Preparation and Characterization of $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ for Adsorption of SO_{2} in Flue Gas

Yuono ${ }^{1}$, David Bahrin ${ }^{1}$ \& Herri Susanto ${ }^{1}$
${ }^{1}$ Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia
Correspondence: Herri Susanto, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia. E-mail: herri@che.itb.ac.id

Received: May 4, 2015
doi:10.5539/mas.v9n7p107

Accepted: June 5, 2015
URL: http://dx.doi.org/10.5539/mas.v9n7p107

Abstract

Adsorbent $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was successfully prepared by the dry impregnation using $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ solution on commercial $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$. Impregnation and calcination process was be done repeatedly to get a desired CuO content on the support. The impregnations were done at $50^{\circ} \mathrm{C}$ for 8 hours or $120^{\circ} \mathrm{C}$ for 5 hours. Calcinations were carried out at a temperature of $400^{\circ} \mathrm{C}$ for 8 hours. Adsorbent obtained from this preparation contained $\mathrm{Cu}: 7.93 \%$ (named $8 \mathrm{Cu}), 14.76 \%(15 \mathrm{Cu})$ and $28.98 \%(30 \mathrm{Cu})$. Pore characteristic indicated that the surface area decreased with the increase in Cu content in the adsorbent (from 207 in original support to $124 \mathrm{~m}^{2} / \mathrm{g}$ in 8 Cu). Similar tendency was found for the pore volume (from 0.47 to $0.28 \mathrm{~mL} / \mathrm{g}$). In batch adsorption test, the amount of adsorbed SO_{2} was calculated from the increase in mass of adsorbent. Adsorbent 8 Cu had the best adsorption capacity in term of mol ratio, ie. $0.78 \mathrm{SO}_{2} / \mathrm{CuO}$ (close to stoichiometry). Original support of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was found to be inert to SO_{2}. In semi-continue test, the adsorption was carried under a flow of gas containing $2.5 \% \mathrm{SO}_{2}$. The amount of adsorbed SO_{2} was calculated from the different of SO_{2} content between influent to effluent. It was found again that the best adsorbent was 8 Cu with the adsorption capacity of $0.97 \mathrm{~mol} / \mathrm{mol} \mathrm{CuO}$.

Keywords: dry impregnation, adsorbent characterization, adsorption capacity, SO_{2} reactive adsorption

1. Introduction

The use of coal as fuel for power plants has been increasing, and there is also a tendency in increasing the use of low quality coal with a high impurity particularly sulfur. In the other hand, this condition brings about an increase in SO_{2} emission which is very harmful for human health, environment and process equipments. A simple mass balance for combustion in a steam power plant operated with a coal having a sulfur content of 0.44% (dry basis) and 5% excess air (a condition in a pulverized burner) produces a flue gas with a SO_{2} emission exceeding the environmental standard of $750 \mathrm{mg} / \mathrm{Nm}^{3}$ in Indonesia. Meanwhile, the coal consumption for steam power plants in Indonesia may increase from 80 to 250 million ton in 2012 to 2030, with a sulfur content in the range of 0.1% to those above 1%.
There are two basic methods of elimination of SO_{2} from the flue gas of a coal-fired power plant: wet and dry methods. The dry method has been considered to have some advantages, especially against a potential emission of waste water in the wet methods (Dehghani and Bridjanian, 2010). In the dry method, an adsorbent has an ability to absorb SO_{2} and hopefully it can be regenerated without changing the adsorption capacity. $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ is one of a promising adsorbent in eliminating SO_{2} from flue gas and resuling CuSO_{4} ((Xie et al., 2004; Wittayakun et. al, 2002). Moreover, adsorption of SO_{2} by CuO takes place at a temperature in the range of flue gas temperature, $300-450^{\circ} \mathrm{C}$ (Mathieu, et al, 2013; Xie et al, 2003). The use of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ as support for CuO offers advantages a large specific surface area $\left(150-300 \mathrm{~m}^{2} / \mathrm{g}\right)$, and heat resistance of up to $700-900^{\circ} \mathrm{C}$.
Based on the above mentioned advantages, we considered that $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ may be a prospective adsorbent for a flue gas desulfurization in coal-fired power plants. Regeneration spent adsorbent or decomposition of CuSO_{4} at a temperature of about $700^{\circ} \mathrm{C}$ produced SO_{3} which an intermediate of saleable sulfuric acid (McCrea et al., 1970; and Himmelblau, 1989). Our experimental works on preparation, particle characterization and measurement of capacity of adsorbent $\mathrm{CuO} / \gamma \mathrm{Al}_{2} \mathrm{O}_{3}$ are presented in this paper. An adsorption-regeneration cycle was also conducted as a preliminary exploration.

2. Method

Adsorbent CuO may be prepared using the impregnation method on a support in order to get a large surface area. In our study, we used $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ having a surface area in the range of $200-300 \mathrm{~m}^{2} / \mathrm{g}$. Adsorbent was then characterized for its particles properties and also tested for its adsorption capacity of SO_{2} in its mixture with N_{2}.

2.1 Preparation of Adsorbent

Basically the procedure for preparation of SO_{2} may be found in any standard textbook of chemistry, based on reaction:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}
$$

Gaseous SO_{2} obtained from the above reaction was injected into a storage tank and mixed with air to get a desired composition. The mixture was allowed for at least 12 hours (overnight) to be homogeneous.

2.2 Preparation of Adsorbent

A commercial $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ support has been used. This support was firstly subject to calcination at $550^{\circ} \mathrm{C}$. This support had originally a specific surface area of $207 \mathrm{~m}^{2} / \mathrm{g}$. Solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was impregnated on support. The impregnated support was then dried in two steps: at a temperature of $50^{\circ} \mathrm{C}$ for 8 hour and at $120^{\circ} \mathrm{C}$ for 5 hour. Finally the dried particles was calcined at a temperature of $400^{\circ} \mathrm{C}$ for 8 hour. It was intended to get adsorption with Cu contents of $8 \%, 15 \%$ and 30% by weight (in accordance with Xie et al., 2003).
Adsorbent $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ having various Cu contents was obtained using the following procedures.
a. Adsorbent 8 Cu intended to have a Cu content of 8% was prepared as follows:
i. impregnation using solution of $8 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
ii. drying and calcination.
b. Adsorbent 15 Cu for $15 \% \mathrm{Cu}$:
i. first impregnation using solution of $8 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
ii. second impregnation using solution of $7 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
iii. drying and calcination.
c. adsorbent 30 Cu for $30 \% \mathrm{Cu}$:
i. first impregnation using solution of $8 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
ii. second impregnation using solution of $8 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
iii. third impregnation using solution of $8 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
iv. forth impregnation using solution of $6 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
v. after each impregnation, particles was dried in two steps: $50^{\circ} \mathrm{C}$ for 8 h and then $120^{\circ} \mathrm{C}$ for 5 h
vi. finally calcination at $400^{\circ} \mathrm{C}$ for 8 h .

2.3 Particles Properties

Analysis on the physical properties of adsorbent $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ were as follows:
a. AAS for measuring the amount of Cu successfully attached on support
b. BET for measuring the specific surface area and volume; then followed by pore mean diameter
c. SEM for observation to surface morphology.

XRD analysis was also applied for examination of crystalline phase of adsorbent after multiple use, ie. adsorption and desorption (Bereketidou, et. al, 2012).

2.4 Adsorption Capacity

Adsorption capacity of adsorbent was tested using an electrically heated adsorption-reaction vessel, with two methods of operation: batch and semi-continue (Figure 1). In the batch method, about one gram of catalyst was put in a reaction vessel having a volume of 40 mL . The vessel was then heated to a desired temperature: 300, 350, 400 or $450^{\circ} \mathrm{C}$, under a flowing N_{2}. When the desired temperature was achieved, a mixture of $50 \%-\mathrm{mol} \mathrm{SO}_{2}$ and 50% air was introduced into the vessel. The catalyst and gas were then allowed to contact intimately and react in the vessel for about 6 hours. The progress of adsorption was observed with the following methods:
a. reaction-1, increasing weight of catalyst: $\mathrm{CuO}+\mathrm{SO}_{2}+0,5 \mathrm{O}_{2} \rightarrow \mathrm{CuSO}_{4}$
b. reaction-2, decreasing pressure inside the vessel: $\mathrm{SO}_{2}+0,5 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$.

The initial pressure inside the vessel was atmospheric, i.e. 700 mmHg . Decreasing pressure inside the reaction vessel was measured using Extech-Micromanometer type 407910.

Figure 1. Experimental set up

1. Storage tank; 2. Manometer; 3. Adsorbent; 4. Electric furnace; 5. Temperature controller; 6. Bubble soap meter.

The adsorption condition in semi-continuous test was similar with the batch adsorption in terms of varying temperature and types of catalyst. A mixture of $2.5 \%-\mathrm{mol} \mathrm{SO}_{2}$ and air was allowed to flow continuously with a rate in the range of $1.6-2.0 \mathrm{~mL} / \mathrm{min}$ (as measured at the ambient condition: $30^{\circ} \mathrm{C}$ and 700 mmHg). The pressure in the reactor was kept atmospheric, and experiments on adsorption were carried out for about 1 hour.. The progress in adsorption was observed by the decrease in SO_{2} concentration between influent and effluent of the reaction vessel. In this measurement, SO_{2} in the influent were measured at the beginning and end of experiment, and was assumed constant. The concentrations of SO_{2} in the effluent were measured every 5 min , using titrimetry i.e.: (i) absorption of SO_{2} in the flowing gas into a solution of $20 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and followed by titration with solution of $\mathrm{NaOH}_{2} 0.1 \mathrm{M}$ to calculate the formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$:
c. reaction-3, chemical absorption: $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
a. reaction-4: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{NaSO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Increasing the weight of catalyst before and after each experiment was also used as a re-check to the mass balance (see reaction-1).

3. Results and Discussion

3.1 Characterizations of Adsorbent

Using the above experimental procedure, the desired Cu contents in adsorbent were successfully obtained (see Table 1). Unfortunately, the specific surface area and the specific volume of adsorbent were found to decrease with increasing the Cu content. As an example, our adsorbent 8 Cu had a specific surface area of $190.49 \mathrm{~m}^{2} / \mathrm{g}$, while the original $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ support has $207.39 \mathrm{~m}^{2} / \mathrm{g}$, thus a decrease of $16 \mathrm{~m}^{2} / \mathrm{g}$. This phenomenon was also reported by (Xie, et. al, 2003) as they found a decrease in surface area of $35 \mathrm{~m}^{2} / \mathrm{g}$ in an adsorbent with Cu content of 8% from the original $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ support.
A different result was reported in (Aguila, et. al, 2008), i.e. a more or less constant pore surface area for attachment of CuO on $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ (see Table 1, rows 8 and 9). They also mentioned that an attachment of CuO of 4% required a surface area of about $100 \mathrm{~m}^{2} / \mathrm{g}$ of support. Thus for a catalyst with a CuO content up to $4 \%, \mathrm{all} \mathrm{CuO}$ might be highly dispersed inside a support having a surface area of about $200 \mathrm{~m}^{2} / \mathrm{g}$. So did our adsorbent with a CuO content of about 7.9%, its had a only slightly lower surface area than the original support. Despite decreasing pore surface area with increasing CuO content, all our catalyst had a more or less same pore characteristic with those reported by many researchers (Mathieu, et. al, 2013, see Table 1, rows 10-17).

Table 1. Pore properties of adsorbent

No	Code	Cu content by mass	Pore properties		
			Surface area, $\mathrm{m}^{2} / \mathrm{g}$	Volume, mL/g	Mean Diameter \AA
our experiments					
1	$0 \mathrm{Cu} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	0\%	207.39	0.4754	91.6915
2	8 Cu	7.93\%	190.49	0.4356	91.4728
3	8 Cu	7.93\%	190.21	0.4272	89.8292
4	15 Cu	14.76\%	160.57	0.3724	92.7558
5	15 Cu	14.76\%	164.51	0.3633	88.3233
6	30 Cu	28.98\%	128.62	0.2846	88.5063
7	30 Cu	28.98\%	124.80	0.2839	91.0001
Aguila, et. al, 2008					
8	$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	0\%	208	-	-
9	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2.0\%	210	-	-
Mathieu, et. al, 2013 (from a variety of literature)					
10	$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	0\%	100	-	-
11	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	4.9\%	112	-	-
12	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	4.3\%	117	-	-
13	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	7.0\%	113	-	-
14	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	9.0\%	244	-	-
16	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	6.0\%	171		
17	$\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	8\%	166		

SEM analysis on our adsorbent indicated that the morphology of $8 \mathrm{Cu}(7,9 \% \mathrm{CuO})$ was still more or less similar to the original support (se Figure 2). While for adsorbents 15 Cu and 30 Cu , pores were blocks or damage.

3.2 Adsorption Capacity

Generally, an adsorbent with a Cu content has a higher activity or/and a higher adsorption capacity. Adsorption capacity is presented in two units:
a. mg of SO_{2} per g of adsorbent as usually presented as a specification of catalyst
b. mol of SO_{2} per mol of Cu to evaluate effectively of Cu utilization.

Figure 2. Morphology from SEM analysis

Results in experiments on adsorption capacity are presented in Table 2 for both methods of testing: batch and semi-continue. Indeed the adsorption capacity in term of $\mathrm{mg} \mathrm{SO}_{2} / \mathrm{g}$ of adsorbent increased in the test using the batch method, but it was not proportional to Cu content. Moreover the adsorption effectively, amount of adsorbed SO_{2} decreased in term of $\mathrm{mol} \mathrm{SO}_{2} / \mathrm{mol} \mathrm{Cu}$. As previously mentioned, adsorbent 15 Cu had a relatively low specific surface area then 8 Cu and 30 Cu (Table 1), which was also confirmed by the observation on their morphology (Figure 2). Probably, this was a reason why the adsorption capacity of 15 Cu was lower compared to that of 8 Cu .
In the semi-continue method, the best adsorbent was also that with a Cu content of 8% as represented by the progress of adsorption in term of $\mathrm{mol} \mathrm{SO}_{2} / \mathrm{mol}$ of Cu (Figure 3 and Table 2). Adsorption capacities of our adsorbent were more or less similar to those obtained by (Wittayakun, et. al, 2002), and generally higher than those reported by (Mathieu, et. al, 2013).
From our experiments in the batch method, the original support $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ had a very low adsorption capacity of SO_{2} of $6 \mathrm{mg} / \mathrm{g}$ of catalyst (see Table 2). While in the semi-continuous adsorption test, no-adsorption was found. The adsorption capacity of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is indeed questionable. Several literature mentioned that there is no-adsorption of SO_{2} on $\mathrm{Al}_{2} \mathrm{O}_{3}$ such as (Wittayakun, et. al, 2002). However as shown by Mathieu, et al, 2013 (see also Table 2), some others showed the ability of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to adsorb SO_{2} and the difficulty in the regeneration of spent adsorbent, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
XRD pattern of used 8 Cu catalyst (after adsorption) is presented in Figure 4. Spectrum of CuO was still detected at about 35° and 38°. This indicated, some CuO was not yet utilized. The original $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was still detected in XRD pattern, while pattern of $\mathrm{Al}_{2} \mathrm{O}_{3}$ was not detected. Thus, there was not any reaction between $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SO_{2} as observed in the adsorption capacity test on the original support using the semi-continuous method (Table 2).

Figure 3. Progress in the semi-continuous adsorption

Table 2. Adsorption capacity

9	4.9%		65
10	4.3%	38	
11	7.0%	$48-61$	$17-93$
12	9.0%		40
13	6.0%	115	
14	8.0%	68	
15	25.0%		

Figure 4. XRD pattern of 8 Cu after adsorption

Regeneration of saturated adsorbent or SO_{2} desorption was carried out at $600^{\circ} \mathrm{C}$ for 20 minutes, under the flowing air. As expected, up to four cycles, the regenerated adsorbent performed quite similar to the fresh adsorbent (Figure 5, for adsorbent 8 Cu). This result on adsorption-desorption cycle was better than those reported in (Xie, etal, 2004). But, some reseachers mentioned an adsorbent with a CuO content of about 8% could be used (adsorption-desorption) with an adsorption capacity of around $40 \mathrm{~g} / \mathrm{g}$ for $2-750$ cycles (Mathieu, et. al, 2013).

Figure 5. Adsorption-desorption cycles of 8 Cu

4. Conclusions

Adsorbent $\mathrm{CuO} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ had successfully been prepared by the dry impregnation method using $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ solution on $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ as support. Three adsorbents with three different CuO contents of about $8 \%, 15 \%$ and 30% had been characterized and measured its capacity. The best adsorbent was 8 Cu (containing $7.93 \% \mathrm{Cu}$) with an adsorption capacities of 0.72 and $0.97 \mathrm{~mol} \mathrm{SO} 2 / \mathrm{mol}$ of Cu in batch and semi-continuous method of testing respectively. The effective adsorption capacity was found to decrease with increasing Cu content, since the layer of Cu might block the pore of support in adsorbent. Support $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was found to be inert for SO_{2}. Support of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was found to be inert for SO_{2}. Desorption at $600^{\circ} \mathrm{C}$ did not affect the adsorbent activity up to four adsorption-desorption cycles. With this prospective results, research will be continued further to optimize the Cu content in adsorbent (probably less than 8%) and adsorption test for gas with a SO_{2} concentration of about 2500 ppm (flue gas in a coal fired power station).

Acknowledgments

The authors appreciate very much to the contribution of Dr. Subagjo. Support $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was obtained from Laboratory of Catalyst and Chemical Reaction Engineering, Department of Chemical Engineering, ITB.

References

Aguila, G., Gracia, F., \& Araya P. (2008). CuO and CeO catalyst supported on $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$, and SiO_{2} in the oxidation of CO at low temperature. Applied Catalysis A: General, 343(1-2), 16-24.
Bereketidou, O. A., Charisiou, N. D., \& Goula, M. A. (2012). Simultaneous Removal of NO and SO_{2} From Combustion Flue Gases Using Supported Copper Oxide Catalysts. Global NEST Journal, 14(2), 166-174.
Dehghani, A., \& Bridjanian, H. (2010). Flue Gas Desulfurization Methods to Conserve the Environment. Petroleum \& Coal, 52(4), 220-226.
Flores, R., Rodas, A., Palma, C., Melendez, Y. I., Melendez, X. S., \& Gonzalez, L. L. (2008). Thermogravimetric Studies on the Effect of Support in Sorbent-Materials Applied to Flue Gas Desulfurization. Fuel, 87, 1115-1126.
Himmelblau, D. M. (1989). Basic Principles and Calculations in Chemical Engineering ($5 \mathrm{t}^{\mathrm{h}}$ ed.). Prentice-Hall, India.
Mathieu, Y., Tzanis, L., Soulard, M., Patarin, J., Vierling, M., \& Moliere, M. (2013). Adsorption of SO X_{x} by Oxide Materials: A Review. Fuel Processing Technology, 114, 81-100.
McCrea, Forney, A. J., \& Myers, J. G. (1970). Recovery of Sulfur from Flue Gases Using a Copper Oxide Absorbent. Journal of the Air Pollution Control Association, 20(12), 819-824. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/00022470.1970.10469479\#.VTjZjZMXXa0
Wittayakun, J., Mahachanon, K., \& Grisdanurak, N. (2002). Adsorption of Sulfur Dioxide by Copper Oxide Supported on Alumina and Mordenite. Proceeding of Asian Pacific Confederation of Chemical Engineering (APCChE 2002). Retrieved from http://sutir.sut.ac.th:8080/sutir/handle/123456789/973
Xie, G., Liu, Z., Zhu, Z., Liu, Q., \& Ma, J. (2003). Reductive Regeneration of Sufated $\mathrm{CuO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ Catalyst-Sorbent in Ammonia. Applied Catalysis B: Environmental, 45, 213-221.
Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., \& Huang, Z. (2004). Simultaneous Removal of SO_{2} and NO_{x} from Flue Gas Using a $\mathrm{CuO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ Catalyst Sorbent II. Promotion of SCR Activity by SO_{2} at High Temperatures. Journal of Catalysis, 224, 42-49.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

