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Abstract

In this paper, we define and study the notion of lacunary statistical convergence and lacunary of statistical
Cauchy sequences in random on I'”* over p-metric spaces defined by Musielak-Orlicz functions.
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1. Introduction

The concept of statistical convergence play a vital role not only in pure mathematics but also in other branches of
science involving mathematics, especially in information theory, computer science, biological science,
dynamical systems, geo-graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence depends on the density of subsets of N. A subset of N is said to have
density & (E) if

. 1 T S t
8(E)=lim, Ezm:lzn:lzk:llﬂE(mnk) =0

Throughout m, I" and A denote the classes of all, entire and analytic scalar valued single sequences, respectively.

We write ®° for the set of all complex sequences (Xu), where m, n, k € N, the set of positive integers. Then, 0%
is a linear space under the coordinate wise addition and scalar multiplication.

Let (Xmnk) be a triple sequence of real or complex numbers. Then the series Z: X is called a triple

n,k=1"" mnk

series. The triple series z:n is said to be convergent if and only if the triple sequence (Syu) is

k=1 ank

convergent, where
m,n,k
Sk = Dor e Xy (monk =1,2,3,..)

A sequence X = (Synx) 1s said to be triple analytic if

1
m+n+k < oo,

Supm,n,k ank

The vector space of all triple analytic sequences are usually denoted by A®. A sequence X = (X is called triple
entire sequence if

1
|xmnk|m+n+k — 0 as m,n,k — oo,
The vector space of all triple entire sequences are usually denoted by I'’. The space A* and T is a metric space
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with the metric
1
d(x,y)=sup, {|ank - ymnk|m+n+k ‘m,n,k: 1,2,3,..},

for all X = {Xpyi} and y = {ymu} in T°. Let ¢ = {finite sequences}.

[m,n,k] [m,n,k] _

Consider a triple sequence X = (Xmu). The (m, n, k)™ section x of the sequence is defined by x

m,n,k . . . . . . ..
Zi o xiquijq for all m, n, k € N, where &y, is a three dimensional matrix with 1 in the (m, n, k)‘h position and

zero otherwise.

[m,n,k] [mnk] _

Consider a triple sequence X = (Xmn). The (m, n, k)™ section x of the sequence is defined by x

ok . . .
Z:::OXUC{SUC{ for all m, n, k e N; where 33, denotes the triple sequence whose only non zero term is a 1 in the

i, j, k)" place for each i, j, q, € N.
J p

An Orlicz function is a function M : [0, o) — [0, <o) which is continuous, non-decreasing and convex with
M(0) = 0, M(x) > 0, for x > 0 and M(x) — o as x — oo. If convexity of Orlicz function M is replaced by
M(x +y) <M (x) + M (y), then this function is called Orlicz function. An Orlicz function f is said to satisfy
A2 — condition for all values u, if there exists K > 0 such that M (2u) < Kf (u), u > 0.

1.1 Lemma

Let M be an Orlicz function which satisfies A, — condition and let 0 < < 1. Then for each t > 8, we have M (t) <
K& £ (2) for some constant K > 0.

A sequence M = (M) of Orlicz function is called a Musielak-Orlicz function. A sequence g = (gnn) defined by
S (V) =sup{[vu— (M, )(u):u=0}, m,nk=12,.

is called the complementary function of a sequence of Musielak-Orlicz M. For a given sequence of
Musielak-Orlicz function f, the Musielak-Orlicz sequence space t; is defined as follows.

)%n+n+k

ty ={xe o1, (|x

— 0 as m,n,k %oo},

mnk

Where IM is a convex modular defined by

IM (X) = Z::IZ::IZ::I ank (

2. Definition and Preliminaries

)ym+n+k

ank s X = (ank )E tM .

Let n € N and X be a real vector space of dimension ®, where n < ®. A real valued function
d, (x,,.%,) = ”(d] (%,)5ed, (%, ))" on X satisfying the following four conditions:
p

) "(d1 (%,),0d, (X, ))" =0 ifand only if d;(x)),...,ds(X,) are linearly dependent,
(ii) ”(d1 (%,)sd, (x,)) ) is invariant under permutation,

(iif) (o, (%, ) d,, (x, ))||p =[o(d, (x,),-d, (%, ))||p, oeR

(iv) dp (X1, ¥1)5 (X2,¥n)) = (dX(X1, X2, ... Xp)p T dy (Y1:Y200-2yn)") P for 1 < p < oo 3(or)
WM A((x155,), (%5, ¥5 )ses (X5 Y0 )) = sup{dy (X1, %5000 %, ) dy (Y1, Yases Yo )

for Xy X,, ... X, € X, V1, Y2, ... Yn € Y is called the p product metric of the Cartesian product of n metric spaces is
the p norm of the n-vector of the norms of the n sub-space.

A trivial example of p product metric space is the p norm space is X = R equipped with the following Euclidean
metric in the product space is the p norm:
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I(d, (x,),--d, (x,))]. =sup(|det(d, (x,.,))]) =

sup

dnl (an) dn2(X112) dmn (Xnm)

Where x; = (Xip,...,Xin) € R" foreachi=1,2,3,...n.

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect to the
p-metric. Any complete p-metric space is said to be p-Banach metric space.

Let X be a linear metric space. A function ®: X — R is called paranorm, if
D ox) =20, forallx e X;

Q)o(x)=o0x),foralxe X;

BoExty) o) +to(y),forallx,y e X;

(4) If (o) 1s a sequence of scalars with 6,,,, — G as m, n — o and (X,,;) is a sequence of vectors with ® (X, - X)
— 0 as m, n — oo, then ® (X, - 0X) = 0 asm, n — oo,

A paranorm ® for which ® (x) = 0 implies x = 0 is called total paranorm and the pair (X, ®) is called a total

paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm
(see [32], Theorem 10.4.2, p.183).

By the convergence of a triple sequence we mean the convergence on the Pringsheim sense that is, a triple
sequence X = (Xpn) has Prinsheim limit L (denoted by P — limx = L) provided that given € > 0 there exists N €
N such that |x - L| <€ whenever m, n, k > N. We shall write more briefly as P — convergent.

mnk

The triple sequence 6;;; = {(m;, ny, kj)} is called triple lacunary if there exist three increasing sequences of
integers such that

my=0,hj=m;—m,; - >~ asi—> o and
n,=0h,=n,—n,, >0 asl oo

k,=0,hj =k, —k,, - asj— oo,

Let m,,;=mpnk;h;,;=hhh

ij=hih,h;, and O, ,; is determine by

IM,j ={(m,nk):mH <m<m,; andn, , <n<n, andkH <k< kj},

m, - n, — kj
qk = 9q/ = 9qj = .
k-1 n,, j-1

Notations: m,=mmn_h_ = (prés,erS is determined by

TS

I, ={(m,n):mr71 <m<m,andn_, <n< ns},

k

qr =k_’qs =

andqrs = qr qs'

S

n

r—1 s—1

The notion of A-triple gai and triple analytic sequences as follows: Let A=(A,, )

m,n=0

be a strictly increasing

sequences of positive real numbers tending to infinity, that is

0< Ay <Ay <..and A, —>ocas m,n,k — oo

'mnk
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and said that a sequence X = (Xyu) € @ is A - convergent to 0, called a the A - limit of X, if Py (X) — 0 as m, n,
k — oo, where

1
Mo (X) = (P_Zmelm Znelm Zkelm

st

m-1 m-1 m-1 m-1 m-1 m-—1 m-—1
(Au an _Au an+1 - Au an+2 _Au Xm+1n _Au Xm+1n+1 _A\) Xm+1n+2 _Au Xm+2n)

The sequence X = (Xpn) € @' is A - triple analytic if sup,,,

ank (X)| < oo, If lillnmnk Xmnk = O in the Ordinary

sense of convergence, then lim,

1

m-1 m-—1 m-—1 m-1 m-—1 —

[(p zmelm Znelm Zkelm (A\) an _A\) an+1 _A\) an+2 _AU Xm+1n _A\) Xm+1n+l) - 0
st

This implies that

lil’nmn ank (X) - O| = linlmn

=0.

st

1
m-—1 m-—1 m-—1 m-—1 m-1
‘( Zmelm Znelm Zkelm (A\) an - A\) an+] _A\) an+2 - A\) Xerln _Au Xm+]n+] )

Which yields that limyyy, Mk (X) = 0 and hence X = (Xnk) € o is A-convergent to 0.

Let I’ — be an admissible ideal of 2" @ be a triple lacunary sequence, M = (M) be a Musielak-Orlicz

st

function and (X,

(d(x1 ),d(x,),.d(x, ))"p) be a p — metric space, q = (qmm) be triple analytic sequence of

strictly positive real numbers. By ' (p-X) we denote the space of all sequences defined over

(X,”(d(x1 ),d(x2),...,d(xnfl))”p). The following inequality will be used through out the paper. If 0 < g <

SUpmu = H, K = max (1,2"") then

qmnk

Fo ™ <Ko

Qimnk }

for all m, n, k and apy, by € C. Also |a|"™ < max(l,|a|H) forall ac C. In the present paper we define the
following sequence spaces.

|a

+[b

mnk mnk mnk mnk

3

[T ) d () (x, )]
{r,s, tel,: [Mm“k (

LR CICRRTCRRREICHN)

{r, s,te I :[an(

If we take M (X) = X, we get

I
Ot

Hom () (A3 d () s (3, )] ) | } r,

B
ers(

B (), (d(x,), (%), d (x,0))] )} ZK}G r,

13
Ot

[ (a0 atx )
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{r,s,te I [(

[ASMqu’"(d(Xl)»d(xz),...,d(xnl))"ﬂ: _

{r, s,tel: [(

If we take q = (quuk) = 1, we get

W (x),(d(xl),d(xz),...d(xm1 ))"p )Tmﬂk ZE}G T,

o (x),(d(x]),d(x2),...,d(xn_]))"p)TM ZK}G r,

(a0t |

13
Ot

{r, s,tel, :[ank (

In the present paper we plan to study some topological properties and inclusion relation between the above

and [Aij‘u,||(d(x1)ad(xz)"“’d(xnfl ))”:j

defined sequence spaces. [Ff\,{"u,”(d(xl),d(xz),...,d(xnfl))":}

& &
er<| e\'<|

which we shall discuss in this paper.
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3. Main Results
3.1 Theorem
Let M = (M) be a Musielak-Orlicz functions, q = (quuk) be a triple analytic sequence of strictly positive real
I]
numbers, the sequence spaces [l"fv‘} ,"(d(xl),d(xz),...,d(xnil))||“°} and
n P em
I]
[Ai}p ,"(d(xl),d(x2),...,d(xlH ))”: L are linear spaces.
Proof
The proof can be established using standard technique.
3.2 Theorem

Let M = (M) be a Musielak-Orlicz functions, q = (quuk) be a triple analytic sequence of strictly positive real

numbers, the sequence space [Fiju,"(d(xl ),d(x,),nd (X, ))"IJ is a paranormed space with respect to the

I}
Ot

paranorm defined by g(x)=inf {[ank (

s (9,003 405, )| 1)

Proof

I]
Clearly g (x) = 0 for x = (Xpmnk) € [Fquu,"(d(xl ),d(x,),.d(x,_, ))”“’ L

p
Since My (0) = 0, we get g (0) = 0.

Conversely, suppose that g (x) = 0, then
Qmnk
inf{[ank("umnk(x),(d(xl),d(xz),...,d(xn_l))"pﬂ 31}

Suppose that Wy(x) # 0 for each m, n, k € N. Then

- (x),(d(xl),d(xz),...,d(xn_l))": — oo, It follows
that

Amnk %'l
SR RIEH RIS N al AE

[

which is a contradiction. Therefore [, (x) = 0. Let

ﬂm@%ﬂuwmmmmeMj“fﬂ

and

[ NI RIRS N TEN ]l A

Then by using Minkowski’s inequality, we have

([Mmk (e (530, (A 3,), 45, ) - (x,)] )} J/ <
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Qmnk %‘[
o (- (A(x), 852t (3, )] ) j .

[

[ M s 14005003, ) ) ]/
So we have
g(x+y)= inf{[ank ( |umnk (x+ y),(d(xl),d(xz),...,d(xni1 ))"p )Tmnk < l} c
inf{[ank(|umnk(x),(d(xl),d(x2), d(x,))] )} s1}+
inf{[ank( o ():(d(x,)d (5, )ond (x,.,))] )} k 31}
Therefore,

gx+y)<g®+eg.
Finally, to prove that the scalar multiplication is continuous. Let A be any complex number. By definition,

g(Ax) = inf{[ank ( W, (kx),(d(x1 ).d(x,),...d(x,, ))"p )Tmnk . 1}

Then

2 () :inf{[(w)q'“% [P (s 000003t ) ] 1}

1 .
where t=—.Since |\ A , we have

A

i< max (1,

SUP Pro )

g (Ax) < max (1, A

SUP Pra )

inf {tq“‘% ;[ank (”umnk (Ax),(d(x,),d(x,), - d(x,., ))"p )Tm“k 51}

This completes the proof.

3.3 Theorem
(1) If the sequence (M) satissfies A, — condition, then
° e 0 B
[T s (098062005 ) Gty D | = [T s (02(805)1005) (D) |

(i1) If the sequence (gmnx) satisfies A, — condition, then

0 P 0 B

|:1-un ) ||p’mnk (X) > (d (Xl ) .d (Xz ) s d (anl ))”p L = |:r:li/cllu ) ||p’mnk (X) ) (d (Xl )’ d (Xz ) s d (Xn—l ))"p L
Proof

Let the sequence (M) satisfies A, — condition, we get

3

L TSN TN CH RNRTCN) i N W TR ORI ITCH RARTCN) R
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To prove the inclusion

LR IR ERCIES RIS B TeN) MRS 1 TSN CIER TR M T i

let

Then for all {xX,} with

(s e Pt (03 ]

we have
§§g| Ca < 3.2)

Since the sequence (M,,x) satisfies A, — condition then

(Yo )€ [Fiﬁu, Mo (%), (d (%)), d(x, ), d (%, ))H ’
we get

S T o <
by (3.2). Thus
(00 [P it (-3 05 )t (5, ] =
Tt (%), (8 (x),d (x2) e (x, ))lﬂl

and hence

(2, ) € [rw T (X),(d(xl)ad(xz)a--~sd(xn-l))"ﬂ;'
This gives that

L R CIES RIS R Te) R [l TR RCTCA RTES IR TE) e

we are granted with (3.1) and (3.3)

(720 s (5): (005,052 (5, ))m = [0 e (), (00500052t |

(i1) Similarly, one can prove that

3
e,

if the sequence (gmx) satisfies A, — condition.

3.4 Proposition

178

o (). (d(x,)0d (x,) vomd (x, ))”:l, LN NI RICHIICH) ]e



www.ccsenet.org/mas Modern Applied Science Vol. 10, No. 1; 2016

If 0 < gumnk < Pmnk < oo for each m, n and k then

S TR CTERICH RO i } C | A3 ()4 (A(x)) 10 (%)l (3, ))IIIL

Proof

The proof can be established using standard technique.
3.5 Proposition

(1) If 0 < inf Qi < ek < 1 then

? P
(A s (0. (8(%)d5) e, D] [ A
(11) If I £ gk < SUPGmnk < o, then

[ MH’”Hmnk (d(xl),d(xz),...,d(xnfl))":}l [A?v?u’

Proof

The proof can be established using standard technique.

b (805055, |

13

o (9.8(%). 00, )., )|

P er<[
3.6 Proposition

Let M'=(M,, ) and M"=(M,, ) aresequences of Musielak — Orlicz functions, we have

A s (90000805, ), D | 2[4

Proof

The proof can be established using standard technique.

3.7 Proposition

For any sequence of Musielak-Orlicz functions M = (M,,;x) and q = (qunk) be triple analytic sequence of strictly
positive real numbers. Then

[T (0):(A(x,)od () ()] } c | Ay,

Proof

The proof can be established using standard technique.

mk<x>,<d<xl>,d<x2>’-~d<xn1>>||1’Im

3.8 Proposition

The sequence space [FN?“, o (x),(d(x,),d(x,),....d(x X, " } is solid
Proof
Let

X= (ank ) |:Ai/?u’

13
TR RTEN RTONS)
13
S PSR TR CORCICRTEN M TES) I

Let (o) be triple sequence of scalars such that |ocmnk| < lforallm,n,k € NxNxN. Then we get.
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50D | Al e (0),(d(x) 050 dx ) | 5

S0 A5 o (0003 )0 ), |

P
This completes the proof.

3.9 Proposition
13
The sequence space [Af\ju,"umk (x),(d(x,),d(x,)smmd(x,, ))""} is monotone
p [

Proof

The proof follows from Proposition 3.8.

3.10 Proposition

If M = (Mjnk) be any Musielak-Orlicz functions. Then

P o
A IR E SN RO RCCHRICR o)l

Mo (%), (d (%)), d(x;), A (x,.))

*

st

if and only if sup, ., (Pr** <eo

st

Proof

£
Let xe [Afv‘}u, } andN= sup, ., (pfjf < oo,
()

O

o (%), (A, ) () d ()

st

Then we get

w P
o }
P
eﬁ[

A (00,0 0, x,..)

N[ W 090005 05, | =0

Thus
13

p

[Aﬁu,”umnk (x),(d(xl),d(x2 ),...,d(xm1 ))"w**}

Ot

Conversely, suppose that

[Aiﬂu,llumnk(x),(d(xl) d(x %)) } [Ai}:, o (0 (0(x,),d () (5, ) }
and
e [ A (- (A )-8 (520 (5,.) “]e .
Then
Wb (005,005t ) | <o Rorevery 0.
Suppose that sup, ., (Pfjf =oo, then there exists a sequence of members (rsti) such that lim,;, . (p;k =oo
rst o
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Hence, we have

P

LS TR RTCH RIS NPTONR i

UM

[3

Therefore, x ¢ [Aiﬁ“,"umﬂk (x),(d(x,),d(x,),0d(x, ))": L , which is a contradiction. This completes the

proof.

3.11 Proposition
If M = (M) be any Musielak-Orlicz functions. Then

el
L R R T RTRS TR o A PE R TN KT RICS TN ol
if and only if sup, ., (pfjf < o0, SUP, | sy (pft > oo,
st st
Proof

The proof can be established using standard technique.

3.12 Proposition

The sequence space [ Mu,”umnk ).(d(x,).d(x, ), d(x,, ))":T is not solid
el’Sl

Proof
The result follows from the following example.
Example
Consider
11 1
11 .1
IS
. ¢
K= (%) = [rﬁp,"um(x),(d(xl),...,d(xz),...,d(xn,l))"pl .
11 1
Let
_1m+n _1m+n . _1m+n
_1m+n _1m+n " _1m+n
o =l ,for all m,n,ke N.
_1m+n _1m+n . _1m+n

I}

umnk(x),(d(x]),d(xz),...,d(xn_]))":] . Hence

Ot

b 50805t |

Then o X, € [qu

Mup >

3
.
is not solid.
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3.13 Proposition
13
The sequence space [Fi;‘u,”umnk (x),(d(x,),d(x,),0d(x,, ))"q is not monotone
p eI’Sl
Proof
The proof follows from Proposition 3.12.
Competing Interests
Authors have declared that no competing interests exist.
References

Apostol, T. (1978). Mathematical Analysis. Addison-wesley, London,.
Altay, B., & BaSar, F. (2007). The fine spectrum and the matrix domain of the difference operator A on the

sequence space b , (0 <p<1). Commun. Math. Anal., 2(2), 1-11.

Bromwich, T. J. ’A. (1965). An introduction to the theory of infinite series Macmillan and Co.Ltd., New York.

Colak, R., Et, M., & Malkowsky, E. (2004). Some Topics of Sequence Spaces, Lecture, Notes in Mathematics,
Firat Univ. Elazig, Turkey, 1-63, Firat Univ. Press, ISBN: 975-394-0386-6.

Cannor, J. (1989). On strong matrix summablity with respect to a modulus and statistical convergence. Canad.
Math. Bull., 32(2), 194-198.

Hardy, G. H. (1917). On the convergence of certain multiple series. Proc. Camb. Phil. Soc., 19, 86-95.
Hamilton, H. J. (1938). A Generalization of multiple sequences transformation. Duke Math. J., 4, 343-358.
Hamilton, H. J. (1938). Change of Dimension in sequence transformation. Duke Math, J., 4(2), 341-342.

Hamilton, H. J. (1939). Preservation of partial Limits in Multiple sequence transformations. Duke Math. J., 4(2),
293-297.

Hamilton, H. J. (1956). Transformations of multiple sequences. Duke Math. J., 2(1), 29-60.

Kamthan, P. K., & Gupta, M. (1981). Sequence spaces and series, Lecture notes, Pure and Applied Mathematics,
65 Marcel Dekker, In c., New York.

Kuttner, B. (1946). Note on strong summability. J. London Math. Soc., 21, 118-122.

Maddox, 1. J. (1986). Sequence space defined by a modulus. Math. Proc. Cambridge Philos. Soc, 100(1),
161-166.

Moricz F., & Rhoades, B. E. (1988). Almost convergence of double sequences and strong regularity of
summability matrices. Math. Proc. Camb. Phil. soc., 104, 283-294.

Mursaleen, M., Khan, M. A., & Qamaruddin (1999). Difference sequence spaces defined by Orlicz functions.
Demonstration Math, 5-150.

Mursaleen, M., & Edely, O. H. H. (2003). Statistical convergence of double sequences. J. Math. Anal. Appl.,
288(1), 223-231.

Mursaleen, M. (2004). Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal.
Appl., 293(2), 523-531.

Mursaleen, M., & Edely, O. H. H. (2004). Almost convergence and a core theorem for double sequences. J. Math.
Anal. Appl., 293(2), 532-540.

Maddox, L. J. (1979). On strong almost convergence. Math. Proc. Cambridge Philos. Soc., 85(2), 345-350.
Nakano, H., & Concave modulars, J. (1953). Math. Soc. Japan, 5, 29-49.
Pringsheim, A. (1900). Zurtheorie derzweifach unendlichen zahlenfolgen. Math. Ann., 53(3), 289-321.

Ruckle, W. H. (1973). FK spaces in which the sequence of coordinate vectors is bounded. Canad, J. Math., 25,
973-978.

Robison, G. M. (1926). Divergent double sequences and series. Amer. Math. Soc. Trans., 28(1), 50-73.
Subramanian, N., & Misra, U. K. (2010). The semi normed space defined by a double gai sequence of modulus

182



www.ccsenet.org/mas Modern Applied Science Vol. 10, No. 1; 2016

function. Fasciculi Math., 46.

Savas, E., & Patterson, R. F. (2005). On some double almost lacunary sequence spaces defined by Orlicz
functions. Filomat (Nis), 2005(19), 35-44.

Subramanian, N., & Esi, A. (2015). The generalized triple difference of X3 sequence spaces. Global Journal of
Mathematical Analysis, 3(2), 54-60.

2
Subramanian, N., & Esi, A. (2011). The fx statistical convergence of pre-Cauchy over the p-metric space.

Annals of the University of Craiova — Mathematics and Computer Science Series.
Tripathy, B. C. (2003). On statistically convergent double sequences. Tamkang J. Math., 34(3), 231-237.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

183



