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Abstract 
Load shedding is an important action during contingency situations in electrical power systems. This paper 
presents a new application of constriction factor particle swarm optimization (CPSO) technique for solving the 
steady state load shedding (SSLS) problem, due to capacity deficiency conditions caused by unscheduled 
outages in the bulk generation and transmission system. The problem is formulated to minimize the sum of 
curtailed load in contingency situations and restore the power system to its normal security and operation 
conditions. The feasibility of the proposed approach is demonstrated and compared with genetic algorithm (GA) 
in terms of solution quality and convergence properties over realistic test systems. 
Keywords: Load shedding, Optimization, Particle swarm 
1. Introduction 
The phenomenal growth in load demand both in developing and developed countries has emerged as a potential 
challenge to the power system planners and operators. Projections show that the growth in load demand is 
always going to be ahead of the growth in generation. The main objective of an electrical power system is to 
supply its customers with an acceptable level of reliability, quality, continuity, and economy requirements. 
Sudden increase in system load demand and unexpected outage of a generator or other equipments are the main 
sources to cause emergency case in an electric power system which operates near its operating margins. During 
an emergency situation, control actions such as load management, re-adjustment of transformer taps, 
re-forwarding of generators are held to alleviate the violation of system security constraints. But, when these 
procedures are not effective enough to return system to its normal operating conditions, load curtailment is 
inevitable.  
Various numerical optimization techniques have been proposed to solve load shedding problem. Specifically, 
there are Kuhn-Tucker method (L.P. Hajdu, J.Peschon, W.F.Tinney & D.S.Piercy. 1968), second-order gradient 
method (K.A.Palaniswamy & J.Sharma. 1979), linear programming (D.K.Subramanian. 1971)(S.M. Chan & E. 
Yip. 1979)(S.M. Chan and F.C. Schweppe. 1979)(M. Abdullah Khannand & K.Kuppuswamy. 1979), nonlinear 
optimization method (M.A.Mostafa, M.E.El-Hawary, G.A.Mbamalu, M.M. Mansour, K.M.El-Nagar & 
A.N.El-Arabaty. 1997), and artificial neural networks (Damir Novosel & Roger L.King. 1994). Among these 
methods, the linear programming method is one of the earliest and simplest approaches to address the load 
shedding problem. Due to nonlinear nature of power system problems, approximation is necessary for applying 
linear programming techniques which affect the accuracy of the solution. Nonlinear optimization techniques can 
be applied to any network configuration. If the problem is well-formulated these techniques can find the optimal 
solution accurately. However, for application in bulk power systems, they have been proved to be 
computationally very costly. 
Nowadays, stochastic search algorithms are used to solve the combinatorial optimization problems in power 
system. The genetic algorithm (GA) is an optimization and search technique based on the principles of genetics 
and natural selection (Randy L. Haupt & Sue Ellen Haupt. 2004) and is a well-established technique applied to 
the problem of load shedding problem (Wael M.AL-Hasawi & Khaled M.EL.Naggar. 2002)(Luan, W.P. Irving & 
M.R. Daniel, J.S. 2002). In(A A.R.Malekpour & A.R.Seifi. 2009) authors applied a GA optimization method for 
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load shedding in distribution networks with distributed generation units considering capacity deficiency 
modeling of bulked power supply. 
Particle swarm optimization (PSO), first introduced by Eberhart and Kennedy in 1995, is a form of stochastic 
search techniques in which the behavior of a biological social system is simulated. PSO has been compared to 
other stochastic methods and its shorter computation time and better convergence characteristic are addressed by 
many researchers (Kennedy J & Eberhart R. 1995)(Gaing ZL. 2003)(Yoshida H, Kawata K & Fukuyama Y.). It 
has been found that the PSO method quickly finds the high-quality optimal solution for many power system 
optimization problems (Amgad A. EL-Dib, Hosam K.M. Youssef, M.M. EL-Metwally & Z. Osman. 2006)(J. 
Olamaei, T. Niknam & G. Gharehpetian. 2008). 
In (Manoj Kumar, Maharana & Shanti Swarup K. 2009), a PSO based generation rescheduling and load 
shedding to alleviate overloads of transmission lines is presented. In (Rad, B.F & Abedi, M. 2008), a 
meta-heuristic discrete model for steady state load shedding (SSLS) is addressed. In a bulk power system 
distribution feeders which are connected to a transmission bus are treated as an equivalent load in transmission 
system. Therefore, discrete modeling of connected and disconnected loads by 1 and 0 cannot effectively simulate 
load shedding in power system with diverse commercial, residential and industrial feeders and continuous 
modeling is needed for accurate simulation. Besides, maintaining original power factor of each transmission load 
bus after load shedding should be considered as an operation and security constraint.  
Like other stochastic search methods, PSO may trap in a local minimum. If we do nothing to solve this tendency 
to converge quickly, we could end up in a local rather than a global minimum.  
To overcome the mentioned problems and increase the performance of PSO in solving SSLS problem, we 
propose a new approach of the continuous constriction factor particle swarm optimization (CPSO) technique 
with considering continuous modeling of power system load and the original power factor of each transmission 
load bus after load shedding. However, the new stochastic search method, CPSO, has not been applied to steady 
state load shedding problem yet. The problem is formulated to minimize the sum of curtailed load in contingency 
situations (Parsopoulos KE, Plagianakos VP, Magoulas GD & Vrahatis MN. 2001). The penalty function 
approach (PFA) (Levitin, G. Kalyuzhny, A. Shenkman, A & Chertkov, M. 2000) is also addressed to reduce the 
number of infeasible solutions that appear in the subsequent iterations. The method is tested on the 6 bus, 3 
generator case from Wood & Wollenberg (Allen. J. Wood & Bruce F. Wollenberg. 1996) and IEEE 14 bus system. 
The test results are compared with GA and accuracy, convergence and efficiency of the proposed method are 
validated. 
2. Problem Formulation 
SSLS problem can be formulated as an optimization problem with the following objective function and 
constraints: 
2.1 Objective function 
The objective function (OBF) of the load shedding problem is to minimize the sum of curtailed load during 
generation outage conditions. It can be expressed mathematically as: 
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Where αi and βi are the weight factors for curtailed active and reactive power load of the ith bus and Nbus is the 
number of buses in the transmission system. PdiΔ  and QdiΔ are the curtailed active and reactive power load of 
the ith transmission system. 
2.2 Constraints 
The constraints can be listed as follows: 

• Power flow balance equations: 
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giP and giQ are active and reactive power generations at the ith bus. 0diP and 0diQ are initial active and reactive 
power load of the ith bus. V’s andδ ’s, are system bus voltages magnitudes and phase angles. ijY and ijθ are bus 
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admittance matrix elements. 
• Maintaining the original load power factor: 

            To maintain the original load power factor diQΔ is selected as: 
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• Generators active and reactive power limits: 

max min              gigigi PPP ≤≤  i=1… GN  (5) 

max min              gigigi QQQ ≤≤  i=1… GN  (6) 

• Voltage range limits: 

maxmin
iii VVV ≤≤  i=1… busN  (7) 

• Line loading limits: 

εδδ ijji ≤−  ||  i=1… busN -1, j=1… busN  (8) 

Where δi and δj are the voltage angles at bus i and bus j, and εij is the maximum voltage phase angle difference 
between buses i and j. 
3. CPSO Algorithm 
The ingenious formulation of PSO by Eberhart and Kennedy in 1995 was an inspiration for the simulation of 
social behavior of animals, such as bird flocking or fish schooling in optimization problems. Like GA, PSO 
begins with generating an initial random population matrix of solutions. The population matrix is called swarm 
and each row of the matrix is assigned as particle. Unlike GA, PSO has no evolution operators such as crossover 
or mutation and naturally is a continuous algorithm. Although binary versions of PSO are introduced, there 
convergence is weak to find optimal solution and revisions are needed to demonstrate the concepts of PSO to 
discrete state space. As mentioned before, PSO starts with a random generation of swarm matrix. Next, it 
searches the optimal solution in the search space by updating the swarm generation. Due to the nature of the 
problem, in a multi dimensional search space, each particle is defined by Xid and Vid which are the position and 
velocity of ith particle in dth dimension.  
The PSO algorithm updates the velocity vector for each particle and then adds that velocity to the particle 
position or values. Velocity of a particle influenced by both the best local position associated with the lowest cost 
ever found by the particle ( pbest

id ) and the best global position associated with the lowest cost in the present 

population by other particles ( gbest
id ).Each particle updates its velocity and position based on its local position, 

the local best position and global best position. The best local position ( pbest
id ) is updated if a new best local 

solution with lower cost is found in the iterative process. Also, If the new best local solution has a cost less than 
the cost of the current global solution, then the best local position replaces the best global position. Therefore, 
the new velocity and position of particles can be determined as follows: 
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Where t is iteration number and constants c1, c2 are the weighting factors of the stochastic acceleration terms, 
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which pull each particle toward pbest
id  and gbest

id positions. c1, c2 are often set to 2.05 according to early 
experiences (Kennedy J & Eberhart R. 1995)(R. Eberhart. & Yuhui Shi. 2001) and rand1, rand2 are the random 
numbers selected between 0 and 1. Suitable selection of inertia weight, w, in (12) provides a balance between 
global and local explorations, thus, requiring less iteration on average to find a sufficiently optimal solution (Y. 
Shi. & R. Eberhart. 1998). As originally developed, w often decreases linearly from about 0.9 to 0.4 during the 
running process. In general, the inertia weight w is set according to the following equation: 

t
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In equation (12), tmax is the maximum number of iterations and t is current iteration number. Fig.1 depicts the 
basic idea of velocity and position updating in particle swarm optimizer graphically. In order to avoid divergence 
of the algorithm, the speed of each particle is limited as follows: 

vvv ididid
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Stopping criterion is defined if maximum iteration is achieved or maximum difference between best particle 
fitness function for specified number of generations is lower than a specified tolerance. 
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Where є is 10-5 and q is the specified number of generations. 
4. Application of CPSO in the Proposed SSLS 
In this section, the CPSO algorithm has been applied to the SSLS problem.  
4.1 Initialization 
Each particle of the swarm matrix is a real string indicates the amount of active power load shed from each 
transmission bus. The length of each particle is equal to the number of load buses in transmission system. 
Because each particle in the swarm matrix is a candidate solution, the initial swarm is generated randomly based 
on (15) to achieve a feasible solution.  
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Where initial
diPΔ  is the initial active power load shed from ith particle in dth load bus. The initial reactive power 

load shed from ith particle in dth load bus is also generated based on (4). 
The velocity of the particle indicates the change in the current position of the particle to its future position. Based 
on (13), the initial velocity of each particle is generated randomly. pbest

id  and gbest
id are initialized with the 

current position of ith particle and the network data including network configuration, line impedances are read.  
4.2 Fitness function calculation and constraint enforcement 
Equality constraints are satisfying by the convergence of optimal power flow and inequality constraints are 
enforced by using penalty function approach (PFA) as below (Levitin, G. Kalyuzhny, A. Shenkman, A & 
Chertkov, M. 2000): 
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Where ( )ixh is a penalty function of a variable ix  and min
ix  and max

ix are the lower and upper bounds of ix . 
Thus, equation (1) is changed to generalized multi objective functions as below: 
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Where )( ixht  is transmission system penalty factor.  
The fitness of each particle is calculated by (17) and the new and best position of each particle and best position 
of this generation is found. So pbest

id  and gbest
id are to be modified if better solutions have been explored. 
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4.3 Generating new population and particle movement 
Based on equations (9) to (13) the velocity and position of each particle is updated and each particle is moved 
toward its new position. The procedure of sections 4.2 and 4.3 is repeated until the stopping criterion is satisfied. 
The last gbest

id  is the solution of the problem. 
5. Results and Discussion 
In order to show the abilities of proposed algorithm, the 6 bus Wood & Wollenberg and IEEE 14 bus systems are 
studied. The optimization models are solved using well-known evolutionary method, GA, and CPSO. The 
parameters of lines and loads are presented in (M.A.Mostafa, M.E.El-Hawary, G.A.Mbamalu, M.M. Mansour, 
K.M.El-Nagar & A.N.El-Arabaty. 1997) and the CPSO algorithm parameters are c1 = c2 = 2.05, ωmin = 0.4 and 
ωmax = 0.9 and the number of particles are 20. The best solution determined by 50 times running of the algorithm. 
The contingency was simulated by disconnecting generator of bus 2 which leads to high unbalancing between 
power generated and load demand. To highlight the superiority of the proposed CPSO approach, simulation 
results have been compared with GA. Both algorithms use the same fitness function. The load shedding results 
are tabulated in Tables 1 and 2 for both test systems and both optimization methods. The total GA based load 
shedding is 26.9 MW (12.47%) for the 6 bus Wood & Wollenberg test system and 9.0305 MW (3.51%) for the 
IEEE 14 bus system while the total CPSO based load shedding is 26.0827 MW (12.42%) for the 6 bus Wood & 
Wollenberg test system and 2.8907 MW (1.12%) for the IEEE 14 bus system. It is clear that the CPSO method 
has the advantage of shedding fewer loads than GA in abnormal conditions for both systems. 
Tables 3, 4 and 5 show the comparison of the active and reactive power generations and system losses under 
mentioned contingency condition for the 6 bus Wood & Wollenberg test system and IEEE 14 bus system.  
Owing to the randomness in these methods, the algorithms are executed 50 times when applied to the test system. 
The best, worst and average objective functions found by these methods are tabulated in Table 6. These results 
show that the optimal SSLS solutions determined by the CPSO lead to load shedding less than that found by 
other methods, which confirms that the CPSO is well capable of determining the global or near-global optimum 
solution. Moreover, CPSO shows good consistency by keeping the difference between the best and worst 
solutions. 
Figures 2 and 3 show convergence characteristic of SSLS problem for the 6 bus Wood & Wollenberg test system 
and IEEE 14 bus system by GA and CPSO. As it can be seen, these methods have rapid convergence 
characteristic. However, because the GA brings premature convergence, its total operating cost is larger than 
PSO. The quality of the solution, the convergence speed and simulation results show that PSO outperforms GA. 
6. Conclusion 
In this paper, an attempt was made to solve nonlinear optimization problem of SSLS. The steady state load 
shedding problem was formulated and constriction factor particle swarm optimization (CPSO) technique was 
used to solve it. The proposed technique was tested using the 6 bus Wood & Wollenberg test system and IEEE 14 
bus system and compared with GA method. The simulation results obviously display a satisfactory performance 
by CPSO in comparison to GA, with respect to both the quality of its evolved solutions and the computational 
requirements. 
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Table 1. Load demand after SSLS by GA and CPSO in 6 bus Wood & Wollenberg test system 

Bus 
Original load demand 

Load demand after  
SSLS by GA 

Load demand after  
SSLS by CPSO 

MW Mvar MW Mvar MW Mvar 

1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 70 70 66.101 66.101 65.8791 65.8791 
5 70 70 62.661 62.661 63.1398 63.1398 
6 70 70 55.048 55.048 54.8984 54.8984 

 
Table 2. Load demand after SSLS by GA and CPSO in IEEE 14 bus system 

Bus 
Original load demand 

Load demand after  
SSLS by GA 

Load demand after  
SSLS by CPSO 

MW Mvar MW Mvar MW Mvar 

1 0 0 0 0 0 0 
2 21.7 12.7 21.162 12.385 21.7 12.7 
3 94.2 19.0 93.773 18.914 94.2 19 
4 47.8 -3.9 46.205 -3.7699 47.8 -3.9 
5 7.6 1.6 6.5127 1.3711 7.6 1.6 
6 11.2 7.5 10.513 7.0398 11.2 7.5 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 29.5 16.6 28.616 16.102 29.5 16.6 

10 9.0 5.8 8.0747 5.2037 6.8453 4.4114 
11 3.5 1.8 1.6405 0.84371 3.5 1.8 
12 6.1 1.6 5.4086 1.4187 6.1 1.6 
13 13.5 5.8 12.863 5.5265 10.964 4.7105 
14 13.1 8.5 13.401 4.4971 14.9 5 

 
Table 3. Power generation after SSLS by GA and CPSO in 6 bus Wood & Wollenberg test system 

Bus 
Original power generation 

Power generation  
after SSLS by GA 

Power generation after  
SSLS by CPSO 

MW Mvar MW Mvar MW Mvar 

1 107.9 16 92.089 52.92 91.86538 53.04982 
2 50 74.4 0 0 0 0 
3 60 89.6 98.413 99.987 98.75387 99.99909 
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Table 4. Power generation after SSLS by GA and CPSO in IEEE 14 bus system 

Bus 
Original power generation

Power generation after 
SSLS by GA 

Power generation after 
SSLS by CPSO 

MW Mvar MW Mvar MW Mvar 

1 194.3301 0 186.8132 10 186.8342 10 
2 36.7192 23.6854 0 0 0 0 
3 28.7429 24.1268 45.46868 30.89491 46.95906 31.51659 
6 0 11.5459 2.210085 6.713896 4.266875 7.363999 
8 8.4950 8.2730 20.82598 6.495298 23.39818 6.793911 

 
Table 5. System losses after SSLS by GA and CPSO in 6 bus Wood & Wollenberg test system and IEEE 14 bus 
systems 

Test system 
System losses after SSLS by GA System losses after SSLS by PSO

MW MW 

6 bus 6.692 6.7019 
14 bus 15.4605 16.9507 

 
Table 6. Best, worst and average objective functions for GA and CPSO methods  

Optimization 
Method 

objective functions for  
6 bus Wood & Wollenberg test system 

objective functions for  
IEEE 14 bus system 

Best Worst Average Best Worst Average

GA 585.24 771.34 695.0457 15.16 99.86 47.88059
CPSO 584.2069 728.54 660.8489 14.188 91.26 44.11444

 

 
 

Figure 1. Modified velocity of each particle regarding to the personal initial velocity, the distance from personal 
best position and the distance from global best position. 
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Figure 2. Convergence characteristic and solution quality of GA and CPSO method for 6 bus Wood & 

Wollenberg test system 

 
Figure 3. Convergence characteristic and solution quality of GA and CPSO method for IEEE 14 bus test system 

 
 
 
 
 
 
  


