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Abstract 
Wireless data traffic is in a continuous growth, and there are increasing demands for wireless systems that 
provide deep interference suppression and noise mitigation. In this paper, adaptive beamforming (ABF) 
technique for Smart Antenna System (SAS) based on Minimum Variance Distortionless Response (MVDR) 
algorithm connected to Circular Antenna Array (CAA) is discussed and analyzed. The MVDR performance is 
evaluated by varying various parameters; namely the number of antenna elements, space separation between the 
elements, the number of interference sources, noise power label, and a number of snapshots. LTE networks 
allocate a spectrum band of 2.6 GHz is used for evaluating the MVDR performance. The MVDR performance is 
evaluated with two important metrics; beampattern and SINR. Simulation results demonstrate that as the antenna 
elements increase, the performance of the MVDR improves dramatically. This means the performance of MVDR 
greatly relies upon the number of the elements. Half of the wavelength is considered the best interelement 
spacing, the performance degraded as noise power increased, and more accurately resolution occurred when the 
number of snapshots increased. The proposed method was found to be performed better than some existing 
techniques. According to the result, the beampattern relies on the number of element and the separation between 
array elements. Also, the SINR strongly depends on noise power label and the number of snapshots. 
Keywords: adaptive antenna array, beamforming, circular antenna array, LTE, minimum variance distortionless 
response, MVDR, smart antenna 
1. Introduction 
Currently, the mobile cellular networks are experiencing a massive evolution of data traffic, because of 
multimedia and internet applications that are used by a vast number of devices such as smartphones, mobile PC 
and tablets (Cisco Visual Networking Index, 2014; Ericsson Mobility Report, 2015). Most of the beamforming 
(BF) algorithms have been considered to be used at the base station (BS) side, because the array of antennas are 
not applicable at mobile terminals due to space limitations (Liberti & Rappaport, 1999). 
A smart antenna system (SAS) is an adaptive antenna array (AAA) with smart digital signal processing 
algorithms used to identify spatial signal signature such as direction of arrival (DoA) of the signal, and used it to 
calculate BF vectors, to track and locate the antenna beams on the desired target (Jacobsen, 2001; Web ProForum 
Tutorials, 2006; Winters, 2000). SASs are customarily categorized as either switched beam or adaptive array 
systems. The AAA system consists of a number of the array elements which should be relatively low, in order to 
avoid unnecessarily high complexity in the signal processing unit. The array configuration can scan either one or 
two dimensions, depending on the dimension of space to be accessed. In practice, the array geometry can take 
either one of the following realizations; linear antenna array (LAA) or planar (PAA) or circular (CAA) or 
rectangular (RAA) or cubic (CuAA) (Stevanovic, Skrivervik & Mosig, 2003).  
The motivation behind using an adaptive approach is also due to the need of adaptive beamforming (ABF) in 
wireless communication applications (S. Das, 2008; El-Keyi & Champagne, 2008; Hong, Huang, Chiu & Kuo, 
2007; Sun, Hirata, Ohira & Karmakar, 2004). Examples of AAAs (R. Saunders & A. Zavala, 2007) are widely 
used in microphone array, radar, sonar, medical imaging, seismology, radio astronomy, medical imaging, speech 
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processing, and wireless communications. An AAA is designed to optimize the beampattern according to specific 
criteria such as minimum variance, maximum entropy, maximum SINR (Godara, 2004). For instance, the Capon 
(Capon, 1969) beamformer minimizes array output power subject to a linear constraint, known as the look 
direction constraint, which ensures a desired response from a specific direction. With the increasing trend of the 
number of subscribers and demand for different services in wireless systems, there are always requirements for 
better coverage, higher data rate, reduced operating cost and improve spectrum efficiency. To achieve these 
requirements beyond the Long Term Evolution (LTE) which is introduced by the 3rd Generation Partnership 
Project (3GPP), beamforming technique is able to focus the array antenna pattern into a particular direction and 
thereby enhances the signal strength. 
Interference is one of the significant obstacles in the cellular systems. The interference can be caused by other 
users or by the signal itself due to multipath components (Halim, 2001). The signal is gathered with another 
version of the signal that is delayed because of another propagation path. The fundamental principle of ABF is to 
track the statistics of the surrounding interference and noise field as well as adaptively seek for the best position 
of the nulls that reduce the unwanted signal under the constraint of not distorted the desired signal at the 
beamformer’s output (Pan, Chen & Benesty, 2014). 
One of the popular method for ABF is introduced by Capon (Capon, 1969) known as Minimum Variance 
Distortionless Response (MVDR). The fundamental purpose of the MVDR is to estimates the beamforming 
coefficients in an adaptive way by minimizing the variance of the residual noise and interference while enforcing 
a set of linear constraints to ensure that the real user signals are not distorted (Pan et al., 2014). The authors in 
(Khaldoon, Rahman, Ahmad & Hassnawi, 2014) proposed an enhanced model of MVDR algorithm by changing 
the position of the reference element in steering vector to be in the middle of the array with an odd number of 
elements. Their results show that modified MVDR has a realistic behavior, especially for detecting the incoming 
signals direction and outperforms the conventional MVDR. The signal to interference plus noise ratio (SINR) 
maximization is one of the criterion employed in joint transmitter and receiver BF algorithms (Choi, Murch & 
Letaief, 2003; Kum, Kang & Choi, 2014; Serbetli & Yener, 2004). In (Manolakis, Ingle & Kogon, 2005) 
mentioned that the spacing between adjacent element (d) must be greater than or equal to the half of the signal 
wavelength (λ) to avoid spatial aliasing. In (K. J. Das & Sarma, 2012), the author presents a comparative study 
of minimum variation distortionless algorithm and LMS algorithm. Where results show that LMS is the better 
performer. In an analysis of (Rao & Sarma, 2014) discussed the mixing of different algorithm based linear 
antenna array is applied to control the level of side lobes and null in the unwanted direction. They found the 
maximum null depth of -63 dB by using 20 elements. The researchers in (Pan et al., 2014) investigate the 
performance of the MVDR beamformer for four different type of noise and source incidence angles using SNR 
and beampattern as the evaluation criteria. An evaluation of the tradeoff between reverberation and reduce the 
noise of the MVDR is presented by (Habets, Benesty, Cohen, Gannot & Dmochowski, 2010). Research effort 
proposed by (Han, 2009) to optimize the output pattern of the antenna array system using genetic algorithm. The 
optimization creation is based on output beampatterns with low side lobes by finding the best amplitude layout 
of antenna elements that produce low side lobe levels. 
SAS includes signal processing capabilities that perform tasks like the DOA estimation of the incoming signals 
and then SAS can adjust the antenna itself using beamforming techniques to achieve better transmission or 
reception beampattern which increase SINR by mitigating co-channel interference present in the wireless 
communication system (El Zooghby, 2005). A SAS that is held in the BS of a mobile system comprises of an 
array of antennas where the amplitudes are accustomed to a group of weight vectors using an ABF algorithm 
(Gross, 2015). The ABF algorithm improves the output of the array beampattern in a way which it maximizes the 
radiated power where it will be produced in the direction of the real user. Moreover, deep null is produced in the 
interfernce directions that mitigate co-channel interference from other users in the neighboring cells. Before ABF, 
the direction of arrival estimation is used to specify the main directions of users and interferers. The function of 
ABF algorithms is used to direct the main beam with unity gain towards the Signal of Interest (SOI) direction 
whilst negative power (null) in the direction of Signal not of Interest (SNOI) (Balanis & Ioannides, 2007; Godara, 
2004). Recently, the antenna arrays have been widely used to enhance the performances for the wireless 
communication system, where the antenna array allows to improve the coverage area in cellular communication 
as well the satellite system (Khraisat, 2012). 
So far, ABF is a function of the number antenna elements, separation between adjacent elements, angular 
separation between desired user direction and undesired signal directions, noise power level as well as a number 
of snapshots. Therefore, it is important to investigate the impact of these parameters on the radiation beampattern 
of an antenna array that able to offer the best BF capabilities in terms of directing the main beam toward the 
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Where j is the imaginary unit of a complex number, (i.e. j2 = -1), q=2π/λ is the wave number, r=Ld/2π is the 
radius of the circular antenna array, λ is the carrier wavelength, (θ, ϕ) composed of azimuth angle ∈[0, 2π] and 
elevation angle ∈[0, π/2] while A represent the matrix form of the steering vector and (.)T denote the transposes 
operators. 
The signal xT(t) received by multiple antenna elements is multiplied by a series of amplitude and phase (weight 
vector coefficients) which accordingly adjust the amplitude and phase of the incoming signal. This weighted 
signal is a linear combination of the data at L elements, resulting in the array output, y(t) at any time t, of a 
narrowband beamformer, which is defined as: 

)()(
1

txwty T

L

l

H
=

=                                  (4) 

where y(t) is the output of the beamformer, xT(t) is the output of the antenna elements, w is the complex weight 
vector for the antenna element = [w1, w2, …, wL]T is ∈CL×1 beamforming complex vector. (.)H denotes the 
conjugate transpose (Hermitian transpose) of a vector or a matrix. 
The weight vector at time t + 1 for any system that uses the immediate gradient vector ∇J(t) for weight vector 
upgrading and evades the matrix inverse operation can express as follows: 

)]([
2
1)()1( tJtWtW ∇+=+ μ                              (5) 

where ߤ is the step size parameter, which regulates the convergence speed and lies between 0 and 1. While the 
smallest values of ߤ facilitate the high-quality estimation and sluggish concurrence, while the huge value may 
result in a rapid union. However, the constancy over the minimum value may disappear. Consider 

λ
μ 10 <<                                       (6) 

An instantaneous estimation of gradient vector is written as: 

)()(2)(2)( tWtRtptJ +−=∇                           (7) 

)()()( * txtdtp T=                             (8) 
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TTy =                             (9) 

An precise calculation of ∇J(t) is not possible because prior information on cross-correlation vector, ݌ and 
covariance matrix, ܴy of the measurement vector are required. By substituting (7) with (5), the weight vector is 
derived as follows: 
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The desired signal can be further defined by the following three formulas: 
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                 (12) 
The covariance matrix, Ry is constructed conventionally with unlimited snapshots. However, it is estimated by 
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using limited snapshots signal in actual application. It can be expressed as: 
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where Ry,
2
sσ ,

2
iσ ,

2
nσ , IdL, Rs, Ri+n and E[.] denotes, respectively, the L×L theoretical covariance matri

x, power of the desired user signal, interference signal power, noise power, identity matrix, SOI covaria
nce matrix, interference plus noise covariance matrix and expectation operator. 
The common formulation of the MVDR beamformer that determines the L×1 optimum weight vector is the 
solution to the following constrained problem (Souden, Benesty & Affes, 2010): 
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where P(θ, ϕ)denotes the mean output power, a beampattern can be given in dB as (Godara, 1997): 
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This technique minimizes the contribution of the interference signal by reducing the output noise and 
interference powers and ensuring the power of useful signal equals to “1” in the direction of useful signal wH 

a(θs,ϕs) =1. By using Lagrange multiplier, the MVDR weight vector that gives the solution for the equation (19) 
as per the following formula (Renzhou, 2007): 
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Inserting (20) into (11), the MVDR output is given as: 
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The output signal power of the array as a function of the DOA estimation, using optimum weight vector from 
MVDR beamforming method (Haykin, 2013), it is given by MVDR spatial spectrum for angle of arrival (AoA) 
estimated by detecting the peaks in this angular spectrum as (Capon, 1969): 
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Finally, the SINR is defined as: 
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3. Simulation Results and Analysis 
In this paper, L antenna element in a CAAs configuration is arranged along some axis added to the beamformer 
system at the base station (BS). The CAA receives signals from various spatially separated users. The received 
signal at the CAA consists of a real user signal, co-channel interference, and background noise. To increase the 
output power of the desired signal and reduce the power of co-channel interference and noise, beamforming is 
employed at the BS. The ABF performance analysis shows an array of even and odd numbered elements 
separated by interelement spacing, d, at frequency (Fc) of 2.6 GHz, which is the spectrum band assigned for LTE 
services provider in Malaysia (Malaysian Communications and Multimedia Commission, 2011). To measure the 
performance of the MVDR algorithm for ABF applications with varying parameters like the number of antenna 
elements, the separation between adjacent elements, number of SNOIs, accuracy to distinguish interference in 
the location very close to the SOI, the number of snapshots (ns), and noise power, σn. The goal is to analyze the 
effect of parameters mentioned above that achieve the best beamforming capabilities to form the main beam in 
the real user direction and place null in the direction of interference with highest SINR output. Four different 
scenarios are considered and the simulation parameters setting in this paper is shown in Table 1. 
 
Table 1. Key simulation parameters of MVDR beamformer 

Key system parameters Values 
Array antenna configuration Circular antenna array
Antenna type Isotropic 
Carrier frequency (Fc) 2.6 GHz 
Beam scanning range ±90° (Azimuth) 
Number of element (L) 5, 8, 11, 16 
Element spacing (d) λ/8, λ/4, λ/2, λ 
SNOIs 1, 2, 3, 4 
Noise power label σn [dB] -50, -10, 10, 20 
Snapshots (ns) 10, 50, 250, 500 

3.1 The First Scenario 
The first simulation scenario depicted the results calculated by considering the distance between array elements 
set to be d=λ/2 as usually used in the most MVDR algorithm, figure 2 illustrates MVDR angular spectrum plot 
for the estimated direction of all incoming signals implemented in this scenario. UCAA with L = 5, 8, 11, and 16 
elements, the additive noise is modeled as a complex zero-mean white Gaussian noise. Three interfering sources 
are assumed to have DOAs -60º, 0º and 60º respectively. The SOI is considered to be a plane wave from the 
pre-sumed direction 30º. The obtained results provide evidence that the received signals identified the SOI and 
SNOIs perfectly as assumed by producing peaks in the directions of -60º, 0º, 30º and 60º azimuth angles and 90º 
elevation angles respectively, which are computed using equation (22). Each one of these peaks represent the 
AoA of the incoming signal. When the number of L increases, the peaks become sharper and improve the 
MVDR resolution for better detecting the incoming signal. Furthermore, the direction remains the same without 
any change. 
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Table 6. MVDR performance analysis for SOI at (30°, 90°) and SNOIs at (-60º, 90°), (0º, 90°) and (60º, 90°) 
with different ns 

L d [m] ns MLBw [°] MSLL [dB] MDN [dB] SINR [dB] Time [Sec]
 
8 

 
λ/2 

[0.0577] 

10 60 -11.7 -47 38.0 1.98 
50 60 -11.2 -57.6 47.7 2.10 

250 60 -13.9 -64.2 55.0 2.27 
500 60 -14.4 -74.7 61.8 2.7 

 
As seen in Table 5, the mainlobe beamwidth (MLBw) remain the same and the maximum side lobe level (MSLL) 
slightly changes as σn increases, while the nulling level and SINR are strongly effected by σn increases. In 
addition, Table 6 shows the SINR increases as ns increases owing to the increasing probability of finding a better 
solution. In other words, sharper and deeper nulls would be produced and hence improve the SINR by increasing 
number of snapshots. Finally, a summary of the impact of L, d, σn, and ns on the MVDR performance for a 
trade-off analysis is presented in Table 7. In comparison, it is found that the MVDR basing LAA geometry has 
overall better performance for beampattern accuracy and highest SINR than CAA as reported in (Shahab, Zainun, 
Ali, Hojabri, & Noordin, in press; Shahab, Zainun, Noordin, & Balasim, 2016). 
 
Table 7. MVDR trade-off analysis 
 Pros Cons Performance impact 
L • More and deeper 

nulls 
• More degree of 
freedom 
• Higher SINR 

 More SLLs 
 Larger size 
 more costly 
 Physical limitations on 
Installation 
 complexity 

 Better interference cancelation capabilities
 Improved performance because of higher 
SINR and narrower beams 

d • Higher SINR 
• Cost-efficient 

 Grating lobes 
 mutual coupling effects

 Grating lobes and mutual coupling have 
negative impact on MVDR beamformer 
 Wasted power in unnecessary direction 

σn • Higher SINR 
• deeper nulls 

 Lower SINR 
 Reduce null level 

 Improved performance because of higher 
SINR 

ns • More accurate 
resolution 
• deeper nulls 
• Higher SINR 

 Time consuming  Improved performance because of higher 
SINR 

 
4. Conclusions 
This paper evaluates the MVDR algorithm for null steering of circular antenna arrays, to place deeply null at the 
interference sources in order to get maximum SINR for wanted direction. A number of computer simulations 
were performed with different numbers of antenna elements, different interelement spacings, different numbers 
of interference sources with varying angular separations between SOI and interferences, different levels of noise 
power, and different numbers of snapshots. The results obtained using MVDR algorithm has the best beam 
formed pattern in suppressing the interference and noise with best mainlobe shape when array elements are more. 
Meanwhile, the drawback is increasing cost, size and complexity. It is found that 0.5λ is the best elements 
spacing for avoiding grating lobes, mutual coupling effects, and better null depth performance. MVDR rejects 
with a very low power level, and good accuracy can be obtained even in the case of multiple interferences. The 
noise level is an important factor that affects the MVDR performance. Increased number of snapshots results in 
higher SINR and more accurate main beampattern. The computation time can be further decreased if a higher 
signal processor is used. An ongoing research extends the results of this paper to enhance MVDR algorithm. 
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