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Abstract

The asymptotic stability of the neutral systems with norm-bounded uncertainties and time-varying delays were
discussed by using the method of LMI. The results were expressed in terms of linear matrix inequalities.
Compared with some existing results, the criteria obtained in our paper are less conservative.
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1. Introduction

In recent years, in the neutral delay system stability studies, the main concern of neutral discrete time-delay
system, for many time-delay system stability problems, some related time-delay dependent or delay-independent
stability criteria was given .At the same time, many people pay attention to variable delay neutral systems, by
making the identity transformation, structure reasonable Lyapunov function, we can obtain delay-depend
stability criteria.

Y.He studied the discrete time-delay system of neutral with the constant delays, by using the free weight matrix
to indicate Newton-Leibniz formula, they got delay-depend stability criteria. This method reduced conservative.
This paper will extend the result of Y.He to the time-varying delay neutral system. Using Lyapunov stability
theory and free weight matrix approach, global stability of the system is transformed into a linear matrix
inequality optimization problem, we can get the delay-depend stability criteria.

2. Problem Formulations

Considering the following neutral uncertain time-delay system
x(£) = (C+AC@H)) x(t — 1) = (A + AA()x(t) + (B + AB(t)x(t — d (1)) )
x(t)=p(t) te[-d,0]
Where x(t ) e R" is the neuron state vector; A€ R™, BeR™, CeR™ are the constant matrices
with appropriate dimensions; d(#) denote the time-varying delay satisfies
0<d(t)<d , dt)< u @)

in which d and & are the constants ; scalar />0 is the state derivative of the delay ; AA(¢), AB(t) and

AC(t) reflect the system model in the time-varying parameter uncertainty in real matrix ; (D(t ) is a
continuous vector initial .

Assumption 1 In system (1) AA(t), AB(t)and AC(t) satisfies
AA(t)=DF(t)E, , AB(t)=DF(@)E, , AC(t)=DF(t)E, (3)
Inwhich D, E, (i=1,2,3) isa constant matrix of appropriate dimension ; F'(¢) satisfies

F'(t) F(t) <1 “
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3. Main Results

Considering the following neutral uncertain time-delay system

x(¢)= Ax(t)+ Bx(t = d(0)) + C x(t = h) )
Theoreml On the assumption (3) , for a given constant d , if there exist symmetric positive definite
matrices P,R,0,,0, ,X,;,Y,(i=1,---,5) and arbitrary matrices XY, (i=1,---,5,i<j) , makes

the establishment of the following matrix inequality, then system (5) In the equilibrium is globally
asymptotically stable

(Dll (Dlz c1)13 (D14 ATS
chz (1)23 CI)24 BTS

Q= * * o, O, C'S|<0 (6)
%k * %k CD44 O
* * %k * _S

Where
T 1 T 1 T 1 1
q)ll =4 P+PA+Q1 +Qz +g(X15 +X15)+Z(Yls +Yls)+gX11 +ZY11
1 1

®, :PB_Z(XM +X2Ts _X12)+Z(st +le)
@y = A"PC+ (X, + X))+ (KL + ¥

1 T 1 T
q)14 :_(X14 +X45)+—(Y14 +szs)

d h

1 T 1 1

®,, =—(1- )9 _E(Xzs +X25)+EX22 +ZYzz

1 1
q)23 :_BTPC"'E(XB _X3Ts)+Z(Yz3 _st)

1 1
q)24 :E(XM _X4T5)+ZYM

1 1 1
O :_Qz _Z(Yas +X3Ts)+EX33 +ZY%
1 1 T
q)34 :EXM +Z(Y34 _Y45)
CDSS :R+LX55 +1Y55
1-u h

*stand for Symmetry elements of matrix transpose

Proof  Construct the Lyapunov-Krasovksii functional:
Ve)=n@)+V, @)+ V() +V,(0) +Vs() + V(1)

Now the derivative of V() along the trajectories of system (5) yields

V()= Vi(t) +V2(0) +V3(t) +Va(t) +Vs(t) +Vs(t)
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Where

Vl (t)= 2x" (t)PX(t) =2x" (O)P(Ax(t)+ Bx(t —d(2)) + Cx(t — h))
Va(t) = < xT ()0x(t) — (1— )" (¢ —d (1) Q,x(¢ —d (1))
V3(t) = 2" (0)0,x() — x" (t—h)Qyx(t — h)

Valt) = X" (O)Rx(t) — x" (¢ — h)Rx(t — )
d
1—p

Volt) < h x" (0)Y5s x(0) —% ([, x(s)ds) Y5 ([ x(5)ds)

Vs(t) < —— x" (£) X5 x(1) - % ([, xus) X ([ x(s)ds)

X7 (6)S x(t) = (Ax(t) + Bx(t —d()) = Cx{t — )" x S(Ax(t)+ Bx(t —d (1)) - C x(t — h))

In which S=R+1LX55+]’1YSS

Base on Leibniz-Newton formula and Ref. (Y.He, M.Wu, J.H.She, GP.Liu. 2004), we can get

V()= £ ()P E Q) —%55 (L,5)XE(1.5) —ééf (L)YE (1,5) ©)

Where

EO=(x@) 2@ xt-d@®) xt-h). &E=( xs)ds) & @)

t—=d (1)

E(ts)= ([ x(s)ds) & (1)

o, o, ¢, P,
o, O

* ()
_ 2 23 24 | <
¥ * * O 0
33 34
* * * D

Theorem is proven.
Theorem2 On the assumption (3), for a given constant d , if there exist symmetric positive definite matrices
P,R.0.0, ,X,.Y,(i=1,---,5) and arbitrary matrices X, Y(i=1---5i<j) , makes the

establishment of the following matrix inequality, then system (1) In the equilibrium is globally asymptotically
stable

®,+EE ®,+EE, ®,+EE ®, A'S PD
* ®,+EE, ®,+EE, ®, B'S 0
* * O, +EE, @, C'S 0 <0 (10)
* %k * (D44 0 0
* * * * -S SD
* * * * * .

Proof In the proof of theorem 1 , using A+ DF(¢)E,,B+ DF(t)E,,C+ DF(t)E, replaced A, B
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and C , then get

PD PD
0 0

Q+A-D'PD|E, E, E, 0)+i'|-D'PD|PD 0 -D'PD 0 SD)<0
0 0
SD SD

Theorem is proven.
4. Numerical Examples
Examples 1 Consider the following system

x(t)—(C+ DF(1)E;) x(t = h) = (A+ DF (1) E,)x(t) + (B + DF (1) E,)x(t — d (1))
Where

-2 0 -1 0 ¢ 0
A= , B= , C= , 0<]ef<1
0 -1 -1 -1 0 ¢

1.6 0 01 0 10
E = L E, = E, = , D=1
0 0.05 0 03 0 1

When ¢ =0.1 , the result can be seen from table 1 , with the incremental of d , A regressive .
When d =0.1 , the result can be seen from table 2 , with the incremental of |C| , f_l regressive .

Compared with the results of Q.L.Han, the criteria obtained in our paper are less conservative.
5. Conclusion

In this paper, with the method of Lyapunov and LMI, One sufficient condition for the neutral systems with
norm-bounded uncertainties and time-varying delays is derived. Finally compared with some existing results, the
criteria obtained in our paper are less conservative.
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Table 1. The results when ¢ =0.1

d 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Han’s 0.80 0.73 0.65 0.57 0.49 0.41 0.33 0.24 0.16 0.07

Theorem1 0.97 0.91 0.87 0.86 0.82 0.79 0.75 0.71 0.65 0.62
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Table 2. The results when d = 0.1

|| 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Han’s 0.92 073 | 055 | 041 029 | 019 | 0.1 0.04
Theorem! 1.09 0.91 0.73 059 | 047 | 034 | 023 | 0.1
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