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Abstract 
Although usually normal distribution is considered for statistical analysis, however in many practical situations, 
distribution of data is asymmetric and using the normal distribution is not appropriate for modeling the data. 
Base on this fact, skew symmetric distributions have been introduced. In this article, between skew distributions, 
we consider the skew Cauchy symmetric distributions because this family of distributions doesn't have finite 
moments of all orders. We focus on skew Cauchy uniform distribution and generate the skew probability 
distribution function of the form (ݑߣ)ܩ(ݑ)2݂  , where ݂  is truncated Cauchy distribution and ܩ  is the 
distribution function of uniform distribution. The finite moments of all orders and distribution function for this 
new density function are provided. At the end, we illustrate this model using exchange rate data and show, 
according to the maximum likelihood method, this model is a better model than skew Cauchy distribution. Also 
the range of skewness and kurtosis for 0 ≤ ߣ ≤ 10 and the graphical illustrations are provided. 
Keywords: skew symmetric distribution, truncated Cauchy distribution, uniform distribution 
1. Introduction 
Skew symmetric distributions have been an attentive topic for many statistical researchers in the past few years. 
Many researchers have worked on this topic and introduced many new functions in this area. As a matter of fact, 
the story of skew symmetric distribution started by a paper published by Azzalini (1985). He introduced skew 
normal distribution with the following structure: 2݂(ݔ)(ݔߣ)ܩ                     − ∞ < ݔ < ∞, ߣ ∈ ℝ 

where  ݂ and ܩ respectively are the density and distribution function of the normal distribution. According to 
the lemma in the same paper, ݂ should be a symmetric distribution around 0, ܩ should be a continuous 
distribution function so that ܩᇱ  is symmetric around 0, and ߣ is a real constant. After Azzalini (1985), 
Mukhopadhyay and Vidakovic (1995) suggested to use the way which one can take ݂ and ܩ to belong to 
various families of probability distribution function. Therefore, other researchers could introduce many different 
skew symmetric distribution functions for using in various situations. For example, Nadarajah and Kotz 
(2003-2009) presented skewed distributions generated by normal, student’s t, logistic, Cauchy, Laplace and 
uniform kernel. As an example for skew distribution with the uniform kernel, they took ݂ to be the density 
function of uniform distribution and replaced ܩ with normal, student’s t, Laplace, Cauchy, logistic and uniform 
distribution functions. For all of these distributions were identified some properties such as finite moments of all 
orders and characteristic functions. But for skew distributions with Cauchy kernel only characteristic functions 
were provided. Gupta et al. (2002) introduced new models of skew symmetric distribution, where ݂ and ܩ are 
replaced with the pdf and cdf of normal, student’s t, logistic, Cauchy, Laplace and uniform distribution. They 
also introduced some of their properties like characteristic function and their moments. They also could not find 
the finite moments for skew Cauchy distribution. 
Some statistical researchers have worked on skewed distributions generated by the Cauchy kernel in order to 
provide more properties and solve some of the problems related to finite moments. In fact, skew Cauchy 
distribution is one of the most important distributions because of its ability in illustrating different phenomenas 
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in a wide range of fields from physics to economics where researchers often have to deal with asymmetric data 
with heavy tails. In such situation, normal distributions are not suitable for modeling the data and skew Cauchy 
distribution is a better choice for fitting the data. Nadarajah and Kotz (2005) introduced skew distribution 
generated by the Cauchy kernel and presented their characteristic functions. However, they were not able to 
introduce moments of all orders because of the lack of finite moments. As a result, they tried to solve the 
problem in later stages of their research. In their first step, Nadarajah and Kotz (2006) introduced truncated 
Cauchy distribution with the following structure: ݂(ݔ) = ߪ1 ൜arctan ൬ܤ − ߪߤ ൰ − arctan ൬ܣ − ߪߤ ൰ൠିଵ ൜1 + ቀݔ − ߪߤ ቁଶൠିଵ                              (1) 

where −∞ < ܣ ≤ ݔ ≤ ܤ < ∞ ߪ , > 0  and ߤ ∈ ℝ . Actually, Johnson and Kotz (1970) introduced this 
distribution however Nadarajah and Kotz (2006) found the finite moments of all orders for truncated Cauchy 
distribution. Finally, Nadarajah and Kotz (2007) introduced skewed truncated Cauchy distribution as follows: ݂(ݔ) = 12 arctan(ℎ)(1 + ଶ) ൜1ݔ + arctan(ݔߣ)arctan(ℎ) ൠ                       − ℎ ≤ ݔ ≤ ℎ, ℎ > 0 

by using the density and distribution function of truncated Cauchy distribution with ߤ = 0 and ߪ = 1. In this 
paper, we consider skew Cauchy uniform model in paper of Nadarajah and Kotz (2005) and try to find moments 
of all orders of this model. In accordance to the paper of Nadarajah and Kotz (2007) and to the lemma introduced 
by Azzalini (1985), we take ݂ as a truncated Cauchy distribution with the following structure 

(ݔ)݂ = 12 σarctan ቀ௛ఙቁ  ൜1 + ቀߪݔቁଶൠିଵ                      − ℎ ≤ ݔ ≤ ℎ, ߪ > 0 

and ܩ as a cdf of the uniform distribution on ሾ−ℎ, ℎሿ. We define the pdf of skew truncated Cauchy uniform 
distribution as follows: 

௑݂(ݔ) = arctan ߪ1 ቀ௛ఙቁ ቀ1 + ௫మఙమቁ ݔߣ + ℎ2ℎ                                                                     (2) 

where −ℎ ≤ ݔ ≤ ℎ. We consider  ߣ ≥ 0, becauce there are the same properties for ߣ < 0 by using the fact 
that (ݔߣ)ܩ = 1 − ߣ When .(ݔߣ−)ܩ = 0, skew truncated Cauchy uniform pdf reduces to truncated Cauchy pdf.  
The rest of this article is delivered as follows: In section 2 we introduce the basic of skew truncated Cauchy 
uniform distribution and its cumulative distribution function. In section 3 we provide finite moments of all orders 
when ݊ is odd and even. Finally, in section 4, the application of this function in the economics, based on the 
maximum likelihood method, is illustrated. In this section, we use exchange rate data of Pound to Dollar from 
1800 to 2003. Furthermore, the range of skewness and kurtosis for 0 ≤ ߣ ≤ 10 and graphical illustration for 
different values of ߣ are provided. 
For performing the calculations, we use the following lemma: 
Lemma: 
(Equation (3.194.5), Gradshteyn & Ryzhik, 2000): Forߤ > 0, න ఓିଵ1ݔ + ௨ݔߚ

଴ ݔ݀ = ߤఓݑ ଶܨଵ(1, ;ߤ 1 + ;ߤ  (ݑߚ−

where 

ଶܨଵ(ܽ, ܾ; ܿ; (ݔ = ෍ (ܽ)௞(ܾ)௞(ܿ)௞ ௞݇!ஶݔ
௞ୀ଴ . 

2. The Basic of Skew Truncated Cauchy Uniform Distribution 

The density function of Cauchy distribution ߤ)ܥ,   is (ߪ
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௑݂(ݔ) = ߪߨ1 ൬1 + ቀ௫ିఓఙ ቁଶ൰                        − ∞ < ݔ < ∞ 

where ߳ߤℝ and ߪ > 0. In spite of its name, the first person who analyzed the properties of Cauchy distribution 
was a French mathematician (Poisson) in 1824. This distribution function is a symmetric distribution about ߤ 
and the spread of the distribution is related to ߪ. It means when the spread of distribution increases, the value of ߪ increases as well. It is possible to use Cauchy distribution in a number of different situation and areas. For 
example, the Cauchy distribution is utilized in explaining the distribution of the point of intersection ܲ, which is 
fixed on a straight line with another variable straight line that randomly oriented according to the fixed point ܣ. 
The intersection of vertical line from ܣ to the fixed line is called ܱ.  The distance ܱܲ which is the distance 
of the point of intersection ܲ from the point ܱ has a Cauchy distribution with ߠ = 0. According to this type of 
definition, the Cauchy distribution is used for describing the distribution of the points of particles impact from a 
point-source (ܣ) with a fixed straight line. The Cauchy distribution also is used in physics to calculate the 
distribution of the energy of an unstable state in quantum mechanics with the name of Lorentzian distribution. 
Use of this function is becoming as common as normal distribution because the pdf of this distribution function 
is more peaked in the middle and has the fatter tails than the normal distribution. As a result, this function can be 
utilized in different areas including extreme risk analysis as well as financial applications. This is because of the 
functions tails. They are more realistic in the real world applications. The Cauchy distribution doesn't have any 
moments. For example to find the expectation value of standard Cauchy distribution we have: 

(ݔ)ܧ = ߨ1 න 1ݔ + ଶݔ
ஶ

ିஶ −            ݔ݀ ∞ < ݔ < ∞. 
It can be clearly seen that this integral is not completely convergence. Therefore, because of the main weakness 
of the Cauchy distribution which is the fact that it does not have any moments, the application of this distribution 
remains fairly limited. 
Johnson and Kotz (1970) introduced the truncated Cauchy distribution (1) for solving the problems of  the 
Cauchy distribution. They provided its cumulative distribution function as follows: 

(ݔ)ܨ = arctan ቀ௫ିఓఙ ቁ − arctan ቀ஺ିఓఙ ቁarctan ቀ஻ିఓఙ ቁ − arctan ቀ஺ିఓఙ ቁ 

for −∞ < ܣ ≤ ݔ ≤ ܤ < ߤ ,∞ = 0 and ߪ ≥ 0. They discussed estimation issues for symmetric standard case 
when ܣ = ,ܤ− ߤ = 0 and ߪ = 1. Moreover, Rohatgi (1976) provided the first two moments for truncated 
Cauchy distribution when ߤ = 0 and ߠ = 1. The choice of the limits, ܣ and ܤ is based on the historical 
records. Nadarajah and Kotz (2006) provided the moments of all orders for truncated Cauchy distribution. 
Therefore, truncated Cauchy distribution can be more useful in many different areas. A good example for 
efficiency of truncated Cauchy distribution is its use in characterizing employment productivity distribution. The 
main problem when analyzing employment productivity distribution is how to find the reasonable measure of 
minimal and maximal productivity of employees. One is likely to detect the mass of measurement errors 
according to downright faulty data or time accumulation problems. According to the Swedish data, Forsund and 
Londh (2004) choose mean of pay costs as the measure of minimal supportable productivity. They also detected 
that the empirical employment distribution between these two productivity values was well defined by a 
truncated Cauchy distribution. Truncated Cauchy distribution is also common prior density function to Bayesian 
models especially for analyzing economic data; A good example regarding to what was mentioned is provided by 
Bauwens et al. (1999). 
In fact, truncated distributions can be used in many industrial settings. Final productions are topics for 
inspections of experiments before being sent to the client. The usual action is as follows: if a productions’ 
implementation lies within certain tolerance limits, it is confirmed and sent to the client otherwise the product is 
rejected and, therefore, discarded for redoing. Therefore, the real distribution for the client is truncated. Another 
example can be detected in the multistage production process, where the inspection is implemented at each 
production stage. If only confirming products are sent to the next stage, the real distribution is truncated 
distribution. Another example that can be mentioned here is accelerated life testing with samples censored. In 
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point of fact, the meaning of a truncated distribution plays a significant role in analyzing a variety of production 
processes, process optimization, and quality improvement. 
Nadarajah and Kotz (2005) introduced skew distribution with Cauchy kernel as follows: ݂(ݔ) = ߪߨ2 ൜1 + ቀߪݔቁଶൠିଵ (ݔߣ)ܩ               − ∞ < ݔ < ∞ 

where ߣ ∈ ℝ and ߪ > 0 and ܩ was replaced with distribution function of normal, Cauchy, Laplace, logistic, 
student’s t and uniform distribution. However they faced with the same problems that exist in Cauchy 
distribution. Actually, there were not finite moments of all orders for skew distribution with Cauchy kernel. They 
tried to solve the distribution problems and make it more applicable in different areas. Therefore, Nadarajah and 
Kotz (2007) introduced skew truncated Cauchy distribution. They replaced ݂ with pdf of truncated Cauchy 
distribution with ߤ = 0 and ߪ = 1 and took ܩ to be the cumulative distribution function of truncated Cauchy 
distribution and found finite moments of all orders. In this article, we focus on skew Cauchy uniform distribution 
and try to find finite moments of all orders. Hence, we introduce skew truncated Cauchy uniform distribution. 
According to the lemma in Azzalini (1985), we take ݂ to be the truncated Cauchy distribution with ߤ = 0 and 
replace ܩ with the distribution function of uniform distribution when −ℎ ≤ ݔ ≤ ℎ with the following structure: 

(ݔ)ܩ = ൞ 0                               − ℎ < ݔݔ + ℎ2ℎ                  − ℎ ≤ ݔ < ℎ1                                      ݔ ≥ ℎ. 
The cdf of skew truncated Cauchy uniform is as follows: 

(ݔ)ܨ =
ەۖۖۖ
۔ۖ
ۓۖۖ ݔ                                                                                                                                              0 < 4ℎߪߣߜ− arctan ቀ௛ఙቁ (ln(ߪଶ + (ଶݔ − ln(ߪଶ + ((ଶߜ + arctan ቀ௫ఙቁ + arctan ቀఋఙቁ2 arctan ቀ௛ఙቁ           − ߜ ≤ ݔ < arctan                                                     ߜ ቀ௫ఙቁarctan ቀ௛ఙቁ ߜ                                                                                                                           ≤ ݔ < ℎ1                                                                                                                                            ݔ ≥ ℎ  

             (3) 

where ߜ = min ቄℎ, ௛ఒቅ. 

Proof: 

When −ߜ ≤ ݔ ≤ 0 

(ݔ)ܨ = න ݐߣ)ߪ + ℎ)2harctan ቀ௛ఙቁ ଶߪ) + ଶ)௫ݐ
ିఋ ݐ݀ = 2ℎarctanߪߣ ቀ௛ఙቁ  න ଶߪݐ + ଶ௫ݐ

ିఋ ݐ݀ + 2arctan ቀ௛ఙቁߪ න ଶߪ1 + ଶ௫ݐ
ିఋ ݐ݀

= 4harctan (ℎ)ߪߣ (ln(ߪଶ + (ଶݔ − ln(ߪଶ + ((ଶߜ + arctan ቀ௫ఙቁ + arctan ቀఋఙቁ2arctan ቀ௛ఙቁ . 
When 0 ≤ ݔ ≤  ߜ

(ݔ)ܨ = න ݐߣ)ߪ + ℎ)2harctan ቀ௛ఙቁ ଶߪ) + ଶ)଴ݐ
ିఋ ݐ݀ + න ݐߣ)ߪ + ℎ)2harctan ቀ௛ఙቁ ଶߪ) + ଶ)ఋݐ

଴ ݐ݀
= 4harctan (ℎ)ߪߣ (ln(ߪଶ + (ଶݔ − ln(ߪଶ + ((ଶߜ + arctan ቀ௫ఙቁ + arctan ቀఋఙቁ2arctan ቀ௛ఙቁ . 

When  ߜ < ݔ ≤ ℎ 
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(ݔ)ܨ = න 2ℎݐߣߪ arctan ቀ୦஢ቁ ଶߪ) + ଶ)ఋݐ
ିఋ ݐ݀ + න 2ߪ arctan ቀ௛ఙቁ ଶߪ) + ଶ)ఋݐ

ିఋ ݐ݀ + න arctanߪ ቀ௛ఙቁ ଶߪ) + (ଶݐ ௫ݐ݀
ఋ  

= 2ℎߪߣ arctan ቀ௛ఙቁ න ଶߪݐ + ଶݐ ݐ݀ + 2ߪ arctan ቀ௛ఙቁ න ଶߪ1 + ଶఋݐ
ିఋ

ఋ
ିఋ ݐ݀ + න arctanߪ  ቀ௛ఙቁ ଶߪ) + (ଶݐ ௫ݐ݀

ఋ  

= arctan ቀఋఙቁarctan ቀ௛ఙቁ + arctan  ቀ௫ఙቁ − arctan ቀఋఙቁarctan ቀ௛ఙቁ = arctan ቀ௫ఙቁarctan ቀ௛ఙቁ. 
3. Moment 
Theorem1: If ܺ has the pdf (2) then 

(௡ܺ)ܧ = ℎ௡ାଵ(݊ + 1)σarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 12 ; ݊ + 32 ; − ℎଶߪଶቇ                 (4) 

for ݊ even. 
Proof: 

(௡ܺ)ܧ = න ௡σarctanݔ ቀ௛ఙቁ (1 + ௫మఙమ) ݔߣ + ℎ2ℎ ݔ݀ + න ௡arctanݔ ቀ௛ఙቁ ቀ1 + ௫మఙమቁ ௛ݔ݀
ఋ

ఋ
ିఋ  

= න ௡ାଵσarctanݔߣ ቀ௛ఙቁ (1 + ௫మఙమ) 12ℎ ݔ݀ + න ℎݔ௡σarctan ቀ௛ఙቁ (1 + ௫మఙమ) 12ℎ ݔ݀ + න ௡σarctanݔ ቀ௛ఙቁ (1 + ௫మఙమ) ௛ݔ݀
ఋ

ఋ
ିఋ

ఋ
ିఋ  

= ߪ2ℎߣ arctan ቀ௛ఙቁ න ௡ାଵ(1ݔ + ௫మఙమ) ݔ݀ + 12σarctan ቀ௛ఙቁ න ௡(1ݔ + ௫మఙమ)ఋ
ିఋ ݔ݀ + 1arctan ቀ௛ఙቁ න ௡(1ݔ + ௫మఙమ) ௛ݔ݀

ఋ
ఋ

ିఋ  

= 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ݔ݀ + 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ݔ݀ − 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ఋݔ݀
଴

௛
଴

ఋ
଴  

= 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ௛ݔ݀
଴ = ߪ12 arctan ቀ௛ఙቁ න ೙షభమ1ݖ + ௭ఙమ

௛మ
଴  ݖ݀

Using equation (3.194.5), Gradshteyn & Ryzhik (2000) ܧ(ܺ௡) =  ℎ݊+1(݊ + 1)σarctan ቀℎߪቁ 1ܨ2 ቆ1, ݊ + 12 ; ݊ + 32 ; − ℎ22ߪቇ. 
Theorem2: If ܺ has the pdf (2) then:  
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(௡ܺ)ܧ = ݊)௡ାଶߜߣ + 2) hσarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 22 ; ݊ + 42 ; − ଶቇߪଶߜ
+ ℎ௡ାଵ(݊ + 1) σarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 12 ; ݊ + 32 ; − ℎଶߪଶቇ              
− ݊)௡ାଵߜ + 1) σarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 12 ; ݊ + 32 ; −  ଶቇ                                    (5)ߪଶߜ

for ݊ odd. 
Proof: 

(௡ܺ)ܧ = න ௡σarctanݔߣ ቀ௛ఙቁ (1 + ௫మఙమ) ݔߣ + ℎ2ℎ ݔ݀ + න ௡σarctanݔ ቀ௛ఙቁ (1 + ௫మఙమ) ௛ݔ݀
ఋ

ఋ
ିఋ  

= ℎߪ2ߣ arctan ቀ௛ఙቁ න ௡ାଵ(1ݔ + ௫మఙమ) ݔ݀ +ఋ
ିఋ 12σarctan ቀ௛ఙቁ න ௡(1ݔ + ௫మఙమ) ݔ݀ + 1σarctan ቀ௛ఙቁ න ௡(1ݔ + ௫మఙమ) ௛ݔ݀

ఋ
ఋ

ିఋ  

= ℎߣ σarctan ቀ௛ఙቁ න ௡ାଵ(1ݔ + ௫మఙమ) ݔ݀ + න ௡σarctanݔ ቀ௛ఙቁ (1 + ௫మఙమ) ௛ݔ݀
ఋ

ఋ
଴  

= ℎ σarctanߣ ቀ௛ఙቁ න ௡ାଵ1ݔ + ௫మఙమ ݔ݀ + 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ݔ݀ − 1σarctan ቀ௛ఙቁ න ௡1ݔ + ௫మఙమ ఋݔ݀
଴

௛
଴

ఋ
଴  

Using equation (3.194.5), Gradshteyn & Ryzhik (2000) 

(௡ܺ)ܧ = ݊)௡ାଶߜߣ + 2) hσarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 22 ; ݊ + 42 ; −    ଶቇߪଶߜ
+ ℎ௡ାଵ(݊ + 1) σarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 12 ; ݊ + 32 ; − ℎଶߪଶቇ
− ݊)௡ାଵߜ + 1) σarctan ቀ௛ఙቁ ଶܨଵ ቆ1, ݊ + 12 ; ݊ + 32 ; −  .ଶቇߪଶߜ

According to these two theorems, we can find the moments for all orders of this function. For example, we can 
find mean and variance of this model when ߪ = 1as follows: ܧ(ܺ) = ଷ3ߜߣ harctan(ℎ) ଶܨଵ ൬1, 32 ; 52 ; ଶ൰ߜ− + ℎଶ2 (ℎ)݊ܽݐܿݎܽ ଶܨଵ(1,1; 2; −ℎଶ)

− ଶ2ߜ (ℎ)݊ܽݐܿݎܽ ଶܨଵ(1,1; 2;  (ଶߜ−
= ߜ)ߣ − arctan (ߜ))ℎ arctan(ℎ) + ln(1 + ℎଶ) − ln(1 + ଶ)2ߜ arctan(ℎ)  
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and 

ܸ(ܺ) = (ଶܺ)ܧ − ൫ܧ(ܺ)൯ଶ. 
On the other hand  ܧ(ܺଶ) = ℎଷ3 arctan(ℎ) ଶܨଵ ൬1, 32 ; 52 ; −ℎଶ൰ = ℎ − arctan(ℎ)arctan(ℎ)  

hence ܸ(ܺ) = ℎ − arctan(ℎ)arctan(ℎ) − ቆߜ)ߣ − arctan (ߜ))harctan(ℎ) + ln(1 + ℎଶ) − ln(1 + ଶ)2ߜ arctan(ℎ) ቇଶ. 
4. Discussion 

The Cauchy distribution has been applied in many fields including but not limited to biological analysis, physics, 
survival analyzing, economics and reliability. In all of these fields, there has been no evidence found that 
supports the theory in which the empirical moments of any orders should be infinite. Therefore, the selection of 
the Cauchy distribution or skewed Cauchy symmetric distributions as a model is unreasonable. It is mainly 
because there are no finite moments of all orders. In this paper, we introduced skew truncated Cauchy uniform 
distribution and calculated finite moments of all of the orders. By doing so we have provided a model that is 
more useful in practical situations. As a very good example, we can point to the application of the skew truncated 
Cauchy uniform distribution to exchange rate (ER) data of United Kingdom Pound to the United State Dollar 
from the years 1800 to 2003. Data is obtained from the official website of Global Financial Data organization 
accessible in http://www.globalfinancialdata.com/. Global Financial Data (GFD) organization specializes in 
providing financial and economy data that extends from the 1200s to present. Since the Raw data of the chosen 
case study is not proper to use, we need to transform data to obtain logical fits. We transform data using  

logarithms and relative change from one year to the next year ቀ (௢௟ௗି௡௘௪)଴.ହ(௢௟ௗା௡௘௪)ቁ. The advantage of using relative 

change is that the data consists of pure numbers and it is independent of the units of measurement. We fitted both 
skew Cauchy distribution and skew truncated Cauchy uniform distribution by using maximum likelihood method. 
The maximum likelihood method is used to estimate the parameters of a model, test hypothesis about parameters 
and finally compare two models of the same data. A set of data and a mathematical model are essential elements 
in the maximum likelihood method. A mathematical model will have special unknown quantities which called 
parameters. The least square method finds the estimates of parameters of the model according to the minimum 
sum of square prediction error while the maximum likelihood method estimates the parameters base on 
maximizing the probability of a model fitting the data. For comparing different models in maximum likelihood 
method, the likelihood ratio test is used. Actually, for fitting and comparing different models, there are two other 
different tests which are called Wald test and Score test. For large samples, three of them converge but for small 
samples, most researchers prefer to use likelihood ratio test.    
We considered ℎ = 1.5 and ߪ = 1. A quasi-Newton algorithm nlm in R software was used to solve the 
likelihood equation. The two models are not nested but have the equal numbers of parameters. Final results for 
skew Cauchy distribution and skew truncated Cauchy uniform distribution are as follows, respectively: ߣመ = −0.4809,   − log ܮ = 236.2354 

and ߣመ = −0.4179,   − log ܮ = 140.5781. 
According to the standard likelihood ratio test, the skew truncated Cauchy uniform distribution is a much better 
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model for exchange rate data. 
On the other hand, we know the main feature of skew symmetric distribution is that the new parameter control 
skewness and kurtosis and provide a more flexible model which presents the data as properly as possible. 
According to the manner which was suggested in Azzalini (1986), we calculate the skewness and kurtosis of the 
standard truncated Cauchy distribution on ሾ−1,1ሿ. The skewness and kurtosis are 0 and 2.024 respectively. 
The skewness and kurtosis of standard skew truncated Cauchy uniform also is calculated on ሾ−1,1ሿ for ߣ from 0 to 10. The range of possible values of skewness and kurtosis are  (−0.364,0.208) and (1.954,2.331) 
respectively. It can be clearly seen that the new model exhibit the both positive and negative skewness and 
higher degree of peakness.  
Figure 1 presents shapes of skew truncated Cauchy uniform distribution for different values of ߣ. It is obvious 
that it presents a variety of shapes.  

 

Figure 1. Examples of skew truncated Cauchy uniform distribution for ߣ = 0,2,5,10, ℎ = 1 and ߪ = 1 
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