Hydrocracking of Nyamplung Oil (*Calophyllum inophyllum 0il*) Using CoMo/γ-Al₂O₃ and CoMo/SiO₂ Catalysts

Rismawati Rasyid¹, Adrianto Prihartantyo¹, Mahfud¹ & Achmad Roesyadi¹

¹Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Indonesia

Correspondence: Achmad Roesyadi, Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia. E-mail: aroesyadi@yahoo.com

Received: May 4, 2015	Accepted: June 5, 2015	Online Published: June 30, 2015
doi:10.5539/mas.v9n7p43	URL: http://dx.doi.org/10.5539/m	as.v9n7p43

Abstract

The purpose of this research is to study hydrocracking process of nyamplung oil using 5% and 15% CoMo catalyst and supported on γ -Al₂O₃ and SiO₂. Catalyst was prepared using wet impregnation method and calcined at 500°C for 5 hours without sulfidation process. The X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were performed to analyze the crystalinity and surface morphology. Based on the XRD that MoO₂ was deposited on the surface of the catalysts. The hydrocracking of *nyamplung (Calophyllum inophyllum)* oil was conducted in Parr pressure reactor at 350°C and 3 MP. Hydrocracking product was analyzed by using Gas Cromotography – Mass Spectrometry (GCMS). The highest catalytic activity was obtained by 15% loading CoMo over γ -Al₂O₃ and the highest yields were 39.58% gasoil, 31.32% gasoline and 7.44% kerosene.

Keywords: nyamplung oil, hydrocracking, gasoil, gasoline, kerosene

1. Introduction

Biofuel is an alternative energy source that can nvironmen the part of fossil based oil. Therefore, the amount of raw material should be able to meet those needs. One of raw material that can be used as alternative energy resources is non-edible oil. *Nyamplung* oil, as non-edible oil contains saturated and unsaturated fatty acid which can be converted into biofuel and consists of 75% oil of total components. It was found that nyamplung oil contained 71% of unsaturated fatty acids, such as oleic acid and linoleic acid (Ong et al., 2011).

This work used hydrocracking and employing bifunctional catalysts. Hydrocracking followed two processes, i.e. hydro-dehydrogenation and catalytic cracking. Bifunctional catalyst has two active sides, metal and acid, which serves to accelerate the reaction of hydrogenation, dehydrogenation and cracking, (Tayeb et al., 2010). The previous studies were the hydrocracking of soybean oil employing NiMo (Ishihara et al., 2014); hydrocracking of $n-C_{16}H_{34}$ and $n-C_{28}H_{58}$ using Pt/SiO₂ – Al₂O₃ (Rossetti et al., 2009), meanwhile, hydrocracking of vacuum gas oil applying zeolite catalyst (Cui et al., 2013).

Generally, hydrocracking uses bifuctional catalysts as previously reported investigations (Regali et al., 2013; Puron et al., 2014 ; Burnens et al., 2011). Catalyst preparation of CoMo for reaction had followed through sulfidation of H_2S/H_2 as proposed by authors (Yang et al., 2009; Anand et al., 2012; Loricera et al., 2011). However, those methods produced catalyst contained sulfuric compound, which accelerated the deactivation and more expensive.

The purpose of this research was aimed to study hydrocracking process of nyamplung oil using 5% and 15 % CoMo catalyst and supported by γ -Al₂O₃ and SiO₂. The present catalyst preparation did not employed the sulfidation process on CoMo catalyst. The advantages of this method were 43nvironmentally friendly and more economical.

2. Method

The catalysts were prepared by wet impregnation method. The five and 15 % CoMo catalysts derived from $Co(NO_3)_2 \cdot 6H_2O$ and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$, which were p.a 99% (Merck). The CoMo was impregnated into the catalyst support γ -Al₂O₃ (p.a ,Merck) or SiO₂ (p.a, Sigma Aldrich) and referred to methods proposed by authors (Anderson and Garcia, 2005). The catalyst was dried at 110°C for 8 h and calcined at 500°C for 5 h. Catalysts prepared were analyzed by Scanning Electron Microscopy (SEM) with Ma Evo 10 instrument. The analysis determining the crystallinity of the catalyst was performed X-Ray Diffraction (Philips Analytica with scan

description: EI-0725). Hydrocracking process was conducted reactor (Parr pressure reactors, USA), which operated at of 350° C for 2 h. The products were analyzed by GC-MS (Gas Cromotography – Mass Spectrometry).

3. Results

3.1 XRD Characterization of Catalysts

(c). XRD of Al_2O_3 catalyst Figure 1. XRD pattern CoMo, SiO_2 and $\gamma\text{-Al}_2O_3$ catalysts

Figure 3. The XRD patterns of Catalyst of 5% CoMo /y-Al₂O₃ (a) and 15% CoMo /y-Al₂O₃ (b)

3.2 SEM Characterization of Catalysts

The characteristics of surface morphology of $CoMo/\gamma$ -Al₂O₃ and $CoMo/SiO_2$ catalysts are presented in SEM images as shown in Figure 4.

a. SEM analysis of CoMo/ γ -Al₂O₃ b. SEM analysis of CoMo/ SiO₂

Figure 4. SEM analysis of CoMo/γ-Al₂O₃ dan CoMo/SiO₂ catalysts

3.3 Hydrocracking Results

Table 1. Product yield (in %) of hydrocracking of nyamplung oil

Type of Catalyts	Yield (%)		
	Gasoline	Kerosene	Gasoil
5%CoMo /SiO ₂	9.54	10.54	27.84
15%CoMo/SiO ₂	4.24	-	15.50
5%CoMo /γ-Al ₂ O ₃	10	8.52	36.75
15%CoMo /y-Al ₂ O ₃	31.32	7.44	39.58

4. Discussion

The original CoMo XRD patterns showed the clear peaks at angles (2 θ) 12.7, 13, 19, 23 and 25, meanwhile, γ -Al₂O₃ displayed at 39.5, 45.7 and 67. On the other hand, peaks 20.9, 26.68, 36.58, 39.50, 50.17, 59.9, 67.78, 68.17 and 68.35 appeared for SiO₂ catalyst (Figure 1).

There were indicative that there were other elements deposited on the surface of the catalyst and for the catalyst

CoMo/SiO₂ is presented in Figure 2. Catalyst 5% CoMo/SiO₂ showed peaks at $2\theta = 20.84$, 26.62, 39.45, 50.11, 59.92, 67.71 and 68.2°. Catalyst 15% CoMo/SiO₂ was $2\theta = 20.84$, 26.62, 36.52, 39.44, 50.11, 59.93, and 68.11°.

The five percent CoMo/ γ -Al₂O₃ catalysts have a clear peaks at $2\theta = 20.8$, 26.6, 50.1, 59.9, 68.1 and 68.2°, while 15% CoMo / γ -Al₂O₃ catalysts were at $2\theta = 26.51$, 27.2, 37.78, 60.2, 60.55, and 67° shown in Figure 3. The MoO₂ and Al₂O₃ were deposited on the surface of catalyst γ -Al₂O₃ as its support.

After SiO₂ and γ -Al₂O₃ were impregnated by CoMo, the crystalinities were measured by XRD. The catalysts obtained showed the particular peaks on XRD patterns. In general, the peaks of prepared catalysts slightly shifted from those of original catalysts. The SiO₂ and CoMoO₄ were deposited on CoMo/SiO₂ the catalyst surface. Catalysts without sulfidation was formed MoO₂ through depositing on the catalyst surface of CoMo / γ -Al₂O₃ since Mo has an empty d orbital at periodical system. Free electrons on the 4d and 5s orbit of Mo atom can form Mo⁴⁺ that composed MoO₂, while MoO₃ is formed from Mo⁶⁺. The CoMo catalysts prepared via sulfidation, MoO₃ deposited on the surface of the catalysts (Nava et al., 2011). Other research using CoMoW was detected in some peakes at 20 = 25, 28, 32.5, 38, 43, 48, 57, and 59.5° and β-CoMoO₄ was deposited on the surface of catalyst (Huirache-Ancuña et al., 2009).

It showed that addition of CoMo at above 5 % over SiO₂ support gave the lower yields of product. The ability of catalyst with γ -Al₂O₃ support gave greater yields than that of SiO₂. It was caused by the presence of oxide metal on the surface of catalyst functioning to bind hydrogen. This is also attributed with the surface area range at from 165 – 186 m²/g. The ratio of metal and acid catalysts affected the performance of catalyst (Rayo Patricia et al., 2012).

The images $CoMo/\gamma$ -Al₂O₃ and $CoMo/SiO_2$ showed the different morphological shapes (Figure 4). The $CoMo/\gamma$ -Al₂O₃ catalyst has octahedral shape, while SiO₂ catalyst was irregular shape. An octahedral shape on $CoMo/\gamma$ -Al₂O₃ was due to the MoO₂ deposited on the surface of catalyst forming Mo⁴⁺ ions. The MoO₂ significantly influenced to activity of catalyst so the yields obtained was higher than those of SiO₂.

After employing Catalyst CoMo/ γ -Al₂O₃ and CoMo/SiO₂ without sulfidation for hydrocrackyng of nyamplung oil, it was found that CoMo/ γ -Al₂O₃ resulted the highest yield. The highest yields of product in hydrocracking of nyamplung oil with catalyst 15%CoMo/ γ -Al₂O₃ were 39.58% gas oil, 31.32% gasoline and 7.44% kerosene. The five percent CoMo/SiO₂ catalysts produced product yield of hydrocracking greater than 15% CoMo/SiO₂. Both catalysts are more selective on gas oil products than kerosene and gasoline shown in Table 1. While, 5%CoMo / γ -Al₂O₃ was more selective for gasoil compared to gasoline and kerosone. On other hand, the yield of gasoil using15%CoMo / γ -Al₂O₃ resulted 39.58 %, which slightly increased from gasoline recorded at 31.32%. It was discovered that 15% CoMo / γ -Al₂O₃ employed yielded the biggest gasoline of others catalysts.

Acknowledgments

The authors would like to thank members of the Chemical Engineering & Reaction and Process Technology Laboratories, Sepuluh Nopember Institute of Technology.

References

- Anderson, A. J., & García, F. M. (2005). Supported metals in catalysis, World scientific publishing. Pte. Ltd, Singapore.
- Anand. M., & Sinha, A. K. (2012). Temperature-dependent reaction pathways for the anomalous hydrocracking of triglycerides in the presence of sulfided Co-Mo-catalyst. *Bioresource Technology*, 126, 148–155. http://dx.doi.org/10.1016/j.biortech.2012.08.105
- Burnens, G., Buochy, C., Guillon, E., & Martens, J. A. (2011). Hydrocracking reaction pathways of 2,6,10,14-tetramethylpentadecane model molecule on bifunctional silica–alumina and ultrastable Y zeolite catalysts. *Journal of Catalysis*, 282, 145-154. http://dx.doi.org/10.1016/j.jcat.2011.06.007
- Cui, Q. Y., Zhou, Y. S., Wei, Q., Yu, G. G., & Zhu, L. (2013). Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil. *Fuel Processing Technology*, 106, 439–446. http://dx.doi.org/10.1016/j.fuproc.2012.09.010
- Huraiche-Ancuña, R., Pawelec, B., Rivera-Muñoz, E., Nava, R., Espino, J., & Fierro, G. L. J. (2009). Comparison of the morphology and HDS activity of ternary Co-Mo-W catalysts supported on P- modified SBA-15 and SBA-16 substrates. *Applied Catalysis B*, 92, 168-184. http://dx.doi.org/ 10.1016/j.apcatb.2009.07.012
- Ishihara, A., Fukui, N., Nasu, H., & Hashimoto, T. (2014). Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalysts. *Fuel*, *34*, 611-617. http://dx.doi.org/10.1016/j.fuel.2014.06.004

- Loricera, C. V., Pawelec, B., Infantes-Molina, A., Álvarez-Galván, M. C., Huirache-Acũna, R., Navac, R., & Fierro, J. L. G. (2011). Hydrogenalisis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. *Catalysis Today*, 172, 103-110. http://dx.doi.org/10.1016/j.cattod.2011.02.037
- Nava, R., Infantes, Molina, A., Castano, P., Gull-lopez, R., & Pawelec. (2011). Inhibition of CoMo/HMS Catalyst deactivation in the HDS of 4, 6-DMDBT by support modification with Phosphat. *Fuel*, 90, 276-2737. http://dx.doi.org/10.1016/j.fuel.2011.03.049
- Ong, H. C., Mahlia, I. M. T., Masjuki, H. H., & Norhasyima, S. R. (2011). Comparison of palmoil, Jatrophacurcas and Calophylluminophyllum for biodiesel: A review. *Renewable and Sustainable Energy Reviews*, 15, 3501–3515. http://dx.doi.org/10.1016/j.rser.2011.05.005
- Puron, H., Arcelus-Arrillaga, P., Chin, K. K., Pinilla, J. L., Fidalgo, B., & Millan, M. (2014). Kinetic analysis of vacuum residue hydrocracking in early reaction stages. *Fuel*, 117, 408-414. http://dx.doi.org/10.1016/j.fuel.2013.09.053
- Rossetti, I., Gamboro, C., & Calemma, V. (2009). Hydrocracking of long chain linear paraffins. *Chemichal Engineering Journal*, 154, 295-301. http://dx.doi.org/10.1016/j.cej.2009.03.018
- Rayo, P., Jorge, R., Torres-Mancera Pablo., Gustavo, M., Maity, K. S., & Ancheyta, J. (2012). Hydrodezulfurization and hydrocracking of maya crude with P-modified NiMo/Al₂O₃ catalysts. *Fuel*, 10, 34-42. http://dx.doi.org/10.1016/j.fuel.2011.12.004
- Regali, F., Boutonnet, M., & Järås, S. (2013). Hydrocracking of n-hexadecane on noble metal/silika alumina Catalysts. *Catalysis Today, 214*, 12-18. http://dx.doi.org/10.1016/j.cattod.2012.10.019
- Tayeb, K. B., Lamonier, C., Lancelot, C., Fournier, M., Payen, E., Bonduelle, A., & Bertoncini, F. (2010). Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation. *Catalysis Today*, 150, 207-212. http://dx.doi.org/10.1016/j.cattod.2009.07.094
- Yang, Y., & Gilbert, A., & Xu, C. (2009). Hydrodeoxygenation of biocrude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol. *Applied Catalysis* A: General, 360, 242-249. http://dx.doi.org/10.1016/j.apcata.2009.03.027

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).