Experimental and Estimation of Vapor-Liquid Equilibria in AqueousElectrolyte System: CO₂-K₂CO₃-MDEA+DEA-H₂O

K. Kuswandi¹, Ali Altway¹ & Yuni Kurniati¹

¹ Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Indonesia

Correspondence: K. Kuswandi, Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia. E-mail: kuswandi@chem-eng.its.ac.id

Received: May 4, 2015	Accepted: June 5, 2015	Online Published: June 30, 2015
doi:10.5539/mas.v9n7p183	URL: http://dx.doi.org/10.5539/mas.vg	9n7p183

Abstract

Absorption with chemical reaction process of CO₂ gas using K₂CO₃solution or known as hot potassium carbonate promoted with amine was widely used in many chemical industries. DEA and MDEA mixture was proposed as promoter. Vapor-liquid equilibrium (VLE) data of CO₂-K₂CO₃-MDEA+DEA-H₂O system are needed for rational design and optimal operation of CO₂ removal unit. The purpose of this research is to dertermine solubility data of CO₂ gas in aqueous solution of potassium carbonate with DEA and MDEA as a promotor at various temperatures of 30-50°C with 30% K₂CO₃, 1-3% MDEA and 1-3% DEA. The CO₂ solubility is very important property when establishing thermodynamics models for the VLE. In order to obtain the CO₂ solubility was measured volumetrically in absorption flask using a shaking waterbath. The increase of DEA concentration in solution gives higher Henry's constant or lower gas solubility. It also makes the empirical correlation between Henry's constant and the vapor liquid equilibria of CO₂-K₂CO₃-MDEA+DEA+DEA+H₂O system by using the electrolyte NRTL model. The model gives a good representation of the experimental VLE data for CO₂ partial pressures with Root Mean Square Deviation (RMSD) of 5.93%.

Keywords: CO₂-K₂CO₃-MDEA+DEA-H₂O system, solubility, vapor-liquid equilibria, N₂O analogy, electrolyte NRTL model

1. Introduction

Carbon dioxide (CO_2) is acid gas, and it is very harmful acid.Various industries such as petrochemical, fuel oil, and natural gas industries, require the separation process of CO_2 gas. One of the various methods widely used is the chemical absorption process using a basic alkanolamine solution as a solvent. The method is widely used for the removal of acid gases from natural gases. Conventionally, aqueous solutions of monoethanolamine (MEA) (Clarke, 1964; Liu et al., 1999), diethanolamine (DEA) (Li & Lee, 1996), and methyldiethanolamine (MDEA) (Haimour & Sandall, 1984) are examples of well-known and industrially important amine solutions.

In addition, knowledge of the amine solvent mixtures need to be developed continuously. Potassium carbonate (K_2CO_3) has a low regeneration heat but the reaction rate is lower compared with the amine. Several studieshave shown that blending with amines can accelerate the process of absorption (Savage et al., 1984; Cullinane & Rochelle, 2004; Thee et al., 2012).

To design a gas absorption unit, physical property such as solubility of acid gases in amine solvent is needed. Physical solubility measurements are generally carried out to determine the concentration of the absorbed gas in solution at equilibrium. If the absorbed gas react with the solvent, the equilibrium can not be physically measured. In other words, the physical solubility of CO_2 gas in alkanolamine can not be measured directly. Therefore, N₂O analogy is often used to estimate the solubility of CO_2 gas in the amine solvent (Haimour & Sandall, 1984; Weiland & Browning, 1994).

A similar gas that is unreactive in the test solution was used to measure the solubility. Proportional constants are then used to calculate the solubility of CO_2 . Nitrogen oxide gas (N₂O) was successfully used to predict the physical solubility of CO_2 because it has similarity in size, shape, and electron configuration of Lennard-Jones potential to CO_2 (Clarke, 1964).

The N₂O analogy is expressed in eq.1 (Haimour and Sandall, 1984):

$$\frac{H_{CO_2}}{H_{N_2O}} = \frac{H^o c_{O_2}}{H^o_{N_2O}}$$
(1)

where $H^{\circ}_{CO_2}$ and $H^{\circ}_{N_2O}$ are the Henry's law constants of CO₂ and N₂O in pure water, while H_{CO_2} and H_{N_2O} are the Henry's law constants of CO₂ and N₂O in amine solution.

There are several models that can be used to estimate the solubility of CO_2 in the absorption process. The electrolyte NRTL model have been used to predict the solubility of CO_2 in the removal of CO_2 from flue gases using a mixture of potassium carbonate-piperazine-ethanolamine (Hilliard, 2005). The electrolyte UNIQUAC model was used to predict the solubility of acid gases in Monoethanolamine (MEA) and Methyldiethanolamine (MDEA) (Kaewsichan et al., 2001).

In the presentstudy, the solubility data of CO_2 in pottassium carbonate solution with MDEA-DEA mixtures as a promotor using N₂O analogy were presented over the range of temperatures from 30 to 50 °C. Furthermore, the CO_2 partial pressures obtained from experimental results were correlated using the E-NRTLmodel.

2. Method

The purpose of this research is to dertermine solubility data of CO_2 gas in aqueous solution of potassium carbonate with DEA-MDEAmixtures as a promotor at various temperatures of 30-50°C with 30% K₂CO₃, 1-3% MDEA and 1-3% DEAusing the apparatus shown schematically in **Figure 1**. The apparatus is kept at constant temperature inside a temperature-controlled water bath. The densities of aqueous solutions were determined by using a 10-mL pycnometer. The measurement of the solubility data was conducted in an equilibrium cell with N₂O analogy method. The modified apparatus is based on that of used by Haimour and Sandall (1984). Some authors have also developed this method estimate the solubility data of CO_2 in various amine solutions (Versteeg& van Swaaij,1988; Al-Ghawas et al., 1989; Versteeg et al., 1992; Wang et al., 1992; Weiland & Browning, 1994; Li & Lai, 1995; Li & Lee, 1996).

The principle of this method is to bring acertain volume of liquid into contact with a gas in a closed system at constant temperature and pressure. Equilibrium is reached by stirring the solution until there is no change in the volume of the gas. The volume of the gas absorbed is measured.

Figure1. Solubility apparatus

The solubility measurementswere carried outas follows: A gas saturated with vapors in a saturation flask was passed through the system to purge the absorption flaskat constant temperature. Then the inletand outlet valves were closed. The height of the liquid water in the three branches was leveled indicate that the pressure in the flask was atmospheric, and its position was recorded. 20 mL sample of aqueous solution of K_2CO_3 -MDEA+DEA was injected into the absorption flask. After mechanical shaking for 20 to 30 min, the surface of the waterwas maintained at the same level every few minutes, ensuring that the gas phase was at atmospheric pressure. The volume change of the system can be determined by the levels of the water in the burette. Equilibrium is reached when the volume of the gas constant. The volume of gas absorbed can be determined by the measured volume change and the volume of liquid sample.

After obtaining the data from the experiment, the partial pressure of CO₂ was calculated using the E-NRTLmodel

for CO_2 -K₂CO₃-MDEA-DEA-H₂O system. This model consists of two contributions. First, the local interaction showed from the interaction between all species. The second contribution is long-range ion-ion interaction appeared due to the interaction between ionic species (Austgen et al., 1989; Chen, 1993; Pitzer, 1980).

3. Results and Discussion

The validation of the apparatusused in this study was conducted by using water as a solvent. The validation refers to the results of previous experiments (Versteeg & van Swaaij, 1988; Al-Ghawas et al., 1989; Li & Lai, 1995) and was carried out at a temperature range of 30-50 °C.

Figure 2 shows the validation results of the apparatus representing the solubility data N_2O in water illustrated as Henry's constants of N_2O vs temperatures. From the figure it is also shown the solubility data from the literatures. It can be seen that the results found in this work are in good agreement with data of Versteeg & van Swaaij (1988) and Li & Lai (1995), but there is a significant deviation from data of Al-Ghawas et al. (1989).

Figure 2. Solubility data of N₂O in water as a function of temperature

Physical solubility of CO_2 in alkanolaminecan not be directly measured. Therefore, N_2O analogy often used to estimate the solubility of CO_2 in the amine solvent. In this study the solvent mixtures used are 30%K₂CO₃, 1-3% MDEA and 1-3% DEA with variation of temperatures in range of 30-50 °C. The solubility of N_2O and CO_2 in K₂CO₃+MDEA+DEA+water system at this concentrationsis shown in **Figures 3 and 4.** It can be seen in **Figure 3** that the rise of temperature caused the increase of Henry's constant of N_2O .

Figure 3. Solubility of N₂O in K₂CO₃+MDEA+DEA+water system for various compositions of MDEA-DEAat temperatures 30-50°C

Figure 4. Solubility of CO₂in K₂CO₃+MDEA+DEA+watersystemfor various compositions of MDEA-DEA at temperatures 30-50°C

Meanwhile, the solubility data of CO_2 (N₂O analogy) at 30% K₂CO₃, 1-3% MDEA, and 1-3% DEA are shown in Figure 4. Physical solubility data of CO₂were obtained from the equation correlated N₂O analogy into the empirical equation (eq. 2) for various concentrations of MDEA and DEA.

$$H = K_1 \exp \frac{-K_2}{T(K)}$$
(2)

$$K_1 = 1,067 \times 10^{10} \, [MDEA]^{0.5089} \, [DEA]^{0.3875} \tag{3}$$

$$K_{2} = 5754.896 \ [MDEA]^{0.149} \ [DEA]^{-0.00835}$$
 (4)

The E-NRTL model was used to correlate the experimental data. The activity coefficients of CO₂ were calculated using the binary interaction parameters obtained by fitting the experimental data with the minimization of the deviation between calculated and experimental CO₂ partial pressures. The relationships between the calculated and experimental results of CO₂ partial pressure and CO₂ loading for CO₂-K₂CO₃-MDEA+DEA-H₂Osystem are presented in Figures 5-9.

Figure 5. Therelationshipbetweenthe calculated and experimental CO₂partialpressureand CO₂loadingwith 30% K₂CO₃, 1-3% DEA and 1-3%MDEA attemperature 30 °C

Figure 6. Therelationshipbetweenthe calculated and experimental CO₂partialpressureand CO₂loadingwith 30% K₂CO₃, 1-3% DEA and 1-3%MDEA attemperature35 °C

Figure 7. Therelationshipbetweenthe calculated and experimental CO₂partialpressureand CO₂loadingwith 30% K₂CO₃, 1-3% DEA and 1-3%MDEA attemperature40 °C

In these Figures, it can be seen that at constant temperature, the partial pressure of CO_2 increases with the increase of CO_2 loading. The addition of MDEA concentration of 1-3%, decreases CO_2 loading. This indicates that the amount of CO_2 dissolved in the solution is increased, and the partial pressure of CO_2 will also be greater. From Figure 5-9, it can also be seen that the experimental results give a similar profile to those of the correlation. The addition of concentration of 1% MDEA and 3%DEA results in the smallest partial pressure of CO_2 . The model gives a good representation of the experimental VLE data for CO_2 partial pressures with Root Mean Squared Deviation (RMSD) of 5.93%.

From the description above, it can be concluded that Henry's Law constants have been obtained for the absorption of CO_2 into a solution of 30% K_2CO_3 with DEA-MDEA mixtures, through N₂O analogy. Effect of temperature rise in a solution of 30% K_2CO_3 , 1-3% MDEA and 1-3% DEA overthe temperature range 30-50 °C

can increase CO_2 loading and partial pressure of CO_2 . The model gives a good representation of the experimental VLE data for CO_2 partial pressures with Root Mean Squared Deviation (RMSD) of 5.93%.

Figure 8. Therelationshipbetweenthe calculated and experimental CO₂partialpressureand CO₂loadingwith 30% K₂CO₃, 1-3% DEA and 1-3%MDEA attemperature45 °C

Figure 9. Therelationshipbetweenthe calculated and experimental CO₂partialpressureand CO₂loadingwith 30% K₂CO₃, 1-3% DEA and 1-3%MDEA attemperatura 50 °C

Acknowledgments

The authors wish to thank sponsorship of Directorate General of Higher Education, Ministry of Education and Culture, Indonesian Government, through University Research Grant BOPTN in 2013.

References

Al-Ghawas, H. A., Hagewlesche, D. P., Rulz-Ibanez, G., & Sandall, O. C. (1989). Physicochemical Properties Important for Carbon Dioxide. *Journal of Chemical and Engineering Data*, 34, 385-391. http://dx.doi.org/10.1021/je00058a004

Austgen, D. M., Rochelle, G. T., Peng, X., & Chen, C. C. (1989). Model of Vapor-LiquidEquilibria for

AqueousAcid Gas-AlkanolamineSystemsUsing the Electrolyte-NRTL Equation. *Industrial & Engineering Chemistry Research.*, 28, 1060-1073. http://dx.doi.org/10.1021/ie00091a028

- Chen, C. C. (1993). A segment-based local composition model for the Gibbs energy of polymer solutions, *Fluid Phase Equilibria*, *83*, 301-312. http://dx.doi.org/10.1016/0378-3812(93)87033-W
- Clarke, J. K. A. (1964). Kinetics of Absorption of Carbon Dioxide In Monoethanolamine Solutions at Short Contact Times. Industrial & Engineering Chemistry Fundamental, 3, 239-245. http://dx.doi.org/10.1021/i160011a012
- Cullinane, J. T., & Rochelle, G. T. (2004). Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine, *Chemical Engineering Science*, *59*, 3619-3630. http://dx.doi.org/10.1016/j.ces.2004.03.029
- Haimour, N., & Sandall O. C. (1984). Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine. *Chemical Engineering Science*, *39*, 1791-1796. http://dx.doi.org/10.1016/0009-2509(84)80115-3
- Hilliard, M. D. (2005). A predictive model for aqueous potassium carbonate/piperazine/ethanolamine for carbon dioxide removal from flue gas. *Dissertation Proposal, Department of Chemical Engineering, University of Texas, Austin.*
- Kaewsichan, L., Al-Bofersen, O., Yesavage, V. F., & Selim, M. S. (2001). Predictions of The Solubility of Acid Gases in Monoethanolamine (MEA) and Methyldiethanolamine (MDEA) Solutions Using The Electrolyte-UNIQUAC Model. *Fluid Phase Equilibria*, 183-184, 159-171. http://dx.doi.org/10.1016/S0378-3812(01)00429-0
- Li, M. H., & Lai, M. D. (1995). Solubility and Diffusivity of N₂O and CO₂ in (Monoethanolamine +N-Methyldiethanolamine + Water) and in (Monoethanolamine +2-Amino-2-methyl-1-propanol + Water). *Journal of Chemical and Engineering Data*, 40, 486-492. http://dx.doi.org/10.1021/je00018a029
- Li, M. H., & Lee., W. C. (1996). Solubility and Diffusivity of N₂O and CO₂in (Diethanolamine+ N-Methyldiethanolamine+Water) and in (Diethanolamine+2-Amino-2-methyl-1-propanol+Water). *Journal* of Chemical and Engineering Data, 41, 551-556. http://dx.doi.org/10.1021/je950224a
- Liu, Y., Zhang, L., & Watanasiri, S. (1999). Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO₂. *Industrial & Engineering Chemistry Research*, *38*, 2080-2090. http://dx.doi.org/10.1021/ie980600v
- Pitzer, K. S. (1980). Electrolytes.From dilute solutions to fused salts. *Journal of the American Chemical Society*, 102, 2902-2906. http://dx.doi.org/10.1021/ja00529a006
- Savage, D. W., Sartori, G., & Astarita, G. (1984). Amines as rate promotors for carbon dioxide hydrolysis. *Faraday Discussions of the Chemical Society*, 77, 17-31. http://dx.doi.org/10.1039/dc9847700017
- Thee, H., Suryaputradinata, Y. A., Mumford, K. A., Smith, K. H., ilva, G. D., Kentish, S. E., & Stevens, G. W. (2012). A kinetic and process modeling study of CO₂ capture with MEA-promoted potassium carbonate solutions. *The Chemical Engineering Journal*, *210*, 271-279. http://dx.doi.org/10.1016/j.cej.2012.08.092
- Versteeg, G. F., & SwaaiJ, W. P. M. (1988). Solubility and Diffusivity of Acid Gases (CO₂, N₂O) in Aqueous Alkanolamine Solutions. *Journal of Chemical and Engineering Data*, 33, 29-34. http://dx.doi.org/10.1021/je00051a011
- Versteeg, G. F., Littel, R. J., & SwaaiJ, W. P. M. (1992). Solubility and Diffusivity Data for the Absorption of COS, CO₂, and N₂O in Amine Solutions. *Journal of Chemical and Engineering Data*, 37, 49-55. http://dx.doi.org/10.1021/je00005a017
- Wang, Y. W., Xu, S., Otto, F. D., & Mather, A. E. (1992). Solubility of N₂O in alkanolamines and in mixed solvents. *The Chemical Engineering Journal*, 48, 31-40. http://dx.doi.org/10.1016/0300-9467(92)85004-S
- Weiland, R. H., & Browning, G. J. (1994). Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy. *Journal of Chemical and Engineering Data*, 39, 817-822. http://dx.doi.org/10.1021/je00016a040

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).