
www.ccsenet.org/mas                       Modern Applied Science                    Vol. 4, No. 7; July 2010 

Published by Canadian Center of Science and Education 89

Equivalent Resistance of 5×n-laddered Network 
Xingpeng Yang, Xingcheng Dong, Zhongyong Chen & Yingkai Liu (Corresponding author) 

Department of Physics, Yunnan Normal University 
 298 One two one street, Kunming 650092, Yunnan Province, China  

& 
Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong 

Tat Chee Avenue, Knowloon, Hong Kong 
Tel: 86-138-8863-4539    E-mail: ykliu@cityu.edu.hk 

 
Zhang Xiong  (Corresponding author) 

Department of Physics, Yunnan Normal University 
298 One two one street, Kunming 650092, Yunnan Province, China 

Tel: 86-871-551-6057   E-mail: ynzx@yeah.net 
 
This work is supported in part by National Science Foundation of China through Grant (10764005), Natural 
Science Foundation of Yunnan Province (06A0025Q, 2007PY01-41), and from the Excellent Talent Supporting 
Project in the New Century of Chinese Education Ministry(NCET-08-0926). 
 
Abstract 
The basic structure of 5×n -step network was studied by matrix transform method. Thus, the resistances of both 
the infinite and finite network were obtained. In addition, the resistances of the finite 5×n -laddered network 
were measured experimentally by NI Multisim 10 when n equals to positive integer such as one,two,three ... ,and 
so on. It is found that the measured values of the equivalent resistances of finite 5×n-laddered networks are 
consistent with the calculated ones.  
Keywords: Equivalent Resistance, 5×n-laddered Network, NI Multisim 10, Kirchhoff’s current law 
1. Introduction 
Equivalent Resistance of n×n-laddered network is a general problem in introductory physics. With the 
development of communication technology, network technologies have become more and more important in 
many fields such as resistance network and self-control systems. Lots of actual network technological problems 
can also be simulated by resistance network. This stimulates the research of network’s resistance. Up to now, 
studies have been devoted to the equivalent resistance of different resistance networks,1-9 but those results have 
no experimental foundations. Unfortunately, some results are even wrong.3 Therefore, it is necessary to develop 
an effective method (matrix transform) to calculate the equivalent resistance of resistance network. 
Matrix transform is commonly used in mathematics and theoretical physics, especially in quantum physics. 
However, students trained in the algebra-based physics course are used to matrix transform only in linear 
equations, but not in mechanics,electromagnetism,and difference equations. In this paper, we will construct 
difference equations of closed circuits and find relation of matrix transform and difference equations to calculate 
the equivalent resistance of 5×n-laddered network. Furthermore, we measured its resistance by using NI 
Multisim 10 simulation software. Agreement is achieved between the measured values and the theoretical ones.  
2. The Differential Equation Model on Current 
2.1 The development of the differential equation on current  
Figure 1 is a schematic diagram of 5×n-laddered resistance network (n→∞). The equivalent resistance of 
between a and f nodes was assumed to be afR . 
Suppose each resistor has the same value r. The direction of the steady current is from nodes f to a as shown in 
Fig 1. Each branch current and its flowing direction were marked in Fig. 2, which is a part of 5×n-laddered 
resistance network (hereafter denoted as 5×n-laddered resistance sub-networks). Assume the currents of the 
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horizontal resistances in the second rank are akI , bkI , ckI , dkI , ekI , and fkI (1≤k≤n) respectively as shown Fig. 

2. Accordingly, the currents of the vertical resistance are kI , '
kI , ''

kI , '''
kI , and ''''

kI  respectively. 

Kirchhoff’s current law 10 is used for the all nodes in the second rank. Differential current equations were 
obtained as follows: 

akI - 1−akI =- kI                                                      (1) 

kI - '
kI = bkI - 1−bkI                                                  (2) 

'
kI - ''

kI = ckI - 1−ckI                                                    (3) 

''
kI - '''

kI = 1−dkI - dkI                                                   (4) 

'''
kI - ''''

kI = 1−ekI - ekI                                                   (5) 

In terms of the symmetry, we obtain the following equations 

akI = fkI ; bkI = ekI ; ckI = dkI ; kI = ''''
kI ; '

kI = '''
kI                           (6) 

Trace all the meshes in the (k-1)-th rank and apply Kirchhoff’s voltage law (KVL).10 

kI r+ 1−akI r- 1−kI r- 1−bkI r=0                                           (7) 

'
kI r+ 1−bkI r- 1−ckI r- '

1−kI r=0                                           (8) 

''
kI r+ 1−ckI r+ 1−dkI r- ''

1−kI r=0                                          (9) 

In the same manner, trace the all meshes in the k-th rank and apply KVL. 

akI r+ 1+kI r- kI r- bkI r=0                                             (10) 

bkI r+ '
1+kI r- ckI r- '

kI r=0                                             (11) 

ckI r+ ''
1+kI r+ dkI r- ''

kI r=0                                            (12) 

Eq. (9) subtracted from Eq. (12) gives 

( ckI - 1−ckI )+( ''
1+kI + ''

1−kI )+( dkI - 1−dkI )-( ''
kI - ''

kI )=0  

Considering ckI = dkI , 1−ckI = 1−dkI , we get 

2( ckI - 1−ckI )+ ''
1+kI + ''

1−kI =0                                          (13) 

Substituting Eq. (3) into Eq. (13) yields 

2( '
kI - ''

kI )+ ''
1+kI + ''

1−kI =0                                            (14) 

Eq. (14) is simplified as this 
''

1+kI + ''
1−kI =4 ''

kI -2 '
kI                                                 (15) 

Eq. (11) subtracted from Eq. (8) gives, 

bkI + '
1+kI - ckI - '

kI - '
kI - 1−bkI + 1−ckI + '

1−kI =0                              (16) 

Substituting Eqs. (2),(3) into Eq. (16) produces 
'

1+kI - '
kI + kI - '

kI - '
kI + '

1−kI - '
kI + ''

kI =0                                   (17) 

Eq. (17) can further be simplified as 
'

1+kI + '
1−kI =4 '

kI - kI - ''
kI                                              (18) 

And then Eq. (10) subtracted from Eq. (7) gives, 
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akI + 1+kI - kI - bkI - kI - 1−akI + 1−kI + 1−bkI =0                              (19) 

Similarly, substituting Eqs. (1), (2) into Eq. (19) yields 

1+kI + 1−kI =4 kI - '
kI                                                (20) 

Eqs. (15), (18), and (20) can be written in matrix form, therefore we get 
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                            (21)  

Eq. (21) is differential equation model of current parameters. We provide a new method to solve such problems 
by using matrix transform method and constructing new differential equations model. 
Multiply both sides of the matrix (21) by three order undetermined matrix on the left, we have 
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Assuming the existence of constants 1t , 2t , 3t , and let the following matrix equation be correct. 
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Expand the matrix (23) and simplify, we achieve 
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The solutions of the above equations are 

1λ = 1,       2λ = 1,        3λ = 1,                                (24) 

4λ = 3 ,     5λ = 3− ,    6λ = 3 ,                               (25) 

1t = 34 − ,   2t =4+ 3 ,     3t = 34 −                               (26) 

Substitute Eqs. (23), (24), (25), and (24) into Eq. (16), hence the matrix equation can be written as 
' ''
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         (27)            

Let '''3 kkk III ++ = kx , Simplify the matrix (23), we hold 

  111 −+ −= kkk xxtx                                                     (28) 

where 1t  is the known constant, based on the definition of differential equation, Eq. (28) is obviously second 

order linear differential equation with fixed coefficients. Let k
k xx = , substituting it into Eq. (28) yields the 

following characteristic equation  
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=2x 11 −xt                                                             (29) 

Note that for '''3 kkk III +− = ky , and simplify the matrix (27), we get 

121 −+ −= kkk yyty                                                     (30) 

Let ,k
k yy =  substitute it into Eq. (30), we also obtain the following characteristic equation. 

  =2y 12 −yt                                                           (31) 

Similarly, we have 

=2z 13 −zt                                                             (32) 

Therefore, the characteristic equation of differential equation is 
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Suppose the roots of the equation with respect to x are α  and β , the roots of the equation with respect to y 
are γ  and δ , and those of the equation with respect to z are μ  and ν , the solutions of characteristic Eq. 
(33) are as follows: 
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Due to ,111 −+ −= kkk xxtx  and ,34 1t=−=+ βα 1=⋅ βα ,  hence 

11 )( −+ ⋅⋅−+= kkk xxx βαβα                                            (37) 

Rewriting 1kx +  expression and transposing yields 

)()( 12
1

11 xxxxxx k
kkkk αβαβα −=⋅−=− −
−+                     

)()( 12
1

11 xxxxxx k
kkkk βαβαβ −=⋅−=− −
−+                         (38) 

From the matrix equation we obviously see that α ≠ β , and then subtracting Eq. (38) from Eq. (37) gives 

=kx ])()[(1 1
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1
12

−− −−−
−

kk xxxx βααβ
βα

                              (39) 

In the same manner, we get 
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Eqs. (39), (40), and (41) can be written in matrix form 
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                             (42) 

where kx = '''3 kkk III ++ , ky  = '''3 kkk III +− , kz = '''3 kkk III ++  ( k =1, 2, 3,…). Characteristic 
equation (42) gives the current properties of vertical resistance r in any sub-network. 
2.2 The Properties of Boundary Current 
When the current flows toward node a and flows away from node b in Fig.1, applying the current continuity 
equation, we have  
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If we consider Eq. (43), summation of Eq. (42) ( k =1, 2, 3, … 1n+ ) gives 
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Up to now, we obtain differential equations model of current parameters under boundary conditions by analyzing 
5×n-laddered resistance network. Based on Kirchhoff’s current law and mesh analysis, 11 we also find the 
following formula from Fig. 3, 

11 III a −=                                                          (47) 

'
111 IIIb −=                                                         (48) 

''
1

'
11 III c −=                                                         (49) 

Due to the symmetry, we have 

11 dc II =                                                             (50) 

Applying Kirchhoff’s voltage law to the first loop produces 

01112 =−−+ rIrIrIrI ba                                               (51) 

0'
111

'
2 =−−+ rIrIrIrI cb                                             (52) 

01
''

11
''

2 =+−+ rIrIrIrI dc                                               (53) 
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Substitute Eqs. (47), (48), (49), and (50) into Eqs. (51), (52), and (53), and then simplify them, we obtain 
'
112 3 IIII −−=  ,  1
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1

'
1

'
2 3 IIII −−=  ,   '

1
''

1
''

2 23 III −=                     (54) 

Eq. (54) can be written in matrix form,consequently the differential equations model of 5×n-laddered resistance 
network under boundary conditions are obtained. 
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For Eq. 2x = ''
2

'
22 3 III ++ , substitute Eq. (54) into it and simplify, we achieve 
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In the same manner for 1x = ''
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11 3 III ++ , and βα + = 4- 3 , Eq. (56) can be expressed as 
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Similarly, we have 
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Eqs. (57), (58), (59) can be written in matrix form 
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Substitute Eq. (60) into Eqs. (44), (45), (46), and simplify them, we get 
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where 1x = ''
1

'
11 3 III ++ , 1y = ''

1
'
11 3 III +− , 1z = ''

1
'
11 3 III ++ , therefore, these matrix equations give 

the current properties of 5×n-laddered resistance network under boundary conditions. 
2.3 General Properties of the Equivalent Resistance 

2.3.1 The equivalent resistance f ( )aR n  in finite network 

From the above discussion, we obtained  
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Substitute '
1I , 1I and ''

1 1I I+  into ' ''
1 1 12 2I I I+ +（ ） yields 
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 (62)          

From Fig. 3, we have  
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Applying Ohm’s law yields 
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Therefore, we find 
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                                               (63) 

2.3.2 The equivalent resistance afR (∞) in infinite network 

As n tends to infinity, Fig. 1 becomes a 5×n-laddered resistance network. From Eqs. (29), (30), and (31), we 
easily obtain that 

=<
β
α0 1

)381534(
2
1
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2
1

<
−+−

−+−
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2
1
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2
1

+++

+++
<1 , 

Consequently, we have 

           0)(lim =
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n

n β
α

, 0)(lim =
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n

n δ
γ

                                  (64) 

Eq. (63) is taken limit, and then applying the formula (64) gives 

=
∞

r
Raf )(

315
15438

+
+

)315(2
135715438

+
+++

− β
)315(2
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+
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− δ        (65) 

where β = )381534(
2
1

−−− ,δ = )381534(
2
1

+−+ . 

Eq. (65) is a general expression which denotes the equivalent resistance afR  of 5×n-laddered resistance network 

between nodes a and f, and afR  has a limited value in this case.  

2.3.3 Measurements of afR (n) by Simulation Experiments 

The equivalent resistance afR of 5×n-laddered resistance network is measured by NI Multisim 10 when n is a 
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series of positive integer. In the meantime,the equivalent resistance afR of 5×n-laddered resistance network is 

calculated from Eq. (63). The relationship curves of the equivalent resistance afR versus n are plotted in Fig. 4. It 
is found that agreement is achieved between the experimental values and the theoretical ones. These results 
indicate that the equivalent resistances of n×n-laddered resistance network were not only calculated by matrix 
transform and but also the calculated results are reliable.  
4. Conclusion 

General formula ( )afR
r
∞ and ( )afR n

r
for 5×n-laddered resistance network in infinite and finite networks are 

achieved by the matrix transform method to solve a set of differential equations. In addition, the equivalent 
resistance afR of 5×n-laddered resistance network is calculated from Eq. (63). Moreover,the equivalent 

resistance afR  is measured by NI Multisim 10 when n is a series of positive integer. The result exhibits that the 

theoretical values are consistent with the experimental ones for the equivalent resistance afR of 5×n-laddered 
resistance network. This study also reveals that the matrix transform method may be extended to calculate the 
equivalent resistances of n×n-step resistance network.  
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Figure 1. Schematic diagram of 5×n-laddered resistance network 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of 5×n-laddered resistance sub-networks 
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Figure 3. Current parameters of the network under boundary conditions 

 

 

 

 

 

 
 

 

 

 

 
Figure 4. The relationship curves of the equivalent resistance afR and n of 5×n-laddered resistance network 

 
 
 
 
 
 
 
 

  


