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Abstract 
Using fixed point theorem through the method of structural compression mapping on set of bounded continuous 
function, this paper qualitative studies the existence of nonoscillatory solutions for a class of n-order neutral differential 
systems, and obtains some sufficient conditions of nonoscillation existence of solution for this class systems. 
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1. Introduction
Consider the existence of nonoscillatory solutions for n-order neutral differential systems 
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where n  is a positive integer and the followings are always satisfied: 
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2( )A 0( , ) [ , ) ,jf t y C t R R ,for enough big t ,when 0y , ( , ) 0jyf t y , ( 1,2 )j r  holds. 

3( )A  Function satisfies local Lipschitz condtion for y ,i.e. exists constant 0L  and 0 ,which 

agrees that  
1 2 1 2( , ) ( , )j jf t y f t y L y y  when 1 2,y y , ( 1,2 )j r .

The equation (1.1) solution is oscillatory, if it has arbitrary big zero; Otherwise, it is nonoscillatory.  

On the century 90's, it appeared many papers (Yan, Jurang. 1990.)( Wang, Zhibin. 1995.)( Wang, Lianwen. 1995.)( Li, 
Guanghua, Yu, Yuanhong, & Lin, ShiZhong. 1997)( Wang, Guangpei. 2000.)( Li, Hongfei, & Wang, Zhibin. 2000.) 
about oscillatory solutions for higher order neutral differential equation. These articles have given some solution 
oscillatory conditions. However, there have few researches for nonoscillatory solution. The most earliest research is 
discussed by Zhang Binggen in paper (Zhang , Binggen. 1996.) for the existence of  nonoscillatory solution                        
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Afterwards, Shen Jianhu, Yu Jianshe studies the more generaler equation than (1.2) in paper (Shen, Jianhua, & Yu, 
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Jianshe. 1996.): 

( )
1( ) ( ) ( ( ) ( , ( ( )), ( ( ))) 0n

mx t p t x t f t x t t x t t                         (1.3) 

This paper established the sufficient condition for bounded positive solution existence of equation (1.3)when neutral 
item ( ) 1p t  and ( ) 1P t p . In recent years, papers (Tang, Xianhua, & Yu, Jianshe. 2000.)( Liu, Kaiyu. 2000.) have 

considered the special situation of equation (1.3) 

( )( ) ( ) ( ) ( ) ( ) 0nx t p t x t Q t x t                                     (1.4) 

which established the sufficient condition of solution existence of equation (1.4) when neutral item ( )p t  has initial 

change among 1. 

This paper uses Banach  compression reflection principle, discusses nonoscillation existence of solution for the 
generaler equation than equation (1.1)of  papers (Zhang, Binggen. 1996.)( Shen, Jianhua, & Yu, Jianshe. 1996.)( Tang, 
Xianhua, & Yu, Jianshe. 2000.)( Liu, Kaiyu. 2000), and obtains the sufficient conditions of nonoscillation existence of 
solution for this class systems, whose conclusions are different from papers (Zhang, Binggen. 1996.)( Shen, Jianhua, & 
Yu, Jianshe. 1996.)( Tang, Xianhua, & Yu, Jianshe. 2000.)( Liu, Kaiyu. 2000). 
2. Conclusions and Proof 
Lemma 2.1: ( Banach  compression mapping principle) Supposes mapping :A  is a compression mapping in 
the complete distance space ( , ) , then A  must exist  only a fixed point x  satisfying Ax x .

Theorem 2.1: Suppose 
1( )A ,

2( )A ,
3( )A  hold, and exist positive constant c  and nonnegative number k  which 

satisfying
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,then the equation exists eventually positive solution ( )x t  and 0 ( ) ktx t ce .

Proof: From theorem, there are 
0T t  and 0 1 satisfying the following equation when t T
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Denote set 0( ) :[ , )BC x t t R is a bounded continuous function set in 
0[ , )t R ,and define 

0

sup ( )
t t

x t

in BC ,then BC  is a Banach  space. 

Denote 0( ) : 0 ( ) 1,Bx t C x t t t .

the following proof is that the set  is a bounded closed convex subset in 
BC .

It is obvious that  is boundary. 
For arbitrary ,x y ,since 0 ( ) (1 ) ( ) 1, [0,1]ax t a y t a ,  is a convex set. 

If nx  and 0lim 0xxnn
, when n ,we have 

0 0 0 1 1n n nx x x x x x ,
0 0 00 n nx x x x x

Hence, 0x . From the above,  is a bounded closed convex subset in 
BC .

Define mapping in 
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where , ,c k satisfy inequality 0 ktce .

The following will prove that mapping A is self and compressive .  
(1)For arbitrary )(tx  and Tt , from (2.2)and (2.3), we have  

       
( )

1

( )1

1

( )( ) ( ) ( ( ))

( ) ( ) ( , ( ( )))
( 1)!

i

j

l
k t

i i
i

kt r
k sn

j j jt
j

Ax t p t e x t t

e s t Q s f s ce x s ds
c n

         

    

( )( ) 1

1 1
( ) ( ) ( )

( 1)!

1.

ji

ktl r
k sk t n

i jt
i j

Lep t e s t Q s e ds
n

                              (2.4) 

When Ttt0 ,we have 

( )( ) 1 ( )( ) 1t tAx t Ax T
T T

.                                                 (2.5) 

The above indicates ( )A ,i.e. A is a self mapping in  .

(2)Without loss generality, suppose 
1 2( ), ( )x t x t ,and when t T , from equation(2.3), we have 
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When Ttt0 ,we have 
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The above indicates that ))(( tAx  is a compressive mapping. Therefore it exists fixed point ( )x t  satisfying 
( )( ) ( )Ax t x t , namely  
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Taking ( ) ( ) ktx t cx t e 0( )t t , from (2.8) we have  
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Derivate equation (2.9) n  times, equation (1.1) is gotten. So ( ) ( ) ktx t cx t e  is the eventually positive solution of 
equation(1.1)and 0 ( ) ktx t ce . The proof is completed. 

Corollary 2.1: If conditions 
1( )A ,

2( )A ,
3( )A  are satisfied  and inequalities 
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hold,then the equation(1.1)exists eventually positive solution. 
Proof: From(2.10),(2.11), we have 
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Then when  K=0, we have 
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From theorem 2.1, it is obtained that the equation(1.1)exists eventually positive solution. 

Corollary 2.2 When conditions 
1( )A ,

2( )A ,
3( )A  hold ,if positive constants iiipk ,,,  satisfy ( ) , ( )i j jp t p Q t Q ,
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hold,then equation(1.1)exists eventually positive solution. 
Proof  From condition (2.14)in Corollary 2.1,  
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Then equation (1.1) exists eventually positive solution by theorem  2.1. 
In equation(1.1),when ( , ( ( ))) ( ( ))j j jf t x t x t ,equation 
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is gotten. 

Corollary 2.3  When condition 
1( )A  is satisfied, and if there exists constant 0k , the inequality 
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holds,then equation(2.15)exists eventually positive solution. 

Example: Suppose 0k  and 
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Solution: Since 
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Which indicates this equation has eventually positive solutions. 
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