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Abstract

The basic structure of 5xn -step network was studied by matrix transform method. Thus, the resistances of both
the infinite and finite network were obtained. In addition, the resistances of the finite 5xn -laddered network
were measured experimentally by NI Multisim 10 when n equals to positive integer such as one,two,three ... ,and
so on. It is found that the measured values of the equivalent resistances of finite Sxn-laddered networks are
consistent with the calculated ones.
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1. Introduction

Equivalent Resistance of nxn-laddered network is a general problem in introductory physics. With the
development of communication technology, network technologies have become more and more important in
many fields such as resistance network and self-control systems. Lots of actual network technological problems
can also be simulated by resistance network. This stimulates the research of network’s resistance. Up to now,
studies have been devoted to the equivalent resistance of different resistance networks,'” but those results have
no experimental foundations. Unfortunately, some results are even wrong.® Therefore, it is necessary to develop
an effective method (matrix transform) to calculate the equivalent resistance of resistance network.

Matrix transform is commonly used in mathematics and theoretical physics, especially in quantum physics.
However, students trained in the algebra-based physics course are used to matrix transform only in linear
equations, but not in mechanics,electromagnetism,and difference equations. In this paper, we will construct
difference equations of closed circuits and find relation of matrix transform and difference equations to calculate
the equivalent resistance of 5xn-laddered network. Furthermore, we measured its resistance by using NI
Multisim 10 simulation software. Agreement is achieved between the measured values and the theoretical ones.

2. The Differential Equation Model on Current
2.1 The development of the differential equation on current

Figure 1 is a schematic diagram of 5xn-laddered resistance network (n—). The equivalent resistance of
between a and f nodes was assumed tobe R, .

Suppose each resistor has the same value r. The direction of the steady current is from nodes f to a as shown in
Fig 1. Each branch current and its flowing direction were marked in Fig. 2, which is a part of 5xn-laddered
resistance network (hereafter denoted as 5xn-laddered resistance sub-networks). Assume the currents of the
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horizontal resistances in the second rank are [, , 1,1 4,1, .1, ,and ] ; (1<k<n) respectively as shown Fig.
2. Accordingly, the currents of the vertical resistance are [, , [ k Vi k Vi k ,and [ k respectively.

Kirchhoff’s current law '° is used for the all nodes in the second rank. Differential current equations were
obtained as follows:

Ly-1 =1, (1)
I-1.=1,-1, 2)
I/L‘I;:Ick‘lck—l (3)
I-1.=1, -1, (4)
LI =1,-1, )

In terms of the symmetry, we obtain the following equations
Iak:Ifk;Ibkzlek;[ck:]dk;lkzlk;Ik:Ik (6)

Trace all the meshes in the (k-1)-th rank and apply Kirchhoff’s voltage law (KVL)."

Lo+l -1, -1, =0 @)
Lot dy o0y -1 =0 (®)
Lot d e+ Ly 1 r=0 ©)
In the same manner, trace the all meshes in the k-th rank and apply KVL.

I+l -1, 1-1,, =0 (10)
I,r+1 -1, -1 1=0 an
[ckr+[,:+lr+ldkr-],:r=0 (12)

Eq. (9) subtracted from Eq. (12) gives

L L P+ L g = Ly )= 1)=0

Considering 1,=1, .1, =1, ,weget

2 gLy Y T+ 1, =0 (13)
Substituting Eq. (3) into Eq. (13) yields

20 - I+ Ly + 1, =0 (14)
Eq. (14) is simplified as this

L+ I =412, (15)
Eq. (11) subtracted from Eq. (8) gives,

Ihk+[I;+1'Ick'lllc'lllc'Ibk—l+1ck—1+lllc—1=0 (16)
Substituting Eqs. (2),(3) into Eq. (16) produces

Loy-1+1,-1-1,+1, -1,+1,=0 (17)
Eq. (17) can further be simplified as

Lt L =40 -1 (18)
And then Eq. (10) subtracted from Eq. (7) gives,
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Lyrdyg- ALy - LAy + L+ 4y =0 (19)
Similarly, substituting Egs. (1), (2) into Eq. (19) yields
Ik+1+1k—1:4lk'11'c (20)
Eqgs. (15), (18), and (20) can be written in matrix form, therefore we get
L 4 -1 0 Iy Iy
Lo,|=|-1 4 =1||I |-|I 1)
11:+1 0 -2 4 11: [/:71

Eq. (21) is differential equation model of current parameters. We provide a new method to solve such problems
by using matrix transform method and constructing new differential equations model.

Multiply both sides of the matrix (21) by three order undetermined matrix on the left, we have

A A, L] T4 4, 174 -1 o ][4 T[4 4, 171

A A VL, |=|l4 A 1||-1 4  —=1||I, |-|4 A 1||I, (22)
P A L1 VA B N T | [ R IS DR B R P |

Assuming the existence of constants #,, ,, ¢, and let the following matrix equation be correct.

A A4, 1[4 -1 074 0 01[4 4,1

A, A 1[|-1 4 —1]=l0 ¢, 0|4, A4 1 23)
A A 1o =2 4100 &[4 4 1

Expand the matrix (23) and simplify, we achieve

40, -1, =t 4, 42, — A5 =t,4, 40, — Ay =, 4,
-4 —44,-2=t1, —A, =44, 2=, -4, -4l -2=t4
-4, +4=t - A +4=t, A +4=t,

The solutions of the above equations are

A=1, A,=1, A=1, (24)
=3, A= =3, A,=43, (25)
t=4-3, 6,=0+3,  1,=4-3 (26)
Substitute Eqgs. (23), (24), (25), and (24) into Eq. (16), hence the matrix equation can be written as

L N3l Ly 7 T80 0| L+VBL+1, 7 | Ly w31, + 1

LB+, =106, 0 |1, —\BL+1 |-| 1, —~3I,+1I,, 27)

L,+BL+L, 1100 6]\ 1 +BL+1 | |1, +\BI +1,
Let I, +~/31, + I, =x, , Simplify the matrix (23), we hold

Xy =4LX, — X, (28)

where 7, is the known constant, based on the definition of differential equation, Eq. (28) is obviously second

order linear differential equation with fixed coefficients. Let x, = xk, substituting it into Eq. (28) yields the

following characteristic equation
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x*=tx—1 (29)
Note that for /[, — \/51 k + 1 k =Y, » and simplify the matrix (27), we get

Virh =LY = Vi (30

Lety, = yk , substitute it into Eq. (30), we also obtain the following characteristic equation.

y =t,y-1 31)
Similarly, we have
2 =tz-1 (32)

Therefore, the characteristic equation of differential equation is

2

T 0 0][x] 1
=10 £, 0]|y|-|1 (33)
21100 «|lz] |1

Suppose the roots of the equation with respect to x are @ and [3, the roots of the equation with respect to y

are y and O, and those of the equation with respect to z are M and V, the solutions of characteristic Eq.
(33) are as follows:

a %(4—\/§+\/15—8\/§)
_ (34)
1
B 5(4—\/_—\/15—&/5)
7] %(4+\/§+\/15+8\/§)
- (35)
5 %(4+x/_—\/15+8\/§)
] %(4—\@“/15—8\/5)
_ (36)
1
v 5(4—\/_—\/15—8\/5)
Due to X, =LX — X, and a+f=4- V3= t, a-pf=1 hence
Yo =(@+P)x, —a-p-x,, (37
Rewriting X, ,, expression and transposing yields
X —0x, = f(x, —a-x,)= B (x, —ax)
X = Pr, =a(x, = f-x.)=a"" (x, - fx)) (3%)
From the matrix equation we obviously see that ¢ # 3, and then subtracting Eq. (38) from Eq. (37) gives
1 _ _
X, = [y = frp)a™™ = (x, —ax)) ] (39)

-B

In the same manner, we get
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1 _ _
yk:7/_—5[(y2_éj’1)7kl_(yz_Wl)gkl] (40)
1 _ _
2 = _V[(Zz vz = (z, = gz )] (41)
Eqgs. (39), (40), and (41) can be written in matrix form
- T 1 B ) ]
Xk [(xz_ﬂxl)akl_(xz_axl)ﬁkl]
a-p
1 _ _
Y |T —[(yz_é.‘)ﬁ)?/kl_(yz_%‘ﬁ)é‘kl] (42)
y—=0
1 _ _
Zy [(Zz_VZ1),uk 1_(22_/JZ1)Vk 1]
L -y |

where x, =1, +\/§I,; +[,';, Ve =1, —\/gll; +[,: .z =1, +\/§],:T +],Z (k=1, 2, 3,...). Characteristic
equation (42) gives the current properties of vertical resistance r in any sub-network.
2.2 The Properties of Boundary Current

When the current flows toward node a and flows away from node b in Fig.1, applying the current continuity
equation, we have

n+l n+l n+l

SI=1, YI=1, I =I (43)
i=1 i=1 i=l1

If we consider Eq. (43), summation of Eq. (42) (k=1,2,3, ... n+1) gives
l_an+1 l ﬁn+l

(x, = fx,)—————(x, —ox,) ———= (@~ H)1+3 + )] (44)
l-«a 1-p
1_}/n+1 1_5n+1

(yz—@l)l——m—m)—:(y—a)(l—ﬁ +1)1 (45)
4 1-0

(z, _Wl)i_(zz _qul)ﬂ = (ﬂ_V)(1+\/§+1)I (46)
l—p I-v

Up to now, we obtain differential equations model of current parameters under boundary conditions by analyzing
5xn-laddered resistance network. Based on Kirchhoff’s current law and mesh analysis, '' we also find the
following formula from Fig. 3,

l,=1-1, (47)
I,=1 -1, (48)
Ly=1-1 (49)
Due to the symmetry, we have

l,=1, (50)
Applying Kirchhoff’s voltage law to the first loop produces

Lyr+1,r—1,r—1,r=0 (51)
Lr+1,r—1,r—Ir=0 (52)
Lr+1,r—1Ir+1,r=0 (53)
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Substitute Egs. (47), (48), (49), and (50) into Egs. (51), (52), and (53), and then simplify them, we obtain
I,=31-1-1, , I,=31,-1,-1, , 1,=31 -2I, (54)

Eq. (54) can be written in matrix form,consequently the differential equations model of 5xn-laddered resistance
network under boundary conditions are obtained.

L 13 -1 0[] 1
L=|-1 3 —=1||I,|-]0 (55)
]; 0 -2 3 [1" 0

ForEq.x,=1, + \EI 2 +1 2 , substitute Eq. (54) into it and simplify, we achieve

x,=(3=B)UI, +~BI +1,)-1 (56)

In the same manner for x,=1/, + \/gll + [1”, and o+ f=4- \/g, Eq. (56) can be expressed as

X,=(a+p-Dx, -1 (57)
Similarly, we have

Yo=(r+o-Dy —1 (58)
Z,=(u+v-1)z, -1 (59)

Egs. (57), (58), (59) can be written in matrix form
X, (a+p-Dx -1
Yy |=| o=y 1 (60)
z, (u+v-z -1

Substitute Eq. (60) into Egs. (44), (45), (46), and simplify them, we get

] |aeEena-—2 2y
an+ _ﬂH+
)/}'l _5"
»|= (1_\/§+1)(1_ﬁ)1 (61)
" =0
2| a1
SN precrl

where x,=1, + \/gll + [1” ., =1, - \/gll + ]1" , z=1, + \/gll + [1“ , therefore, these matrix equations give
the current properties of 5xn-laddered resistance network under boundary conditions.

2.3 General Properties of the Equivalent Resistance
2.3.1 The equivalent resistance R (7) in finite network

From the above discussion, we obtained
I +\30 + 1 =x,,1, =31 +I'=y,. 1, + 31 + I =z,
These formulas give the relationship of between/,, [/ 1 ,and [ 1 . Therefore we easily solve 7,1 1 i 1 with

respectto X;,y,,and Z,.

, 1 1 |
I =——=(x,—y); I, =—7——0,+y,); I,+1, =—(x, +y,)
1 2\/5 1 1 1 \/§+1 1 1 1 1 2 1 1
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Substitute /,,1, and I, +1, into (21, +21,+1)) yields

21, +21 +1, =
3V3+15+245+2 a"-p" 3V3+4/15-24J5-2
= -~ —/
R s e v 7oy e R
__r=e"
(1 n+1 5n+1)]

_ 8\/§+4\/E+7\/§+13 12 =B, 83 +4/15-7/5-13 AL
2(15+4/3) o' - p 2(15 +4/3) -
From Fig. 3, we have

U, =21+ 21, +1))r

M (62)

Applying Ohm’s law yields
R, =U,/1=rQ2+2I,+1))/1
Therefore, we find

Ry(n)  8J3+4V15  8J3+4/15+745+13 =B 8V3+4415-745-13
r V15 +4/3 2(W15 +4/3) a™ - g 2(W15 +4/3)

n 5"
(,m—bw) (63)

2.3.2 The equivalent resistance R, +(°°) in infinite network

As n tends to infinity, Fig. 1 becomes a 5xn-laddered resistance network. From Egs. (29), (30), and (31), we
casily obtain that

“ f(4 V3 4415- 8\/_) ;(4+\/§+\/15+8\/§)

0<—= 1 ,0<

7
p 7(4 M3 +4/15-83 ) o ;(4+\/§+\/15+8\/§)

Consequently, we have

>

lim( ﬂ) =0, hm(—) = (64)

n—>0 n—oo

Eq. (63) is taken limit, and then applying the formula (64) gives

Raf-(w)=8ﬁ+4JE_8J§+4JE+7J§+13ﬁ_8\/§+4\/ﬁ—7\/§—135
r VI5+43 2(15 +4/3) 2(15 +43)

where ﬂ=%(4—\/§—\/15—8x/§),5=%(4+\/§—\/15+8\/§).

Eq. (65) is a general expression which denotes the equivalent resistance Raf of 5xn-laddered resistance network

(65)

between nodes a and f, and Raf has a limited value in this case.

2.3.3 Measurements of Raf (n) by Simulation Experiments

The equivalent resistance Raf of 5xn-laddered resistance network is measured by NI Multisim 10 when n is a
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series of positive integer. In the meantime,the equivalent resistance Raf of 5xn-laddered resistance network is

calculated from Eq. (63). The relationship curves of the equivalent resistance Ra/- versus n are plotted in Fig. 4. It

is found that agreement is achieved between the experimental values and the theoretical ones. These results
indicate that the equivalent resistances of nxn-laddered resistance network were not only calculated by matrix
transform and but also the calculated results are reliable.

4. Conclusion

R"f(oo) and Ry (m) for 5xn-laddered resistance network in infinite and finite networks are
r r

achieved by the matrix transform method to solve a set of differential equations. In addition, the equivalent

General formula

resistance Raf of 5xn-laddered resistance network is calculated from Eq. (63). Moreover,the equivalent
resistance Raf is measured by NI Multisim 10 when n is a series of positive integer. The result exhibits that the

theoretical values are consistent with the experimental ones for the equivalent resistance Raf of 5xn-laddered

resistance network. This study also reveals that the matrix transform method may be extended to calculate the
equivalent resistances of nxn-step resistance network.
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Iak—_g._ _ 'Zak—l Ia?c _I_a!c+1
Vi
7 k-1 Tt 7
k-2, — —Lhk+1
F ]k—l ]k+l i
ck—__2-____ _ _ZLer+l
]-" Iu
k-1 k+1
]a‘k—_%__ __Ja‘k+1
7 ]k—l [k+l 7
ek—_% _ e ek+1
k-1 k+1
]}?6—2 - __ ___]ﬁf+1

Figure 2. Schematic diagram of 5xn-laddered resistance sub-networks
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Figure 3. Current parameters of the network under boundary conditions
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Figure 4. The relationship curves of the equivalent resistance Raf and n of 5xn-laddered resistance network
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