∗  − ( ) + ( ), where ( ) = min ∈[ , ] ( ) represents the spectral density of white noise in the time series. It can be shown that 
the bandwidth selected with this criterion satisfies = √ , thus meeting the statistical assumptions for a 
regression method. Following this procedure, we avoid the bias due to insufficient data, and it is believed that 
more accurate long-memory parameter estimation can be attained.  

Since the spectral density of a time series is unknown, an unbiased and consistent estimate of the spectral density 
is needed. Although periodogram is a natural estimate of spectral density, it not a consistent estimator because its 
variance does not decrease as → ∞ (Jenkins & Watts, 1968). To improve the spectral estimation, this paper 
uses the average modified periodogram ( ) by the Welch method (Welch, 1967) with a frequency resolution 

of  , where = max{256, the next power of 2 greater than the length of the segments}. The spectral 

density is then estimated by ( ), = 0,1, … , , where  = .  By overlapping the segments with one 

half their fixed length ( ), Welch (1967) reported that the variance of this estimator is a function of . That is, 

the variance of ( ) improves as  increases. This implies that when the sample size is small,  should 
be estimated from a broader neighbourhood in . To simplify the work, we propose that for < 1000,

 is estimated by the largest signal in the interval − , + . As the sample size increases ( ≥ 1000), the variance in the estimator decreases, and hence, the search interval for the estimate of  

can be drawn closer to the point , say − , +  on the ( ) plot. Let’s denote this estimate as 

. To include as many frequencies with significant spectrum, we suggest that moving from the last point , 
the cutoff frequency  for the bandwidth is set at the first frequency that has the amplitude equals to . This 
cutoff frequency suggests a preliminary search for an optimum bandwidth for the long memory parameter 
estimation. To refine the bandwidth, the graphical method via the plot of  against  by Taqqu and 
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Teverovsky (1996) is referred, whereby the optimum bandwidth is searched from the flat region in the plot of  

against  around the Fourier frequency ∗∗  concluded from the spectral analysis. The flat region is defined 

as the region of frequencies of which  are almost similar, say in a neighbourhood of three estimates with a 
standard deviation of less than 10 . The average frequency of such region gives the optimum bandwidth, and 
this point will determine the number of frequencies to be included in the log-periodogram regression for the 
long-memory parameter estimation. 

The above procedure to search for the optimum bandwidth in the finite sample can be summarized in the steps 
below: 
1. Examine the plots of modified periodogram, ACF and PACF to check if the process is with mild short range 

effect. 
2. Compute and identify from the modified periodogram. 
3. Compute the minimum amplitude = 0.05 ∗  − ( ) + ( ). 
4. Identify the cutoff frequency , where ( ) = . 
5. Search for the flat region in the plot of  against  around the Fourier frequency ∗∗ . 
6. The optimum bandwidth is the average frequency of the region identified in step (5). 
Whilst the above procedure suggests the number of frequencies needed in the BRLP model, the accuracy of  
depends on . It is noted in AG that except for extremely large sample sizes, a small value of  is preferred 
because the variance of  for fixed  increases quickly as  increases. The need for a large value of  is 
evident if ∗(0) is close to unboundedness due to large nonzero derivatives of ∗on all positive even orders at 
zero. Hence, for an ARFIMA(1, , 0) process with AR parameter → 1, it is preferable to choose  =  2 to  =  1 for the estimator . On the other hand, an ARFIMA(0, , 1) process with MA parameter > 0 does 
not have the problem of unboundedness at ∗(0), indicating that is preferred. It is believed that with the 
optimal bandwidth and the proper selection of , the BRLP model can be improved and  can be an efficient 
estimator for the long-memory parameter. 
4. Monte Carlo Experiment 
In this section, we compare the finite sample behaviour of the BRLP estimators and  using the plug-in 
MSE optimal choice of bandwidth and the bandwidth size following the proposed method outlined in Section 0. 
We consider stationary Gaussian ARFIMA (1, , 1) processes with AR parameter  and MA parameter . 
The time series generated takes the form in Eq.(4). Without loss of generality, the series is normalized to 
zero-mean. (1 − )(1 − ) = (1 + ) , = 1, … , , (4) 

where  is a backshift operator and  is an iid standard normal random variable.  

Focusing on the scenario of long-memory with mild short-range effect, we consider the processes with the 
combination of parameters = 0, .2, .4, = 0, .1, .2, .3, .4 and , = 0, .1, .2, .3, .4. We do not examine the 
cases with negative parameters as these cases are of low empirical relevance. To examine if the performance of 
the proposed bandwidth selection is consistent, we run the simulation in sample sizes = 512, 1000 and 2000. 
We generate 1000 realizations for each run of combination, and the procedure is repeated for 100 replicates. To 
evaluate the performance of the bandwidth selection method in the BRLP estimators, the average of root mean 
squared error (RMSE) of these 100 replicates, each with 1000 realizations, is obtained for each of the processes 
considered in this study. These results are compared to the average of the minimum RMSE that tracks the BRLP 

estimates within the bandwidth size from = 10, 11, … , . We report in Figures 3 and 4 the results for 

ARFIMA(1, , 0), = 0, .1, .2, .3, .4 and ARFIMA(0, , 1), = 0, .1, .2, .3, .4 respectively with = .2, .4 and = 512, 2000. It can be seen that in both ARFIMA(1, , 0) and ARFIMA(0, , 1) processes, the proposed 
bandwidth produces the average RMSE’s that are closer to that of the minimum RMSE that examine  over 
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the bandwidth size from = 10, 11, … , . Figure 5 reports that the proposed method consistently suggests a 

bandwidth size that is closer to the one that gives the minimum RMSE in the Monte Carlo simulations, of which 
is preferred for the ARFIMA (1, , 0) processes, especially when ≥ .2. The plug-in MSE-optimum 

bandwidth (AG method) is rather insensitive towards ′  (and ′ ), and the bandwidths suggested are 
relatively small. Indeed, the average RMSE’s due to AG method in Figure 3 are for , as this method reports 

over  owing to the small bandwidth. In other words, the selection of estimator does not follow the choice 
of the one that minimizes the Monte Carlo RMSE. Interestingly, even in the case without long memory effect, 
the proposed method suggests the bandwidths that are closer to the one that gives the minimum RMSE in the 
Monte Carlo simulations, hence, giving the smaller average RMSE compared to the plug-in AG method (see 
Table 1). These results demonstrates that with the mild short-range component, the long-memory parameter 
should be estimated using a larger bandwidth size, which takes almost all signals except the noise.  

 

 
Figure 3. Average RMSE of the BRLP estimators with the plug-in MSE optimal bandwidth (AG) and the 
proposed bandwidth selection method compared to the minimum RMSE for ARFIMA(1, , 0) processes 

 

 
Figure 4. Average RMSE of  with the plug-in MSE optimal bandwidth (AG) and the proposed bandwidth 

selection method compared to the minimum RMSE for ARFIMA(0, , 1) processes 
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Figure 5. Average bandwidth size of various selection methods 

 
Table 1. Average RMSE and the bandwidth size used for ARFIMA(1,0,0),  = 2000 

 Minimum RMSE MSE-optimum (AG) Proposed bandwidth 
0 .0323 

(988) 
.061 
(348) 

.0361 
(822) 

.1 .037 
(851) 

.061 
(348) 

.0406 
(810) 

.2 .0434 
(958) 

.061 
(348) 

.0456 
(799) 

.3 .0488 
(798) 

.0633 
(347) 

.0477 
(788) 

.4 .0549 
(633) 

.0661 
(344) 

.0575 
(786) 

Note. Indicates the bandwidth size. 
 
5. Empirical Examples 

This section shows the application of the proposed bandwidth selection strategy to two real time series, namely 
the Nile river minimum water levels during years 622 through 1284 and the de-seasonalized volatility of the 
5-minute returns of Kuala Lumpur Composite Index (FBMKLCI) from 30th April 2013 to 31st December 2013. 
The first time series consists of 663 observations and it has been widely discussed in the long memory literature. 
The second series is an example of high-frequency data on returns of financial assets which spurs a large amount 
of research relating to modeling and predicting the realized volatility. Both series are displayed in Figures 6 and 
8. Based on the plots of the average modified periodogram, ACF and PACF in these figures, we can conclude 
that both the time series have long memory with a very weak short memory component. In each series, the long 
memory parameter is estimated using , and the performance of the proposed bandwidth is checked with that 
of the plug-in MSE-optimal bandwidth. The local bootstrap-based bandwidth is used as a means of 
substantiation.  

For the Nile River data, the procedure in Section 0 suggests an optimal bandwidth = 301 giving =
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.3785. The bandwidth estimate of the MSE-optimal choice is = 111 and the corresponding long memory 
parameter estimate is = .4578. Taking the idea of approximating the MSE by a bootstrap MSE, a bandwidth 
estimate using local bootstrap by Arteche & Orbe (2009) is referred. To focus around the bandwidth estimates of 
the proposed method and the MSE-optimal choice, the range of bandwidths considered for optimization is set at 100 320, and the resampling width is = 5. The optimum bandwidth in terms of MSE is = 306, 
leading to = .3795 with a bootstrap MSE of . 0027. The local bootstrap-based bandwidth is very close to 
the proposed bandwidth, suggesting that a larger bandwidth size gives a better long memory parameter estimate 
in terms of MSE. To further examine the performance of these procedures, each pair of estimates ,  is 
used to compute the spectral density in Eq.(1) following the approach of Delgado & Robinson (1996). The 
spectral density estimates are compared to the plot of periodogram shown in Figure 7. As the spectral density 
estimate due to the proposed bandwidth is closer to the periodogram, this procedure of bandwidth search for the 
BRLP estimator seems to provide the more plausible approximation.  

 
Figure 6. Characteristics of Nile River minimum water levels during years 622 through 1284 

 

 
Figure 7. Periodogram and spectral density estimates for Nile River minimum water levels 

 
The 5-minute price data of Kuala Lumpur Composite Index (FBMKLCI) from 30th April 2013 to 31st December 
2013 consists of = 12, 096 observations with 72 price indexes per day. The 5-minute returns are computed as 
the difference of the log prices, that is = ln( ) − ln( ) , = 2, … , , and the series of log-squared returns 
is taken as a proxy for the volatility of FBMKLCI. Following the spirit of Deo et al. (2006), the seasonality of 
the log-squared returns is expected to be periodic with a period of 72. The series of volatility is thus 
de-seasonalized, and the graphical analysis of the series is depicted in Figure 8. The results of the long memory 
parameter estimation corresponding to the bandwidth estimates due to the proposed method and the 
MSE-optimal choice are shown in Table 2. 
As the difference between the bandwidths suggested by the proposed method and the MSE-optimal choice is 
large, we may not be able to obtain a satisfactory local bootstrap-based bandwidth from the interval that spans 
between these numbers. The extended residuals in the local bootstrap procedure show a marked structure, and 
hence, a narrower search interval is deemed necessary. To examine the performance of the bandwidth choices, 
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we execute the local bootstrap twice, one targeting the search interval  ∈ [1300, 1800]and another one ∈ [4200, 4700], both using a resampling width = 5. The extended residuals of both cases showed stable 
behaviour (see Figure 9). Based on the bootstrap MSE in Table 2, it can be concluded that the proposed 
bandwidth suggests a more reasonable approximation, whilst the MSE-optimal choice bandwidth seems too low. 
The performance of these procedures are further gauged by their spectral density estimates, compared to the 
periodogram of the de-seasonalised volatility of FBMKLCI (see Figure 10). Similar to the Nile River data, the 
spectral density estimate with the proposed bandwidth is closer to the periodogram. These examples confirm that 
in a long memory time series with weak short memory component, the MSE-optimal choice of bandwidth may 
be too low. Alternatively, an adequate bandwidth for the BRLP estimator can be obtained by including all the 
Fourier frequencies except those of which the spectrums are low enough to be treated as noise. The proposed 
method of bandwidth selection clearly gives a better long memory parameter estimate in terms of MSE. 

 
Figure 8. Characteristics of the de-seasonalized volatility of the 5-minute returns of Kuala Lumpur Composite 

Index (FBMKLCI) from 30th April 2013 to 31st December 2013 
 

Table 2. Results for the bandwidth selection methods, the corresponding long memory parameter estimates and 
the validation via local bootstrap for the de-seasonalized volatility of FBMKLCI 
   Bootstrap MSE 
Proposed method 4668 .136 - 
MSE-optimal choice 1356 .2687 - 
Local bootstrap 4523(a) .177(a) 1.97 × 10-4 (a) 

 1672(b) .249(b) 4.26 × 10-4 (b) 

(a)  is searched from the interval [4200, 4700] with = 5. 
(b)  is searched from the interval [1300,1800] with = 5. 
 
(a)                                         (b) 

 

 

Figure 9. Extended residuals of the local bootstrap for the bandwidth search around the proposed bandwidth and 
the MSE-optimal bandwidth choice for the de-seasonalized volatility of FBMKLCI 
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Figure 10. Periodogram and spectral density estimates for the de-sesonalized volatility of the 5-minute returns of 

FBMKLCI 
 

6. Conclusion 
BRLP estimator  reduces the bias in , but its performance depends largely on the bandwidth size  
and the order . Working on the long-memory process with weak short-range component, this paper proposes to 
take as much the Fourier frequencies in the BRLP regression model, excluding the high frequencies that 
correspond to low spectrums that are associated with noise. The Monte Carlo simulation results confirmed the 
theoretical analyses, which suggest that for a mild short-range ARFIMA(1, , 0) with large sample size,  
using the proposed bandwidth gives a good estimate for the long-memory parameter, whereas for a mild 
short-range ARFIMA(0, , 1),  with the proposed bandwidth is preferred. The results are quite consistent 
throughout the degrees of long-memory and the sample sizes. The advantage of the proposed method for the 
bandwidth selection in the long memory series with very weak short memory component is demonstrated in the 
empirical examples, of which the proposed bandwidth performs better in terms of MSE, and it gives a closer 
estimate to the spectral density. It is believed that the accuracy in the long memory parameter estimation can 
greatly improve the analysis of economic time series as pertains to modeling and forecasting. 
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