The Multi Ideal Convergence of Difference Strongly of χ^{2} in P-Metric Spaces Defined by Modulus

C. Murugesan ${ }^{1} \& N$ N. Subramanian ${ }^{2}$
${ }^{1}$ Department of Mathematics, SATHYABAMA University, India.
${ }^{2}$ Department of Mathematics, SASTRA University, India
Correspondence: Dr. N.Subramanian, Department of Mathematics, SASTRA, Thanjavur-613 401, India. E-mail: prof.murugesanc@gmail.com/nsmaths@yahoo.com

Received: August12, 2015 Accepted: October13, 2015 Online Published: December 22, 2015
doi:10.5539/mas.v10n1p65 URL: http://dx.doi.org/10.5539/mas.v10n1p65

Abstract

The aim of this paper is to introduce multi and study a new concept of the $\chi 2$ space via ideal convergence of difference operator defined by modulus. Some topological properties of the resulting sequence spaces are also examined.

Keywords: analytic sequence, modulus function, double sequences, $\chi 2$ space, p-metric space, multi ideal

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^{2} for the set of all complex double sequences $\left(\mathrm{x}_{\mathrm{mn}}\right)$, where $\mathrm{m}, \mathrm{n} \in \mathrm{N}$, the set of positive integers. Then, w^{2} is a linear space under the coordinate wise addition and scalar multiplication.

Let $\left(\mathrm{x}_{\mathrm{mn}}\right)$ be a double sequence of real or complex numbers. Then the series $\sum_{m, n=1}^{\infty} \mathrm{x}_{\mathrm{mn}}$ is called a double series. The double series $\sum_{\mathrm{m}, \mathrm{n}=1}^{\infty} \mathrm{x}_{\mathrm{mn}}$ give one space is said to be convergent if and only if the double sequence $\left(\mathrm{S}_{\mathrm{mn}}\right)$ is convergent, where

$$
\mathrm{S}_{\mathrm{mn}}=\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{m}, \mathrm{n}} \mathrm{x}_{\mathrm{ij}} \quad(\mathrm{~m}, \mathrm{n}=1,2,3, \ldots)
$$

A double sequence $x=\left(x_{m n}\right)$ is said to be double analytic if

$$
\sup _{\mathrm{m}, \mathrm{n}}\left|\mathrm{x}_{\mathrm{mn}}\right|^{\frac{1}{m+n}}<\infty
$$

The vector space of all double analytic sequences are usually denoted by Λ^{2}. A sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{mn}}\right)$ is called double entire sequence if

$$
\left|\mathrm{x}_{\mathrm{mn}}\right|^{\frac{1}{m+n}} \rightarrow 0 \text { as } \mathrm{m}, \mathrm{n} \rightarrow \infty
$$

The vector space of all double entire sequences are usually denoted by Γ^{2}. Let the set of sequences with this property be denoted by Λ^{2} and Γ^{2} is a metric space with the metric

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sup _{\mathrm{m}, \mathrm{n}}\left\{\left|\mathrm{x}_{\mathrm{mn}}-\mathrm{y}_{\mathrm{mn}}\right|^{\frac{1}{\mathrm{~m}+\mathrm{n}}}: \mathrm{m}, \mathrm{n}: 1,2,3, \ldots\right\},(1.1)
$$

forall $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{mn}}\right\}$ and $\mathrm{y}=\left\{\mathrm{y}_{\mathrm{mn}}\right\}$ in Γ^{2}. Let $\phi=\{$ finite sequences $\}$.
Consider a double sequence $x=\left(x_{m n}\right)$. The $(m, n)^{\text {th }}$ section $x^{[m, n]}$ of the sequence is defined by

$$
\mathrm{x}^{[\mathrm{m}, \mathrm{n}]}=\sum_{\mathrm{i}, \mathrm{j}=0}^{\mathrm{m}, \mathrm{n}} \mathrm{x}_{\mathrm{ij}} \delta_{\mathrm{ij}}
$$

for all $m, n \in N$,

$$
\delta_{\mathrm{mn}}=\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & \cdots \\
\vdots & & & & & \\
0 & 0 & \cdots & 1 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & \cdots
\end{array}\right)
$$

with 1 in the $(\mathrm{m}, \mathrm{n})^{\text {th }}$ position and zero otherwise.
An Orlicz function is a function $f:[0, \infty) \rightarrow[0, \infty)$ which is continuous, non-decreasing and convex withf(0)=0, $f(x)>0$, for $x>0$ and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function f is replaced byf $(x+y) \leq f(x)+f(y)$, then this function is called modulus function. An modulus function f is said to satisfy Δ^{2} - condition for all values u, if there exists $K>0$ such that $f(2 u) \leq K f(u), u \geq 0$.
Remark 1.1An Modulus function satisfies the inequality $\mathrm{f}(\lambda \mathrm{x}) \leq \lambda \mathrm{f}(\mathrm{x})$ for all λ with $0<\lambda<1$.
Lemma 1.2 Let f be an modulus function which satisfies Δ^{2}-condition and let $0<\delta<1$. Then for each $\mathrm{t} \geq \delta$, we have $\mathrm{f}(\mathrm{t})<\mathrm{K} \delta^{-1} \mathrm{f}(2)$ for some constant $\mathrm{K}>0$.
Let M and Φ be mutually complementary modulus functions. Then, we have
(i) For all $\mathrm{u}, \mathrm{y} \geq 0$, uy $\leq \mathrm{M}(\mathrm{u})+\Phi(\mathrm{y})$, (Young's inequality) (Kamthan\& Gupta, 1981).(1.2)
(ii) For all $u \geq 0, u \eta(u)=M(u)+\Phi(\eta(u))$. (1.3)
(iii) For all $u \geq 0$, and $0<\lambda<1, M(\lambda u) \leq \lambda M(u)$. (1.4)

Lindenstrauss, J. and Tzafriri, L. (1971), used the idea of Orlicz function to construct Orlicz sequence space

$$
\ell_{\mathrm{M}}=\left\{\mathrm{x} \in \mathrm{w}: \sum_{\mathrm{k}=1}^{\infty} \mathrm{M}\left(\frac{\left|\mathrm{x}_{\mathrm{k}}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\},
$$

The space ℓ_{M} with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t)=t^{p}(1 \leq p<\infty)$, the spaces ℓ_{M} coincide with the classical sequence space ℓ_{p}.
A sequence $f=\left(f_{m n}\right)$ of modulus function is called a Musielak-modulus function. A sequence $g=\left(g_{m n}\right)$ defined by

$$
g_{m n}(v)=\sup \left\{|v| u-f_{m n}(u): u \geq 0\right\}, m, n=1,2, \ldots
$$

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f , the Musielak-modulus sequence space t_{f} is defined by

$$
\mathrm{t}_{\mathrm{f}}=\left\{\mathrm{x} \in \mathrm{w}^{3}: \mathrm{M}_{\mathrm{f}}\left(\mid \mathrm{x}_{\mathrm{mnk}}\right)^{1 / \mathrm{m}+\mathrm{n}+\mathrm{k}} \rightarrow 0 \text { as } \mathrm{m}, \mathrm{n}, \mathrm{k} \rightarrow \infty\right\}
$$

where M_{f} is a convex modular defined by

$$
\mathrm{M}_{\mathrm{f}}(\mathrm{x})=\sum_{\mathrm{m}=1}^{\infty} \sum_{\mathrm{n}=1}^{\infty} \sum_{\mathrm{k}=1}^{\infty} \mathrm{f}_{\mathrm{mmk}}\left(\left|\mathrm{x}_{\mathrm{mnk}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}+\mathrm{k}}, \quad \mathrm{x}=\left(\mathrm{x}_{\mathrm{mnk}}\right) \in \mathrm{t}_{\mathrm{f}} .
$$

We consider t_{f} equipped with the Luxemburg metric space, (i.e.))
Let $\left(X_{i}, d_{i}\right), i \in I$ be a family of metric spaces such that each two elements of the family are disjoint. Denote $X: \bigcup_{i \in I} X_{i}$.If we define

$$
d(x, y)= \begin{cases}d_{i}(x, y), & \text { if } x, y \in X_{i} \\ +\infty & \text { if } x \in X_{i}, y \in X_{j}, i \neq j\end{cases}
$$

then the pair (X, d) is a Luxemburg metric space. The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz(1981)as follows

$$
\mathrm{Z}(\Delta)=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right) \in \mathrm{w}:\left(\Delta \mathrm{x}_{\mathrm{k}}\right) \in \mathrm{Z}\right\}
$$

for $\mathrm{Z}=\mathrm{c}, \mathrm{c}_{0}$ and ℓ_{∞}, where $\Delta \mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}+1}$ for all $\mathrm{k} \in \mathrm{N}$.
Here $\mathrm{c}, \mathrm{c}_{0}$ and ℓ_{∞} denote the classes of convergent, null and bounded sclar valued single sequences respectively. The difference sequence space $b v_{p}$ of the classical space ℓ_{p} is introduced and studied in the case $1 \leq \mathrm{p} \leq \infty$ by Başar and Altay and in the case $0<\mathrm{p}<1$. The spaces $\mathrm{c}(\Delta), \mathrm{c}_{0}(\Delta), \ell_{\infty}(\Delta)$ and bv_{p} are Banach spaces normed by

$$
\|\mathrm{x}\|=\left|\mathrm{x}_{1}\right|+\sup _{\mathrm{k} \geq 1}\left|\Delta \mathrm{x}_{\mathrm{k}}\right| \text { and }\|\mathrm{x}\|_{\mathrm{bv}_{\mathrm{p}}}=\left(\sum_{\mathrm{k}=1}^{\infty}\left|\mathrm{x}_{\mathrm{k}}\right|^{\mathrm{p}}\right)^{1 / \mathrm{p}}, \quad(1 \leq \mathrm{p}<\infty) .
$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$
\mathrm{Z}(\Delta)=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{mn}}\right) \in \mathrm{w}^{2}:\left(\Delta \mathrm{x}_{\mathrm{mn}}\right) \in \mathrm{Z}\right\}
$$

where $\mathrm{Z}=\Lambda^{2}, \chi^{2}$ and $\Delta \mathrm{x}_{\mathrm{mn}}=\left(\mathrm{x}_{\mathrm{mn}}-\mathrm{x}_{\mathrm{mn}+1}\right)-\left(\mathrm{x}_{\mathrm{m}+1 \mathrm{n}}-\mathrm{x}_{\mathrm{m}+1 \mathrm{n}+1}\right)=\mathrm{x}_{\mathrm{mn}}-\mathrm{x}_{\mathrm{mn}+1}-\mathrm{x}_{\mathrm{m}+1 \mathrm{n}}+\mathrm{x}_{\mathrm{m}+1 \mathrm{ln}+1}$ for all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$. The generalized difference double notion has the following representation: $\Delta_{m} x_{m n}=\Delta^{m-1} x_{m n}-\Delta^{m-1} x_{m n+1}-\Delta^{m-1} x_{m+1 n}$ $+\Delta^{\mathrm{m}-1} \mathrm{x}_{\mathrm{m}+1 \mathrm{n}+1}$, and also this generalized difference double notion has the following binomial representation:

$$
\Delta^{\mathrm{m}} \mathrm{x}_{\mathrm{mn}}=\sum_{\mathrm{i}=0}^{\mathrm{m}} \sum_{\mathrm{j}=0}^{\mathrm{m}}(-1)^{\mathrm{i}+\mathrm{j}}\binom{\mathrm{~m}}{\mathrm{i}}\binom{\mathrm{~m}}{\mathrm{j}} \mathrm{x}_{\mathrm{m}+\mathrm{i}, \mathrm{n}+\mathrm{j}} .
$$

2. Definitions and Preliminaries

Let $\Delta^{\mathrm{m}} \mathrm{X}$ be a non empty set. A non-void class $\mathrm{I} \subseteq 2^{\Delta^{\mathrm{m}} \mathrm{X}}$ (power set, of $\Delta^{\mathrm{m}} \mathrm{X}$) is called an ideal if I is additive (i.e $A, B \in I \Rightarrow A \cup B \in I$) and hereditary (i.e $A \in I$ and $B \subseteq A \Rightarrow B \in I$). A non-empty family of sets $F \subseteq 2^{\Delta^{m} X}$ is said to be a filter on $\Delta^{m} X$ if $\phi \notin F ; A, B \in F \Rightarrow A \cap B \in F$ and $A \in F, A \subseteq B \Rightarrow B \in F$. For each ideal I there is a filter $F(I)$ given by $F(I)=\{K \subseteq N: \quad N \backslash K \in I\}$. A non-trivial ideal $I \subseteq 2^{\Delta^{m} X}$ is called admissible if and only if $\left\{\{x\}: x \in \Delta^{\mathrm{m}} \mathrm{X}\right\} \subset \mathrm{I}$.
A double sequence space E is said to be solid or normal if $\left(\alpha_{m n} \Delta^{m} x_{m n}\right) \in E$, whenever $\left(\Delta^{m} x_{m n}\right) \in E$ and for all double sequences $\alpha=\left(\alpha_{m n}\right)$ of scalars with $\left|\alpha_{m n}\right| \leq 1$. for all $m, n \in N$.
Let $\mathrm{n} \in \mathrm{N}$ and X be a real vector space of dimension w , where $\mathrm{n} \leq \mathrm{w}$. A real valued function $\mathrm{d}_{\mathrm{p}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$ $\left\|\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}$ on X satisfying the following four conditions:
(i) $\left\|\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}=0$ if and and only ifd ${ }_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)$ are linearly dependent,
(ii) $\left\|\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}$ is invariant under permutation,
(iii) $\left\|\left(\alpha d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}=|\alpha|\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}, \alpha \in R$
(iv) $\mathrm{d}_{\mathrm{p}}\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right)=\left(\mathrm{d}_{\mathrm{X}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)^{\mathrm{p}}+\mathrm{d}_{\mathrm{Y}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{n}}\right)^{\mathrm{p}}\right)^{1 / \mathrm{p}}$ for $1 \leq \mathrm{p}<\infty$; (or)
(v) $\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right):=\sup \left\{\mathrm{d}_{\mathrm{X}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}_{\mathrm{Y}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{n}}\right)\right\}$, for $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}} \in \mathrm{X}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{n}} \in \mathrm{Y}$ is called the p-product metric of the Cartesian product of n-metric spaces is the p-norm of the n-vector of the norms of the n-sub spaces.
A trivial example of p-product metric of n-metric space is the p-norm space is $X=R$ equipped with the following Euclidean metric in the product space is the p-norm:

$$
\left.\begin{array}{l}
\left\|\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{E}}=\sup \left(\left|\operatorname{det}\left(\mathrm{d}_{\mathrm{mn}}\left(\mathrm{x}_{\mathrm{mn}}, 0\right)\right)\right|\right)= \\
\sup \left(\left(\begin{array}{cccc}
\mathrm{d}_{11}\left(\mathrm{x}_{11}, 0\right) & \mathrm{d}_{12}\left(\mathrm{x}_{12}, 0\right) & \cdots & \mathrm{d}_{1 \mathrm{n}}\left(\mathrm{x}_{1 \mathrm{n}}, 0\right) \\
\mathrm{d}_{21}\left(\mathrm{x}_{21}, 0\right) & \mathrm{d}_{22}\left(\mathrm{x}_{22}, 0\right) & \cdots & \mathrm{d}_{2 \mathrm{n}}\left(\mathrm{x}_{2 \mathrm{n}}, 0\right) \\
\vdots & & & \\
\mathrm{d}_{\mathrm{n} 1}\left(\mathrm{x}_{\mathrm{n} 1}, 0\right) & \mathrm{d}_{\mathrm{n} 2}\left(\mathrm{x}_{\mathrm{n} 2}, 0\right) & \cdots & \mathrm{d}_{\mathrm{nn}}\left(\mathrm{x}_{\mathrm{nn}}, 0\right)
\end{array}\right)\right.
\end{array}\right) .
$$

where $x_{i}=\left(x_{i 1}, \ldots x_{i n}\right) \in R^{n}$ for each $i=1,2, \ldots n$.
If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p-metric. Any complete p-metric space is said to be p-Banach metric space.

3. Main Results

In this section we introduce the notion of different types of I-convergent double sequences. This generalizes and
unifies different notions of convergence for χ^{2}. We shall denote the ideal of $2^{\mathrm{N} \times \mathrm{N}}$ by I_{2}.
Let I_{2} be an ideal of $2^{\mathrm{N} \times \mathrm{N}}$, f be an modulus function. Let u and v be two non-negative integers and $\mu=\left(\mu_{\mathrm{mn}}\right)$ be a sequence of non-zero reals. Then for a sequence $\eta=\left(\eta_{m n}\right)$ be a double analytic sequence of strictly positive real numbers and $\left(\Delta_{(\mu, u)}^{v} X,\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}\right)$ be an p-product of n metric spaces is the p norm of the n -vector of the norms of the n subspaces. Further $\chi^{2}\left(\mathrm{p}-\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{X}\right)$ denotes $\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{X}$-valued sequence space. Now, we define the following sequence spaces:

$$
\begin{gathered}
\chi_{\Delta_{(\mu, u)}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\mathrm{x}=\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right) \in \chi^{2}\left(\mathrm{p}-\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{X}\right): \forall \varepsilon>0, \\
\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}},\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta_{\mathrm{mm}}} \geq \varepsilon\right\} \in \mathrm{I}_{2},
\end{gathered}
$$

for every $\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right) \in \Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{X}$.

$$
\begin{gathered}
\Lambda_{\Delta_{(\mu, u)}}^{2 I_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\mathrm{x}=\left(\mathrm{x}_{\mathrm{mn}}\right) \in \Lambda^{2}\left(\mathrm{p}-\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{X}\right): \exists \mathrm{K}>0, \\
\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}},\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \geq \mathrm{K}\right\} \in \mathrm{I}_{2},
\end{gathered}
$$

for every $d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right) \in \Delta^{m} X$.

$$
\begin{gathered}
\Lambda_{\Delta_{(\mu, u)}^{\mathrm{f}} \mathrm{f}}^{2}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\mathrm{x}=\left(\Delta^{\mathrm{m}} \mathrm{x}_{\mathrm{mn}}\right) \in \Lambda^{2}\left(\mathrm{p}-\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{X}\right): \exists \mathrm{K}>0 \\
\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}},\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta_{\mathrm{mn}}} \leq \mathrm{K}\right\}
\end{gathered}
$$

for every $\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right) \in \Delta_{(\mu, 4)}^{\mathrm{v}} \mathrm{X}$.
If $\eta=\eta_{m n}=1$ for all $m, n \in N$ we obtain

$$
\begin{aligned}
& \chi_{\Delta_{(\ldots, t)}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\chi_{\Delta_{(\ldots, u)}}^{2 \mathrm{I}_{2}} \mathrm{f}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right], \\
& \Lambda_{\Delta_{(\mu, u)}^{v} \mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\Lambda_{\Delta_{(\mu, u)}^{v} \mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right], \\
& \Lambda_{\Delta_{(\mu, u)}^{v} f}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}=\Lambda_{\Delta_{(\mu, u)}^{v} \mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right] .
\end{aligned}
$$

The following well-known inequality will be used in this study: $0 \leq \inf _{m n} \eta_{m n}=H_{0} \leq \eta_{m n} \leq \sup _{m n}=H<\infty$, $\mathrm{D}=\max \left(1,2^{\mathrm{H}-1}\right)$, then

$$
\left|\mathrm{x}_{\mathrm{mn}}+\mathrm{y}_{\mathrm{mn}}\right|^{\eta_{\mathrm{mn}}} \leq \mathrm{D}\left\{\left|\mathrm{x}_{\mathrm{mn}}\right|^{\eta_{\mathrm{mn}}}+\left|\mathrm{y}_{\mathrm{mn}}\right|^{\eta_{\mathrm{mn}}}\right\}
$$

for all $m, n \in N$ and $x_{m n}, y_{m n} \in$ C. Also $\left|x_{m n}\right|^{\eta_{m m} / m+n} \leq \max \left(1,\left|x_{m n}\right|^{H / m+n}\right)$ for all $x_{m n} \in C$.
Theorem 3.1 The classes of sequences $\chi_{\Delta_{(\mu, t)}}^{2 I_{2}} f\left[\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}\right]^{\eta_{m n}}, \Lambda_{\Delta_{(\ldots, u)}}^{2 I_{2}}\left[\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}\right]^{\eta_{m n}}$ are linear spaces over the complex field C.
 similarly. Let $x, y \in \chi_{\Delta_{(\ldots, 0)}}^{2 l_{2}}\left[\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p} \eta^{\eta_{m a n}}\right.$ and $\alpha, \beta \in C$. Then

$$
\left.\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \| \mid\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}} \mid\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mn}}} \geq \frac{\varepsilon}{2}\right\} \in \mathrm{I}_{2},
$$

and

$$
\left.\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mm}}} \geq \frac{\varepsilon}{2}\right\} \in \mathrm{I}_{2} .
$$

Since $\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}$ be an p-product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces and f is an modulus function, the following inequality holds:

$$
\begin{aligned}
& \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[f\left[\frac{\left(\mid \alpha \Delta_{(\mu \mu)}^{v} \mathrm{x}_{\mathrm{mn}}+\beta \Delta_{(\mu \mu)}^{v} \mathrm{y}_{\mathrm{mn}}\right)^{1 / m+n}}{|\alpha|^{1 / m+n}+|\beta|^{1 / m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{m n}} \leq \\
& \left.\frac{D}{\text { rs }} \sum_{m=1}^{r} \sum_{n=1}^{s}\left[\frac{|\alpha|^{1 / m+n}}{|\alpha|^{1 / m+n}+|\beta|^{1 / m+n}} \mathrm{f} \|\left(\mid\left(\Delta_{(\mu, 1)}^{v} \mathrm{X}_{\mathrm{mn}}\right)^{1 / m+n}\right), \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mm}}}+ \\
& \left.\frac{D}{\text { rs }} \sum_{m=1}^{r} \sum_{n=1}^{s}\left[\frac{|\alpha|^{1 / m+n}}{|\alpha|^{1 / m+n}+\mid \beta^{1 / m+n}} f\| \|\left(\left|\Delta_{(\mu, 1)}^{v} y_{m n}\right|^{1 / m+n}\right), d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right) \|_{p}\right]^{\eta_{m m}} \leq \\
& \left.\left.\frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left(\|\left(\mid \Delta_{(\mu, 4)}^{v} \mathrm{x}_{\mathrm{mn}}\right)\right)^{1 / \mathrm{m+n}}\right), \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mm}}}+ \\
& \left.\left.\frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{s}\left[\mathrm{f}\| \|\left(\Delta_{(\mu, \mu)}^{v} \mathrm{y}_{\mathrm{mn}} \mid\right)^{1 / m+\mathrm{n}}\right), \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mm}}} .
\end{aligned}
$$

From the above inequality we get

$$
\begin{aligned}
& \left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}=1}\left[\mathrm{f}\left\|\left(\frac{\left.\left|\alpha \Delta_{(\mu, 4)}^{v} \mathrm{x}_{\mathrm{mn}}+\beta \Delta_{(\mu, \mu)}^{v} \mathrm{y}_{\mathrm{mn}}\right|\right)^{1 / m+n}}{|\alpha|^{1 / m+n}+|\beta|^{1 / m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]\right\} \\
& \left.\subset\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, \mu)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mm}}} \geq \frac{\varepsilon}{2}\right\} \in \mathrm{I}_{2} \\
& \left.\cup\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mm}}} \geq \frac{\varepsilon}{2}\right\} \in \mathrm{I}_{2} .
\end{aligned}
$$

This completes the proof.
Theorem3.2The class of sequence $\chi_{\Delta_{(\ldots, y)}}^{21_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}$ is a paranormed space with respect to the paranorm defined by

$$
\left.\operatorname{gr}_{s}(x)=\inf \left\{\left(\sup _{r \mathrm{rs}} \frac{1}{\text { Is }} \sum_{m=1}^{r} \sum_{\mathrm{n}=1}^{s}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, 1)}^{v} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mm}}}\right)^{\frac{1}{\mathrm{H}}} \leq 1\right\}
$$

for every $d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(\mathrm{x}_{n-1}, 0\right) \in \mathrm{X}$.
Proof: $\mathrm{g}_{\mathrm{rs}}(\theta)=0$ and $\mathrm{g}_{\mathrm{rs}}(-\mathrm{x})=\mathrm{g}_{\mathrm{rs}}(\mathrm{x})$ are easy to prove, so we omit them.
Let us take $\mathrm{x}, \mathrm{y} \in \chi_{\Delta_{(\mu, u)} \mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mm}}}$.
Let

$$
\left.\operatorname{gr}_{\mathrm{s}}(\mathrm{x})=\inf \left\{\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\mid \Delta_{(\mu, 4)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \leq 1, \forall \mathrm{x}\right\}
$$

and

$$
\begin{aligned}
& \text { Then we have } \\
& \left.\operatorname{gr}_{\mathrm{s}}(\mathrm{y})=\inf \left\{\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \leq 1, \forall \mathrm{y}\right\},
\end{aligned}
$$

$\left.\sup _{\mathrm{rs}} \frac{1}{\text { rs }} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\mid \Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}+\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right)^{1 / \mathrm{m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \leq$
$\left.\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\mid \Delta_{(\mu, 4)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}+$
$\left.\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, 4)}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}$.
Thus

$$
\left.\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}+\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mn}}} \leq 1
$$

and $\mathrm{g}_{\mathrm{rs}}(\mathrm{x}+\mathrm{y})=\mathrm{g}_{\mathrm{rs}}(\mathrm{x})+\mathrm{g}_{\mathrm{rs}}(\mathrm{y})$.
Now, let $\lambda_{m n}^{u} \rightarrow \lambda$, where $\lambda_{\text {mn }}^{u}, \lambda \in C$ and $g_{\text {rs }}\left(\Delta_{(\mu, \mu)}^{v} \mathrm{x}_{\mathrm{mn}}^{u}-\Delta_{(\mu, \mu)}^{v} \mathrm{x}_{\mathrm{mn}}\right) \rightarrow 0$ as $\mathrm{u} \rightarrow \infty$. We have to prove that $\mathrm{g}_{\mathrm{rs}}\left(\lambda_{\mathrm{mn}} \Delta_{(\mu, u)}^{v} \mathrm{x}_{\mathrm{mn}}^{u}-\lambda \Delta_{(\mu, u)}^{v} \mathrm{x}_{\mathrm{mn}}\right) \rightarrow 0$ as $u \rightarrow \infty$. Let
$\left.\operatorname{gr}_{\mathrm{s}}\left(\mathrm{x}^{\mathrm{u}}\right)=\left\{\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\mid \Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \leq 1, \forall \mathrm{x} \in \mathrm{X}\right\}$
and

$$
\left.\mathrm{gr}_{\mathrm{s}}\left(\mathrm{x}^{\mathrm{u}}-\mathrm{x}\right)=\left\{\sup _{\mathrm{rs}} \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f} \|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}-\Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}} \leq 1,\right\}
$$

for all $\mathrm{x} \in \mathrm{X}$. We observe that

$$
\left.f\left(\| \frac{\left(\lambda_{m n}^{u} \Delta_{(\mu, u)}^{v} x_{m n}^{u}-\lambda \Delta_{(\mu, u)}^{v} x_{m n}\right)^{1 / m+n}}{\left|\lambda_{m n}^{u}-\lambda\right|^{1 / m+n}+|\lambda|^{1 / m+n}}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right) \|_{p}\right) \leq
$$

$$
\begin{gathered}
f\left(\|\left.\left(\frac{\left.\left.\lambda_{m n}^{u} x_{m n}^{u}-\lambda \Delta_{(\mu, u)^{v}}^{v}\right)_{m n}^{u}\right)^{1 / m+n}}{\left|\lambda_{m n}^{u}-\lambda\right|^{1 / m+n}+|\lambda|^{1 / m+n}}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right)\right|_{p}\right)+ \\
f\left(\left\|\left(\frac{\left.\lambda \Delta_{(\mu, u)}^{v} x_{m n}^{u}-\lambda \Delta_{(\mu, u)}^{v} x_{m p} \mid\right)^{1 / m+n}}{\left|\lambda_{m n}^{u}-\lambda\right|^{1 / m+n}+|\lambda|^{1 / m+n}}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right)\right\|_{p}\right) \leq \\
\left.\frac{\left|\lambda_{m n}^{u}-\lambda\right|}{\left|\lambda_{m n}^{u}-\lambda\right|+|\lambda|} f\left(\|\left(\mid \Delta_{(\mu, u)}^{v} x_{m n}^{u}\right)^{1 / m+n}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right) \|_{p}\right)+ \\
\left.\left.\left.\left.\frac{|\lambda|}{\left|\lambda_{m n}^{u}-\lambda\right|+|\lambda|} f\left(\|| | \Delta_{(\mu, u)}^{v}\right)_{m n}^{u}-\Delta_{(\mu, u)}^{v} x_{m n} \right\rvert\,\right)^{1 / m+n}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right) \|_{p}\right) .
\end{gathered}
$$

From this inequality, it follows that

$$
\mathrm{f}\left(\left\|\left(\frac{\left.\lambda_{\mathrm{mn}}^{u} \Delta_{(\mu, u)}^{v} \mathrm{x}_{\mathrm{mn}}^{u}-\lambda \Delta^{2} \mathrm{x}_{\mathrm{mn}} \mid\right)^{1 / m+n}}{\left|\lambda_{\mathrm{mn}}^{u}-\lambda\right|^{1 / m+n}+|\lambda|^{1 / m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right)^{\eta_{\mathrm{mn}}} \leq 1
$$

and consequently

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{rs}}\left(\lambda_{\operatorname{mn}}^{u} \Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}-\lambda \Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right) \leq\left(\mid \lambda_{\mathrm{mn}}^{u}-\lambda\right)^{\frac{\eta_{\mathrm{mn}}}{\mathrm{H}}} \inf \left\{\mathrm{~g}_{\mathrm{rs}}\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}\right)\right\}+ \\
& (|\lambda|)^{\frac{\eta_{\mathrm{mm}}}{\mathrm{H}}} \inf \left\{\mathrm{~g}_{\mathrm{rs}}\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}-\mathrm{x}\right)\right\} \leq \max \left\{|\lambda|,(|\lambda|)^{\frac{\eta_{\mathrm{mm}}}{\mathrm{H}}}\right\} \mathrm{g}_{\mathrm{rs}}\left(\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}^{\mathrm{u}}-\Delta^{\mathrm{m}} \mathrm{x}_{\mathrm{mn}}\right) .
\end{aligned}
$$

Hence by our assumption the right hand side tends to zero as u, m and $\mathrm{n} \rightarrow \infty$. This completes the proof.
Theorem 3.3(i) If $0<\inf _{\mathrm{mn}} \eta_{\mathrm{mn}}=\mathrm{H}_{0} \leq \eta_{\mathrm{mn}}<1$, then
$\chi_{\Delta_{(\mu, t)}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta} \subset \chi_{\Delta_{(\mu, u)}}^{2 \mathrm{I}_{2}} \mathrm{f}\left[\left\|\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]$.
(ii) If $1 \leq \eta_{m n} \leq \sup _{m n} \eta_{m n}=H<\infty$, then
$\chi_{\Delta_{(\mu \mu)^{c} \mathrm{f}}^{2 \mathrm{I}_{2}}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta} \subset \chi_{\mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}$.
(iii) If $0<\eta_{m \mathrm{n}}<\mu_{\mathrm{mn}}<\infty$ and $\left\{\frac{\mu_{\mathrm{mn}}}{\eta_{\mathrm{mn}}}\right\}$ is double analytic, then
$\chi_{\Delta_{(\mu, u)}}^{2 I_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta} \subset \chi_{\Delta_{(\ldots, t)}}^{2 \mathrm{I}_{2}}\left[4\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mu}$.
Proof: The proof can be established using standard technique.
The following result is well known.
Lemma 3.4 If a sequence space E is solid, then it is monotone.
Theorem 3.5 The class of sequence $\chi_{\Delta_{(\mu u t)}}^{2 I_{2}}\left[\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}\right]^{\eta}$ is not solid and hence not monotone.
Proof: It is routine verification. Therefore we omit the proof.

Theorem 3.6 Let f, f_{1} and f_{2} be modulus functions. Then we have

Proof: (i) Let $\inf _{\mathrm{mn}} \eta_{\mathrm{mn}}=\mathrm{H}_{0}$. For given $\varepsilon>0$, we first choose $\varepsilon_{0}>0$ such that $\max \left\{\varepsilon_{0}^{\mathrm{H}}, \varepsilon_{0}^{\mathrm{H}_{0}}\right\}<\varepsilon$. Now using the continuity of f , choose $0<\delta<1$ such that $0<\mathrm{t}<\delta$ implies $\mathrm{f}(\mathrm{t})<\varepsilon_{0}$.

$$
\text { Let } \left.\Delta_{(\mu, \mu)}^{v} \mathrm{x} \in \chi_{\Delta_{(\ldots, u, 5} \mathrm{F}_{1}}^{2 I_{2}}\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{p}\right]^{\eta}
$$

We observe that

$$
A(\delta)=\left\{(r, s) \in N \times N: \frac{1}{\text { rs }} \sum_{m=1}^{r} \sum_{n=1}^{s}\left[f_{1}\left\|\left(\left(\Delta_{(\mu, u))}^{v} x_{m n} \mid\right)^{1 / m+n}, d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n-1}, 0\right)\right)\right\|_{p}\right]^{\eta_{\mathrm{mn}}} \geq \delta^{H}\right\} \in I_{2} .
$$

Thus if $(\mathrm{r}, \mathrm{s}) \notin \mathrm{A}(\delta)$ then

$$
\begin{aligned}
& \left.\frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1} \|\left(\mid \Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}<\delta^{\mathrm{H}} \\
\Rightarrow & \left.\sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1} \|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}<\mathrm{rs} \delta^{\mathrm{H}}, \\
\Rightarrow & {\left.\left[\mathrm{f}_{1} \|\left(\| \Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}} \mid\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right]^{\eta_{\mathrm{mn}}}<\delta^{\mathrm{H}}, \text { for all } \mathrm{m}, \mathrm{n}=1,2, \ldots } \\
\Rightarrow & \left.\mathrm{f}_{1}\left(\|\left(\left|\Delta_{(\mu, u))^{\mathrm{v}}}^{\mathrm{x}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)<\delta, \text { for all } \mathrm{m}, \mathrm{n}=1,2, \ldots
\end{aligned}
$$

Hence from above inequality and using continuity of f , we must have

$$
\begin{gathered}
\left.f\left(f_{1}\left(\|\left(\left|\Delta_{(\mu, u)}^{v} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right)<\varepsilon_{0} \text {, for all } \mathrm{m}, \mathrm{n}=1,2, \ldots \\
\left.\sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left(\mathrm{f}_{1} \|\left(\left|\Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{\mathrm{mn}}}<\mathrm{rs} \max \left\{\varepsilon_{0}^{\mathrm{H}}, \varepsilon_{0}^{\mathrm{H}_{0}}\right\}<\mathrm{rs} \varepsilon \\
\left.\Rightarrow \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}\left(\mathrm{f}_{1} \|\left(\left|\Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{m n}}<\varepsilon .
\end{gathered}
$$

Hence we have
$\left.\left\{(\mathrm{r}, \mathrm{s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{s}\left[\mathrm{f}\left(\mathrm{f}_{1} \|\left(\left.\right|_{(\mu, \mathrm{u})} ^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{\mathrm{mn}}}\right\} \geq \varepsilon \subset \mathrm{A}(\delta) \in \mathrm{I}_{2}$.

Then the fact that

$$
\begin{gathered}
\left.\frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)\left(\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{\mathrm{mn}}} \leq \\
\left.\frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1}\left(\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{\mathrm{mn}}}+ \\
\left.\quad \frac{\mathrm{D}}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{2}\left(\|\left(\left|\Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right|\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right) \|_{\mathrm{p}}\right)\right]^{\eta_{\mathrm{mn}}} .
\end{gathered}
$$

This completes the proof.
Theorem 3.7 The class of sequence $\Lambda_{\Delta_{(1.1)} f}^{2 I_{2}}\left[\left\|\left(d_{1}\left(x_{1}, 0\right), \ldots, d_{n}\left(x_{n}, 0\right)\right)\right\|_{p}\right]^{\eta}$ is a sequence algebra
Proof: Let $\left(\Delta_{(\mu, \mathrm{u})}^{v} x_{m n}\right),\left(\Delta_{(\mu, \mathrm{u})}^{v} x_{m n}\right) \in \Lambda_{\Delta_{(u, u)} \mathrm{f}}^{2 \mathrm{I}_{2}}\left[\left\|\left(\mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta}$ and $0<\varepsilon<1$. Then the result follows from the following inclusion relation:

$$
\begin{aligned}
& \left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1}\left\|\left(\mid\left(\Delta_{(\mu, u)}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}} \otimes \Delta_{(\mu, \mathrm{u})}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}}\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}\right\} \in \mathrm{I}_{2} \\
& \quad \supseteq\left\{\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1}\left\|\left(\left(\Delta_{(\mu, u))^{\mathrm{v}}}^{\mathrm{v}} \mathrm{x}_{\mathrm{mn}} \mid\right)^{1 / \mathrm{m+n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\mathrm{n}_{\mathrm{mn}}}<\varepsilon\right\} \in\right\} \\
& \cap\left\{\left\{(\mathrm{r}, \mathrm{~s}) \in \mathrm{N} \times \mathrm{N}: \frac{1}{\mathrm{rs}} \sum_{\mathrm{m}=1}^{\mathrm{r}} \sum_{\mathrm{n}=1}^{\mathrm{s}}\left[\mathrm{f}_{1}\left\|\left(\left(\Delta_{(\mu, u))}^{\mathrm{v}} \mathrm{y}_{\mathrm{mn}} \mid\right)^{1 / \mathrm{m}+\mathrm{n}}, \mathrm{~d}_{1}\left(\mathrm{x}_{1}, 0\right), \ldots, \mathrm{d}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, 0\right)\right)\right\|_{\mathrm{p}}\right]^{\eta_{\mathrm{mn}}}<\varepsilon\right\} \in \mathrm{I}_{2}\right\}
\end{aligned}
$$

Similarly we can prove the result for other cases.
Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

References

Altay, J., \& Başar, F. (2005). Some new spaces of double sequences. Journal of Mathematical Analysis and Applications, 309(1), 70-90.
Başar, F., \& Sever, Y. (2009). The space \mathcal{L}_{p} of double sequences. Mathematical Journal of Okayama University, 51, 149-157.
Basarir, M., \& Solancan, O. (1999). On some double sequence spaces. Journal of Indian Academy Mathematics, 21(2), 193-200.
Bromwich, T. J. I'A. (1965). An introduction to the theory of infinite series. Macmillan and Co. Ltd. New York.
Connor, J. (1989). On strong matrix summability with respect to a modulus and statistical convergence. Canadian Mathematical Bulletin, 32(2), 194-198.
Gökhan, A., \& Çolak, R. (2005). Double sequence spaces ℓ_{2}^{∞}.Ibid., 160(1), 147-153.
Hardy, G. H. (1917). On the convergence of certain multiple series.Proceedings of the Cambridge Philosophical Society, 19, 86-95.
Kamthan, P. K., \& Gupta, M. (1981). Sequence spaces and series. Lecture notes. Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York.
Kizmaz, H. (1981). On certain sequence spaces. Canadian Mathematical Bulletin, 24(2), 169-176.
Lindenstrauss, J., \& Tzafriri, L. (1971). On Orlicz sequence spaces.Israel Journal of Mathematics, 10, 379-390.
Maddox, I. J. (1986). Sequence spaces defined by a modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 100(1), 161-166.

Moricz, F. (1991). Extentions of the spaces c and c_{0} from single to double sequences. Acta Mathematica Hungariga, 57(1-2), 129-136.
Moricz, F., \& Rhoades, B. E. (1988). Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 104, 283-294.
Mursaleen, M. (2004). Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications, 293(2), 523-531.
Mursaleen, M., \& Edely, O. H. H. (2003). Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288(1), 223-231.
Mursaleen, M., \& Edely, O. H. H. (2004). Almost convergence and a core theorem for double sequences. Journal of Mathematical Analysis and Applications, 293(2), 532-540.
Mursaleen, M., \& Sharma, S. K. (2014). Entire sequence spaces defined by Musielak-Orlicz function on locally convex Hausdorf topological spaces. Iranian Journal of Science and Technology, Transaction A, 38.
Mursaleen, M., Alotaibi, A., \& Sharma, S. K. (2014). New classes of generalized seminormed difference sequence spaces. Abstract and Applied Analysis, 7.
Mursaleen, M., Sharma, S. K., \& Kilicman, A. (2013). Sequence spaces defined by Musielak-Orlicz function over n-normed space. Abstract and Applied Analysis, Article ID 364743, pages 10.
Pringsheim, A. (1900). Zurtheorie derzweifach unendlichen zahlenfolgen.Mathematische Annalen, 53, 289-321.
Subramanian, N., \& Misra, U. K. (2010). The semi normed space defined by a double gai sequence of modulus function. Fasciculi Mathematici, 46.
Tripathy, B.C. (2003). On statistically convergent double sequences. Tamkang Journal of Mathematics, 34(3), 231-237.
Tripathy, B. C., \& Chandra, P. (2011). On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function. Analysis in Theory and Applications, 27(1), 21-27.
Tripathy, B. C., \& Dutta, A. J. (2007). On fuzzy real-valued double sequence spaces ${ }_{2} \ell_{\mathrm{F}}^{\mathrm{p}}$. Mathematical and Computer Modelling, 46(9-10), 1294-1299.
Tripathy, B.C., \& Dutta, A. J. (2010). Bounded variation double sequence space of fuzzy real numbers. Computers and Mathematics with Applications, 59(2), 1031-1037.
Tripathy, B. C., \& Dutta, A. J. (2013). Lacunary bounded variation sequence of fuzzy real numbers. Journal in Intelligent and Fuzzy Systems, 24(1), 185-189.
Tripathy, B.C., \& Dutta, H. (2010). On some new paranormed difference sequence spaces defined by Orlicz functions. Kyungpook Mathematical Journal, 50(1), 59-69.
Tripathy, B. C., \& Hazarika, B. (2008). I-convergent sequence spaces associated with multiplier sequence spaces. Mathematical Inequalities and Applications, 11(3), 543-548.
Tripathy, B. C., \& Mahanta, S. (2004). On a class of vector valued sequences associated with multiplier sequences. Acta Mathematica Applicata Sinica (Eng. Ser.), 20(3), 487-494.
Tripathy, B. C., \& Sarma, B. (2008). Statistically convergent difference double sequence spaces. Acta Mathematica Sinica, 24(5), 737-742.
Tripathy, B. C., \& Sarma, B. (2009). Vector valued double sequence spaces defined by Orlicz function. Mathematica Slovaca, 59(6), 767-776.
Tripathy, B. C., \& Sarma, B. (2012). On I-convergent Double sequence spaces of fuzzy numbers. Kyungpook Math. Journal, 52(2), 189-200.
Tripathy, B. C., \& Sen, M. (2006). Characterization of some matrix classes involving paranormed sequence spaces. Tamkang Journal of Mathematics, 37(2), 155-162.
Tripathy, B. C., Hazarika, B., \& Choudhary, B. (2012). Lacunary I-convergent sequences. Kyungpook Math. Journal, 52(4), 473-482.
Tripathy, B. C., Sen, M., \& Nath, S. (2012). I-convergence in probabilistic n-normed space.Soft Computing, 16, 1021-1027. http://dx.doi.org/10.1007/s00500-011-0799-8.

Turkmenoglu, A. (1999). Matrix transformation between some classes of double sequences. Journal of Institute of Mathematics and Computer Science Maths Series, 12(1), 23-31.

Zeltser, M. (2001). Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

