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Abstract 
In this paper a multi item integrated inventory model is presented with reparability of returned items. It is 
assumed here that only a certain ratio of returned items can be repaired and the remaining stock of returned items 
is salvaged. By using these returned items, the waste can be reduced, which pollute the environment. This is a 
green supply chain where the demand for the products is selling price dependent and production rate is taken as a 
function of demand rate. The shortages are allowed here. A numerical example and sensitivity analysis are also 
presented to illustrate the model. 
Keywords: integrated inventory, reparability, multi items, deterioration, shortages 
1. Introduction 
In so many industrial systems, there is more than one manufacturing plant and they produce different type of 
items. Most of the classical inventory system tries to calculate the economic production quantity by which the 
total cost of the system can be optimized. But these models are developed only for single item. In this model we 
have presented an integrated inventory model for multi items. Considering multi items in inventory model, 
(Ben-Daya & Raouf, 1993) have developed an approach for more realistic and general concept of budgetary and 
floor constraints, where the demand of items follows a uniform probability distribution function. A multi item 
inventory model for deteriorating items is developed by (Bhattacharya, 2005). (Roy et al., 1995) developed multi 
deteriorating items with constraint space and investment and obtained some interesting results.( Balkhi ,2009) 
has introduced a general model for multi item production inventory system in which the cost parameters are 
treated as an arbitrary function of time. (Yadav et al., 2011) developed a fuzzy multi item production inventory 
model with reliability and flexibility under limited storage capacity with deterioration via geometric 
programming. (Singhal & Singh, 2013) introduced a volume flexible multi items inventory system with 
imprecise environment. (Tayal et al., 2014) presented a multi item inventory model for deteriorating items with 
expiration date and allowable shortages.   
However, in most of the classical production inventory models even concerned with multi items the attention is 
given only for the optimality of separate member of the integrated system. For any successful supply chain 
coordination between the vendor and the buyer is required. This close relationship between vendor and buyer is a 
key of success for any business organization. Then, a new approach of integration of all the functions in a supply 
chain was identified.( Singh & Diksha ,2009) developed an integrated cooperative inventory model for vendor 
and buyer under progressive credit period in which demand is assumed to be a multivariate function. (Hadidi et 
al., 2011) developed an integrated production inventory model for scheduling and perfect maintenance. This 
work integrates, simultaneously, the decisions of preventive maintenance and job order sequencing for a single 
machine.( Soni & Patel,2014) presented an optimal decision policy for integrated vendor-buyer inventory system 
concerning defective items with variable lead time and service level constraint. (Tayal et al, 2016) introduced an 
integrated production inventory model for perishable products with trade credit period and investment in 
preservation technology. 
Concerning the deterioration and reparability in an inventory model is more realistic and general concept. (Park, 
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1983) studied a production inventory system for a single product with deteriorating raw materials. (Yan & Cheng, 
1998) introduced an optimal production stopping and restarting times for an EOQ model with deteriorating 
items. 
(Maity & Maiti, 2009) developed optimal inventory policies for deteriorating complementary and substitute 
items. (Singh et al., 2010) presented an EOQ model with Pareto distribution for deterioration, Trapezoidal type 
demand and backlogging under trade credit policy. Singh et al. (2013) introduced an EOQ model with volume 
agility, variable demand rate, Weibull deterioration rate and inflation. (Tayal et al.,2014) developed a two 
echelon supply chain model for deteriorating items with effective investment in preservation technology after 
that (Tayal et al. ,2014) studied an inventory model for deteriorating items with seasonal products and an option 
of an alternative market. (Singh et al., 2015) presented an EPQ inventory model for non-instantaneous 
deteriorating item with time dependent holding cost and exponential demand rate. (Singh et al., 2016) developed 
an economic order quantity model for deteriorating products having stock dependent demand with trade credit 
period and preservation technology. One of the first authors was (Schrady, 1967) who developed a simple 
heuristic procedure for determining the lot sizes of remanufacturing and manufacturing lots. He proposed a 
simple EOQ-technique that optimizes the sum of fixed and holding costs per time unit. (Teunter.2001) 
generalized the results of Schrady in a way that he examined different structures of a remanufacturing cycle. His 
analysis concludes that it is not efficient if more than one remanufacturing lot and more than one manufacturing 
lot are established in the same repair cycle. (Saxena et.al. 2013) presented two-warehouse production inventory 
model with variable demand and permissible delay in payment under inflation. (Saxena et.al.2014) generalized 
production model under fuzzy environment. They compared both the results obtained considering crisp data as 
well as fuzzy data. (Singh & Singh, 2013) presented green supply chain model with product remanufacturing 
under volume flexible environment. (Singh & Prasher, 2014) introduced a production inventory model with 
flexible manufacturing, random machine breakdown and stochastic repair time. 
In this paper we have presented an integrated inventory model for multi items in a closed loop supply chain with 
reparability of returned and collected items. The shortages are allowed for retailer and assumed to be completely 
lost. The repaired items are assumed to be equivalent to fresh products.  
2. Assumptions and Notations  
2.1 Assumptions 
1. This is a multi item inventory model, presented for the integrated production of new products and 

reparability of collected items. 
2. The demand for the products is a function of selling price. 
3. The products after reparability are assumed to be equivalent to new products. 
4. The production rate is assumed to be a function of demand rate. 
5. The used items are collected at a rate of ( )i i ib sα β− . 
6. A certain ratio γi of collected items, whose quality level is acceptable for reparability, is used for production 

and rest of the material is salvaged. 
7. The items are assumed to be deteriorating in nature. 
8. The shortages are allowed for retailer and occurring shortages are assumed to be completely lost. 
2.2 Notations 

θ deterioration rate 
αi, βi demand parameters for ith item 
si1, si2 selling price per unit for the producer and the retailer for ith  item 
ai production parameter for ith item, a≥1 
bi collection parameter for ith item, b<1 
    t1i time for remanufacturing for ith item 

     t2i time at which inventory level for remanufactured ith item becomes zero 
              t3i time up to which production of fresh ith items occur 
              Ti length of the complete cycle for ith item  
              Iri(t) inventory level for remanufactured ith item at any time t 
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              Imi(t) inventory level for fresh produced ith item at any time t 
              IRi(t) inventory level of collected ith item at any time t 
              Isi(t) retailer’s inventory level for ith item at any time t 
               vi the time at which the inventory level of ith item becomes zero for retailer 
               n number of replenishment cycles for the retailer 
              cmi procurement cost per unit for ith item 
              cRi acquisition cost per unit for ith item 
              Pmi production cost per unit for ith item 
              Pri remanufacturing cost per unit for ith item 
     hri, hmi, hRi, hsi holding cost per unit for ith item for remanufactured items, produced items,   
                 collective items and for the retailer 
             Oi ordering cost per order 
             c1i purchasing cost per unit for ith item for the retailer 
             c2i lost sale cost cost per unit for ith item for the retailer 
      K1i, K2i, K3i set up cost for remanufacturing, fresh production and for the collection 
           I1i(0) initial inventory level for the retailer for ith

 item 
           Q2i shortage amount for ith item  
3. Mathematical Model 
In this the used items are collected from the market and a certain ratio of these items is repaired. In the above 
mentioned figure the remanufacturing graph is shown. During [0, t1i] remanufacturing occurs and the inventory 
level of collected items decreases and becomes zero at time t1i. During [t1i, t2i] the inventory level of repaired 
items depletes due to combined effect of demand and deterioration. After t = t1i the inventory level of collected 
items again piled up. At t = t2i the manufacturing of fresh products start and occurs up to t = t3i. The below 
mentioned figure (1) shows the inventory level of this system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Inventory time behavior for repaired items, fresh produced items and returned items 
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These are the differential equations showing the inventory with the variation in time for repaired items, fresh 
production and collected items. 

1
( ) ( ) ( 1)( )ri

ri i i i
dI t

I t a s
dt

θ α β+ = − −  10 it t≤ ≤  (1) 

1
( ) ( ) ( )ri

ri i i i
dI t

I t s
dt

θ α β+ = −  1 2i it t t≤ ≤  (2) 

1
( ) ( ) ( 1)( )mi

mi i i i
dI t

I t a s
dt

θ α β+ = − −  2 3i it t t≤ ≤  (3) 

1
( ) ( ) ( )mi

mi i i i
dI t

I t s
dt

θ α β+ = −  3i it t T≤ ≤  (4) 

1
( ) ( ) ( 1)( )Ri

Ri i i i
dI t

I t b s
dt

θ α β+ = − −  10 it t≤ ≤  (5) 

1
( ) ( ) ( )Ri

Ri i i i
dI t

I t b s
dt

θ α β+ = −  1i it t T≤ ≤   (6) 

with boundary conditions: 

2 2 1(0) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, (0) ( )ri ri i mi i mi i Ri i Ri Ri iI I t I t I T I t I I T= = = = = =    (7) 

The solution of these above mentioned equations are given as follow: 

1
( 1)( ) ( )(1 )t

ri i i i
aI t s e θα β
θ

−−= − −  10 it t≤ ≤  (8) 

2( )1( )( ) ( 1)it ti i i
ri

s
I t eθα β

θ
−−

= −  1 2i it t t≤ ≤  (9) 

2( )
1

( 1)( ) ( )(1 )it t
mi i i i

aI t s eθα β
θ

−−= − −  2 3i it t t≤ ≤  (10) 

( )1( )( ) ( 1)iT ti i i
mi

s
I t eθα β

θ
−−

= −  3i it t T≤ ≤  (11) 

1( )1( )( ) ( )(1 )it ti i i
Ri

s
I t b a eθα β

θ
−−

= − −  10 it t≤ ≤  (12) 

1( )
1( ) ( )(1 )it t

Ri i i i
bI t s eθα β
θ

−= − −  1i it t T≤ ≤  (13) 

 

 
 
 
 
 
 
 
 
 
 

Figure 2. Retailer’s inventory 
 



www.ccsenet.org/mas Modern Applied Science Vol. 10, No. 7; 2016 

78 
 

If Isi(t) denotes the retailer’s inventory level for ith item at any time t, then the differential equations showing the 
inventory level at any time t are given as follow: 

2
( ) ( ) ( )si

si i i i
dI t I t s

dt
θ α β+ = − −  0 it v≤ ≤  (14) 

2
( ) ( )si

i i i
dI t s

dt
α β= − −  i

i
Tv t
n

≤ ≤  (15) 

with boundary condition ( ) 0si iI v =                     (16) 
The solution of these above mentioned equations are given as follow: 

( )2( )( ) ( 1)iv ti i i
si

sI t eθα β
θ

−−
= −  0 it v≤ ≤  (17) 

2( ) ( )( )si i i i iI t s v tα β= − −  i
i

Tv t
n

≤ ≤  (18) 

The total average cost for the ith item for the manufacturer is given by: 
1. . mi

i

T AC
T

= [Procurement cost + Acquisition cost + Production cost +  
           Remanufacturing cost + Holding cost + Salvage cost + Set up cost]  (19) 

The total average cost for the ith item for the retailer is given by: 
. . si

i

nT A C
T

= [Purchasing cost + Holding cost + ordering cost + lost sale cost]  (20) 
Different associated costs for manufacturer: 

Procurement cost =
3

2

1( )
i

i

t

mi i i i
t

c a s dtα β−  

Procurement cost = 1 3 2( )( )mi i i i i ic a s t tα β− −   (21) 

Acquisition cost = 1
0

( )
iT

Ri i i ic b s dtα β−  

Acquisition cost = 1( )Ri i i i ic bT sα β−   (22) 

Production cost = 
3

2

1( )
i

i

t

mi i i i
t

P a s dtα β−    

Production cost = 3 2 1( )( )mi i i i i iP a t t sα β− −   (23) 

Remanufacturing cost = 
1

1
0

( )
it

ri i i iP a s dtα β−  

Remanufacturing cost = 1 1( )ri i i i iP at sα β−   (24) 
Set up cost = 1 2 3i i iK K K+ +   (25) 

Salvage cost = 1{(1 ) ( )}vi i i i i is b s Tγ α β− −   (26) 
Holding cost =
 

1 2 3 1

1 2 3 10 0

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i i

t t t T t T

ri ri ri ri mi mi mi mi Ri Ri Ri Ri
t t t t

h I t dt h I t dt h I t dt h I t dt h I t dt h I t dt+ + + + +       
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Holding cost = 
1 2 1( )

1
1 1 1 2

( )( 1) 1 1{ ( )( ) ( ) ( )}
i i it t t

i i i
ri i i i i i i

sa e eh s t t t
θ θα βα β

θ θ θ θ

− −−− − −− + + + −  

2 3 3( ) ( )
1

1 3 2 3
( )( 1) 1 1{ ( ){( ) } {( ) ( )}}

i i i it t T t
i i i

mi i i i i i i i
sa e eh s t t T t

θ θα βα β
θ θ θ θ

− −−− − −+ − − + + − −  

1 1( )
1

1 1 1
( )( ) 1 1{ ( )( ) {( ) ( )}}

i i it t T
i i i

Ri i i i i i i
sb a e eh s t b T t

θ θα βα β
θ θ θ θ

−−− − −+ − − + + −         

(27) 
Different associated costs for retailer: 
Purchasing cost = 1 2 1( (0) )i i iI Q c+  
where  

2
1

( )(0) ( 1)ivi i i
i

sI eθα β
θ

−
= −  

2 2( )

i

i

T
n

i i i
v

Q s dtα β η= −  

P.C. = 2
2 1

( ){ ( 1) ( ) ( )}ivi i i i
i i i i i

s Te s v c
n

θα β α β η
θ

−
− + − −        (28) 

Holding cost = 
0

( )
iv

si sih I t dt  

2( ) 1. ( )
iv

i i i
s si i

s eH C h v
θα β

θ θ
− −= −                         (29) 

Ordering cost = iO                                 (30) 

Lost sale cost = 2 2( )
i

i

T
n

i i i i
v

c s dtα β−  

2 2. . ( ) ( )i
i i i i i i

TL S C c s v
n

α β= − −                    (31) 

Hence the total cost per unit time of the given inventory model as a function of t1i, t2i, t3i, vi and Ti say T.A.C.(t1i, 
t2i, t3i, vi, Ti) is given by 

1 3 2 1 3 2 1
1. . . { ( )( ) ( ) ( )( )mi i i i i i Ri i i i i mi i i i i iT AC c a s t t c bT s P a t t s
T

α β α β α β= − − + − + − − +  

1 1 1 2 3 1( ) {(1 ) ( )}ri i i i i i i i vi i i i i iP at s K K K s b s Tα β γ α β− + + + + − − +  
1 2 1 2 3( ) ( )

1
1 1 1 2 1 3 2

( )( 1) 1 1 ( 1) 1{ ( )( ) ( ) ( )} { ( ){( ) }
i i i i it t t t t

i i i
ri i i i i i i mi i i i i i

sa e e a eh s t t t h s t t
θ θ θα βα β α β

θ θ θ θ θ θ

− − −−− − − − −− + + + − + − − + +

 
3 1( )

1
3 1 1

( ) 1 ( ) 1{( ) ( )}} { ( )( )
i i iT t t

i i i
i i Ri i i i i

s e b a eT t h s t
θ θα β α β

θ θ θ θ

−− − − −− − + − − +  

1( )
1 2

1 2 1
( ) ( )1{( ) ( )}} [{ ( 1) ( ) ( )}

i i
i

t T
vi i i i i i i i

i i i i i i i
s T s Teb T t e s v c

n n

θ
θα β α β α β η

θ θ θ

−− −− + − + − + − −  

2
2 2

( ) 1( ) ( ) ( )]
iv

i i i i
si i i i i i i i

s Teh v O c s v
n

θα β α β
θ θ

− − − + + − −   (32) 

Equation (32) denotes the cost function of the system in terms of t1i, t2i, t3i, vi and Ti. To find out the optimal 
solution of this system we have to find out the optimal values of t1i, t2i, t3i, vi and Ti. We have some relations 
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between these variables. 

1 2 30 i i i it t t T≤ ≤ ≤ ≤                                    (33) 
0 i iv T≤ ≤                                    (34) 

1 2 1( )( 1)(1 ) ( 1)i i it t ta e eθ θ− −− − = −                                (35) 
2 3 3( ) ( )( 1)(1 ) ( 1)i i i it t T ta e eθ θ− −− − = −                              (36) 

1 1( )( )(1 ) (1 )i i it t Tb a e b eθ θ −− − = −                                (37) 
Equations (33) and (34) are the essential conditions for the existence of this model. Equations (35) and (36) show 
the inventory level Ir(t) and Im(t) at t=t1 and t=t3. Equation (37) demonstrates that the inventory level of collected 
and returned items will be the same at t=0 and t=T. 
Using the equations (35) - (37) the values of t1i, t2i and t3i can be find in the form of Ti, It can be said that 

t1i = f1(Ti),        t2i = f2(Ti),        t3i = f3(Ti) 
Therefore the total average cost will be the function of variables Ti and vi. 
4. Numerical Example 
A numerical example is carried out to illustrate the model. Corresponding to the below mentioned parametric 
values the optimal value of time vi, Ti and T.A.Ci are obtained for different three products. 
 
Table 1.  

Parameters Product 1 Product 2 Product 3
αi 50 55 45 
γi 0.4 0.45 0.35 
si1 30 32 25 
si2 40 41 43 
a 1.5 1.6 1.4 
b 0.4 0.45 0.35 
βi 0.05 0.06  0.04 
hri 0.5 0.55 0.4 
hmi 0.5 0.55 0.45 
hRi 0.5 0.4 0.4 
θ 0.01 0.01 0.01 
cmi 10 11 9 
cRi 12 12.5 11.5 
Pmi 14 14.5 13.5 
Pri 16 16.5 15.5 
Svi 4 4.5 3.5 
K1i 500 500 500 
K2i 600 600 600 
K3i 700 700 700 
c1i 20 20 20 
his 0.4 0.45 0.35 
Oi 250 300 200 
n 5 5 5 
vi 20.1567 19.8956 20.2844 
Ti 23.7439 23.4203 23.9021 
T.A.Ci 1487.61 1898.66 1642.7 
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Figure 3. Convexivity of the T.A.C1 function 

 
5. Sensitivity Analysis 
Corresponding to different associated parameters, a sensitivity analysis is carried out to check the stability of the 
model. The analysis has been done with the parameters θ, b, β1, γ1, α1, s1 and a1 taking one parameter at a time 
and other variables unchanged and is shown in below mentioned tables. 
 
Table 2. Sensitivity analysis with respect to deterioration parameter (θ): 

% variation in θ θ v1 T1 T.A.C1

-20% 0.008 20.0962 23.6689 1128.13 
-15% 0.0085 20.1113 23.6876 1233.69 
-10% 0.009 20.1264 23.7063 1327.62 
-5% 0.0095 20.1416 23.7251 1411.78 
0% 0.01 20.1567 23.7439 1487.61 
5% 0.0105 20.1719 23.7627 1556.31 

10% 0.011 20.1872 23.7816 1618.86 
15% 0.0115 20.2024 23.8005 1676.05 
20% 0.012 20.2177 23.8194 1728.56 

 

 
Figure 4. Variation in T.A.C1 with the variation in θ 
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Table 3. Sensitivity analysis with respect to parameter b: 
% variation in b b v1 T1 T.A.C1

-20% 0.32 19.9468 23.4837 1739.47 
-15% 0.34 20.0018 23.5518 1672.5 
-10% 0.36 20.0552 23.618 1608.2 
-5% 0.38 20.1069 23.6821 1546.57 
0% 0.4 20.1567 23.7439 1487.61 
5% 0.42 20.2046 23.8032 1431.33 

10% 0.44 20.2503 23.8598 1377.75 
15% 0.46 20.2937 23.9136 1326.86 
20% 0.48 20.3346 23.9643 1278.67 

 

 
Figure 5. Variation in T.A.C1 with the variation in b 

 
Table 4. Sensitivity analysis with respect to demand parameter (β1): 

% variation in β1 β1 v1 T1 T.A.C1 

-20% 0.04 20.148 23.7331 1494.73
-15% 0.0425 20.1502 23.7358 1492.95
-10% 0.045 20.1523 23.7385 1491.17
-5% 0.0475 20.1545 23.7412 1489.39
0% 0.05 20.1567 23.7439 1487.61
5% 0.0525 20.1589 23.7466 1485.83
10% 0.055 20.1611 23.7494 1484.05
15% 0.0575 20.1634 23.7521 1482.27
20% 0.06 20.1656 23.7549 1480.48

 

 
Figure 6. Variation in T.A.C1 with the variation in β1 
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Table 5. Sensitivity analysis with respect to parameter γ1: 
% variation in γ1 γ1 v1 T1 T.A.C1

-20% 0.32 20.1567 23.7439 1481.4
-15% 0.34 20.1567 23.7439 1482.95
-10% 0.36 20.1567 23.7439 1484.5
-5% 0.38 20.1567 23.7439 1486.06
0% 0.4 20.1567 23.7439 1487.61
5% 0.42 20.1567 23.7439 1489.16
10% 0.44 20.1567 23.7439 1490.71
15% 0.46 20.1567 23.7439 1492.26
20% 0.48 20.1567 23.7439 1493.82

 

 
Figure 7. Variation in T.A.C1 with the variation in γ1 

 
Table 6. Sensitivity analysis with respect to demand parameter (α1): 

% variation in α1 α1 v1 T1 T.A.C1 

-20% 40 20.5201 24.1943 1249.82 
-15% 42.5 20.4139 24.0627 1309.33 
-10% 45 20.319 23.9451 1368.8 
-5% 47.5 20.2338 23.8394 1428.22 
0% 50 20.1567 23.7439 1487.61 
5% 52.5 20.0868 23.6572 1546.97 

10% 55 20.023 23.5781 1606.3 
15% 57.5 19.9645 23.5056 1665.61 
20% 60 19.9108 23.439 1724.9 

 
Figure 8. Variation in T.A.C1 with the variation in α1 
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Table 7. Sensitivity analysis with respect to selling price (s11) 
% variation in s11 s11 v1 T1 T.A.C1

-20% 24 20.148 23.7331 1494.73
-15% 25.5 20.1502 23.7358 1492.95
-10% 27 20.1523 23.7385 1491.17
-5% 28.5 20.1545 23.7412 1489.39
0% 30 20.1567 23.7439 1487.61
5% 31.5 20.1589 23.7466 1485.83

10% 33 20.1611 23.7494 1484.05
15% 34.5 20.1634 23.7521 1482.27
20% 36 20.1656 23.7549 1480.48

 

 
Figure 9. Variation in T.A.C1 with the variation in s1 

 
Table 8. Sensitivity analysis with respect to production parameter (a1): 

% variation in a1 a1 v1 T1 T.A.C1
-20% 1.2 20.6989 24.4159 1592.02
-15% 1.275 20.5379 24.2164 1561.34
-10% 1.35 20.3959 24.0404 1534.98
-5% 1.425 20.2697 23.8839 1509.62
0% 1.5 20.1567 23.7439 1487.61
5% 1.575 20.0551 23.6179 1467.68

10% 1.65 19.9632 23.504 1449.56
15% 1.725 19.8797 23.4005 1433.01
20% 1.8 19.8034 23.306 1417.83

 

 
Figure 10. Variation in T.A.C1 with the variation in a1 

 
5.1 Observations 
Table 2 shows the variation in T.A.C. with the variation in deterioration parameter ‘θ’. From this table it is 
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observed that with the increment in deterioration rate the T.A.C. of the system increases. 
1. From table 3 it is observed that an increment in parameter ‘b’ results a decrease in T.A.C. of the system. 
2. Table 4 lists the variation in demand parameter (β1). It is observed from this table that as the value of ‘β1’ 

increases, the T.A.C. of the system shows the reverse effect. 
3. Table 5 and table 6 show the variation in parameter ‘γi’ and in demand parameter ‘αi’ and from these it is 

observed that an increment in both the parameters result an increment in T.A.C. 
4. Table 7and table 8 show the variation in T.A.C. with the changes in selling price ‘s1’ and production 

parameter ‘a’ respectively. It is observed that an increment in selling price and production parameter result 
a decline in T.A.C. 

6. Conclusion 
In this paper we have presented an integrated production inventory model for multi items. This is a closed loop 
supply chain, introduced with the production of new items and remanufacturing of collected and returned items 
with deterioration. The demand rate is taken as a function of selling price which shows a very realistic 
phenomenon.  A numerical example is shown to illustrate the model. The model is optimized and the convexity 
of the model is shown. A sensitivity analysis is also performed to check the stability of the model. For future 
scope the model can be extended for stochastic demand rate and with learning and forgetting effects for 
production and manufacturing. 
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