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Abstract 

In this paper authors propose the technique, which decreases average forecast error of regression based models. 
The main idea of the method is to use the weighted sum of several regression equations, which satisfy Ordinary 
Least Squares prerequisites and have independent residuals, instead of only one. It is shown that if all method 
requirements are met, it is possible to decrease Mean Squared Error almost by half, using just three equations. 
This technique allows deriving equations which contain more predictors than the number of observations. 
Additionally, this method proves to be more consistent in time than any of regressions, used in it, separately. It is 
also illustrated, that the proposed method outperforms the regression equation, computed with the same 
independent variables, and, thus, it gives more accurate estimators of regression coefficients.  Empirical results 
are provided as well. 

Keywords: regression model, forecast error, coefficients estimation.  

1. Introduction 

When modeling a social or economic process a researcher nearly always encounters an uncertainty whether 
created model will work in the future with the same effectiveness, what is partly highlighted by James Stock and 
Mark Watson (2007), Alhamzawi, R and Yu, K. (2012), Clark, T.E., McCracken, M.W. (2009), Gneiting, T. 
(2011) and Giordani, P., Kohn, R., van Dijk, D. (2007). In other words, even if a linear model fully satisfies all 
the OLS (Ordinary Least Squares) prerequisites and has some forecast error magnitude, one cannot assert that 
while using it for prediction this very magnitude stays at least within some acceptable area. Sometimes a forecast 
error may be several times as big as the original one and in this case such model will not be of much use. That 
happens due to the following reasons. Either unaccounted factors changed their values so, that coefficients 
estimators become biased, or accounted factors change the extent of their impact on the output variable. Actually, 
it can also be a combination of both, see for example Orphanides, A. and S. van Norden (2005) and Primiceri, G. 
(2005). In order to decrease those errors a researcher can work out a model which takes into account structural 
breaks and coefficients variability in regression equation, refer for example to Jan J.J. Groen, Richard Paap and 
Francesco Ravazzolo (2009) and Sensier, M., Van Dijk, D. (2004), Clark, T.E. (2011), Jore, A.S., J. Mitchell and 
S. P. Vahey (2010) and Koop, G. and S. Potter (2007). However, the following problem, to authors’ personal 
opinion, is still not fully solved. While specifying a regression equation and trying to adjust it to satisfy all the 
OLS prerequisites, one may skip a lot of data which actually impacts the model output. That is why we devote 
this paper to development of the method that could grasp more explanatory variables and thus significantly 
decrease forecast error without violating the classical way of regression model specification.  

2. Empirical Background of the Method 

Let us say we are creating an inflation forecasting model for the USA economy. Quarterly CPI (Consumer Price 
Index) is selected as the output variable . As possible independent variables we test three lags of the 
dependent variable  and of each quarterly index for the following macroeconomic indicators: GDP (Gross 
Domestic Product), GDI (Gross Domestic Income), Federal Funds Rate, Non-Farm Payrolls, Brent Oil Price, 
Dow Jones Industrial Average, RGDP (Real Gross Domestic Product), Monetary Base M2, Total Export, Total 
Import, Money Velocity (calculated as a ratio of GDP and M2), Employment Rate. Thus, the regression equation 
can be written as follows:    
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                            (1) 

where  is the number of explanatory variables,  and  stand for coefficients for the lagged CPI and 
lagged explanatory variables respectively,  – constant term. 

Here we don’t take into account zero lags, because all the data mentioned above are not available at the very 
beginning of the next time period and are issued only during the quarter. Therefore one cannot make a forecast 
before another quarter starts. For building the model we take 95 observations, beginning from the 1st quarter of 
1960. After the first equation is set up, the data frame is shifted forward by one observation and again new 
equation is computed. This procedure goes on for 70 times. To specify the regression equation the following 
optimization problem with restrictions is used: 

                                        (2) 
where  – Mean Squared Error,  – significance level for k-th predictor, ∈ 1. . ,   – number of 
selected predictors,  - Variance Inflation Factor for k-th predictor,  – Condition Number. 

Here it is actually not so important which variable selection method we use, whether it is Bayesian variable 
selection, Gibbs sampling or classical approach, refer to De Mol C., D. Giannone and L. Reichlin (2008) and 
Wright, J.H. (2009). Let us say we just choose the best fitting regression shape according to some algorithm. To 
illustrate the regression structure inconsistency we provide some coefficients magnitude dynamics throughout 
these 70 equations. The results are shown in the Table 1, where Y-axis denotes coefficient magnitude and X-axis 
– the equation number. If a predictor was not included in equation, its coefficient takes up zero. 

 

Table 1. Coefficients value dynamics 
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From the table one can see, that there are either some more or less consistent predictors, such as M2(t-1), 
Non-farm Payrolls (t-2) and RGDP (t-1), or not consistent at all (RGDP (t-3), Velocity (t-2) and Non-farm 
Payrolls (t-3)). The experiment revealed a huge amount of structural breaks while calculating the equations. 
Nearly every shift of the data frame a better regression could be built. Moreover, some coefficients even change 
their magnitude from positive to negative and vice versa. Therefore, we dare to assume, that when skipping some 
factors which are actually important, coefficients of accounted predictors bear some part of their impact on 
regression output, see for example Pesaran, M. H., D. Pettenuzzo and A. Timmermann (2006) and Gneiting, 
T., Raftery, A.E. (2007). For instance, M2(t-1) often performs as quite a significant predictor (coefficient is 
relatively high). And when M2(t-1) is not accounted in an equation due to multicollinearity reasons doesn’t mean 
it stopped its influence on CPI. Its impact is just redistributed among other predictors coefficients, refer to 
Justiniano, A. and G. E. Primiceri (2008), Giordani, P. and M. Villani (2010) and Jore, A.S., Mitchell, J., Vahey, 
S.P. (2010). And if during forecasting M2(t-1) starts to display greater volatility, our equation will not be any 
more consistent as it doesn’t comprise M2(t-1) as an explanatory variable. That’s why a researcher should aspire 
to include as many dependent variables into a model as possible. But at the same time the more predictors one 
takes the higher risk of multicollinearity and greater errors in coefficients estimators is (Primiceri, G.E. (2005) 
and P. Newbold (1997)). Thus, to find the optimal balance is very important. Moving forward, we noticed that 
within one data frame several regression equations can be specified which would satisfy inequality set (2). And 
the problem of selecting one of them converges just to picking an equation with the minimum MSE. However, 
using the latter for forecasting doesn’t guarantee us the best prediction compared to other possible regressions 
which were discarded, especially if MSE differ insignificantly. For example, let us consider three possible 
regression equations R1, R2 and R3 for the very first data frame. We provide general information about each of 
them in Table 2. 

 

Table 2. Summary for R1, R2 and R3 

Indicator R1 R2 R3 

m 8 10 7 
R 0.943 0.947 0.922 

F-statistic sig. 0.000 0.000 0.000 
DW 1.531 1.763 1.757 
α CPI (t-2) – 0.001 NFPR (t-1) – 0.000 CPI (t-1) – 0.000 
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CPI (t-3) – 0.000
NFPR (t-2) – 0.000
Brent (t-1) – 0.021

Import (t-2) – 0.020
Export (t-1) – 0.000
Export (t-2) – 0.021

Emp-ment (t-1) – 0.010

Brent (t-1) – 0.005
M2 (t-1) – 0.000

DJIA (t-1) – 0.004
RGDP (t-1) – 0.000
Import (t-2) – 0.037
Export (t-2) – 0.005

Velocity (t-1) – 0.000
Emp-ment  (t-2) – 0.000
Emp-ment  (t-3) – 0.000

GDP (t-2) – 0.000 
NFPR (t-2) – 0.000 
Brent (t-2) – 0.021 
DJIA (t-1) – 0.003 

RGDP (t-1) – 0.022 
Export (t-1) – 0.012 

VIF CPI (t-2) – 6.882
CPI (t-3) – 5.653

NFPR (t-2) – 2.054
Brent (t-1) – 1.183

Import (t-2) – 2.882
Export (t-1) – 2.303
Export (t-2) – 2.377

Emp-ment (t-1) – 2.638

NFPR (t-1) – 2.993
Brent (t-1) – 1.170

M2 (t-1) – 4.242
DJIA (t-1) – 1.679

RGDP (t-1) – 5.331
Import (t-2) – 3.228
Export (t-2) – 2.731

Velocity (t-1) – 3.003
Emp-ment (t-2) – 2.437
Emp-ment (t-3) – 1.527

CPI (t-1) – 3.179 
GDP (t-2) – 4.373 

NFPR (t-2) – 1.753 
Brent (t-2) – 1.142 
DJIA (t-1) – 1.179 

RGDP (t-1) – 1.817 
Export (t-1) – 1.723 

CN 5.887 5.471 4.225 
MSE 0.53083 0.53548 0.63767 

 

All three equations satisfy inequality set (2) and according to the chosen algorithm we should pick R1 for making 
forecast. However, applying R1 to calculate the future magnitude of the dependent variable we will not always 
receive smaller forecast errors than if we used R2 or R3. In order to illustrate this point, we take the data frame 
equal to 30 observations, starting from the first forecast value, and compute MSE for all three regressions 
considered. This procedure is made for 40 times shifting the frame by one observation forward. Thus, we take a 
look at how these regression equations would have worked if we had derived them back in1984. The results are 
shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. MSE dynamic for R1, R2 and R3 

 

One can see that MSE of R1, R2 and R3 don’t stay in the same order as in Table 2 and interweave throughout the 
time. It underlines the main idea of this section, that if the quality of several regression equations is more or less 
equal, then there is a high uncertainty level concerning which equation to choose for prediction. Therefore in the 
following section authors make an attempt to solve this problem.  

3. The Method 

Imagine we have a target variable  and a relatively large set of dependent variables , … . Let us also 
assume it is possible to derive l regression equations , …  within one observations frame and each  
has 	 0;  and satisfies OLS prerequisites with significant predictors. Then we can create a new regression 
equation , using the weighted sum of already computed ones.  
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                                     (3) 

where  is an output of ,  - weighing function 

For calculating weighing function  let us first consider standard deviation of , which denotes MSE of . 
According to (3)  is presented by the following expression. 

                            (4) 

From formula 4 one can see that mean error of the combined model consists of the variance of errors and the 
variance of the regression line. Variance of errors is computed as follows. 

                          (5) 

Variance of the regression line can be presented in the following form.  

                          (6) 

Hence our task converges to computation of covariance between two regressions included in the ultimate model.   

        (7) 

where is a column-vector of the i-th model predictors values used for forecasting 

Thus variance of the combined model may be rewritten as in formula 8. 

     (8) 

For being able to get  from formula 8, we need an unbiased estimator of models residuals covariance, 

which will be computed as presented below.  

                                 (9) 

where  is a number of i-th model parameters 

As the main goal of the method being elaborated is to create an equation, which would outperform all the other 
computed, we encounter a problem of  minimization, which can be easily solved by quadratic 
programming method. In this case optimization task will look as follows.  

                                     (10) 

Let us also take into account the fact that if the set of  are i.i.d. variables and are subject to 0; (what we 
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assume to be true for all our models residuals), then ́ 	 0; ́  as well. Thus, we can figure out the interval 
estimate for the combined model forecast.   

We point out that it is common for confidence interval computation in case of linear regression to use 
T-distribution with (n-k-1) degrees of freedom if a constant is present in the equation and with (n-k) degrees of 
freedom in case of its absence.  

                          (11) 

where s is an unbiased estimator of the true standard deviation  

In case of newly computed regression model, formula 11 will look as follows. 

                        (12) 

Now our task converges to the search of degrees of freedom number r. As 

                            (13) 

Then we can infer, that  

                             (14) 

Using the fact, that the variance of chi-square distribution is two times as great as the number of degrees of 
freedom, we have: 

             (15) 

As , then  

            (16) 

as we suppose there is no dependencies among covariances.  

In order to compute the variance of residuals covariance let us refer to the Wishart distribution. Hence we give a 
quick reference on this distribution. Suppose  is an ×  matrix, each row of wich is independently drawn 
from a p-variate normal distribution with zero mean. 

                             (17) 

Then the Wishart distribution is the probability distribution of the ×  random matrix = . One 

indicates that  has that probability distribution by writing  

                                      (18) 

The positive integer  is the number of degrees of freedom. If  = = 1 then this distribution is a 
chi-squared distribution with  degrees of freedom.  
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                    (19) 

We also know that the variance of a matrix element which is subject to the Wishart distribution is computed as 
follows. 

                                 (20) 

Applying formula 19 to the formula 20 we obtain 

                  (21) 

Making some trivial calculations we get  

                  (22) 

Integrating (19) into (18) and then applying it to formula 16 we obtain the number of degrees of freedom . 

                (23) 

As we do not know the true variance of the ultimate model and true covariances and variances of models 
included in the ultimate one, we should substitute them with their unbiased point estimator. And in this case we 
get our final formula of degrees of freedom. 

                   (24) 

Thus, not only does proposed method allow to significantly decrease MSE acceptance of the hypothesis about 
residuals independence, but also it reduces its confidence interval. To summarize calculations and inferences 
above, we provide a stepwise algorithm of regression  computation. 

1. Calculate all possible regression equations satisfying OLS prerequisites with significant predictors;  

2. Find   by solving the optimization problem (10); 

3. Compute regression  by formula 3 using already obtained weighing functions ; 

4. Calculate a point forecast using regression  from the previous step; 

5. Compute confidence interval for the point forecast by formula 12 with degrees of freedom computed by 
formula 24.  

An ideal case would be several regression equations with equal MSE and independent residuals. Just three 
regression equations which meet all the requirements allow us to decrease MSE of the fittest equation by about 
40%. It is also worth noticing that according to the algorithm above proposed method allows deriving an 
equation, which would comprise even more explanatory variables than there are observations. The prominent 
feature of the method is that it is fully automatic and can operate without any interference from a researcher.   

4. Application to Real Data 
In this section we use the same data as in Section 1 for testing the method. In Table 3 we provide pair correlation 
for residuals of chosen regressions R1, R2 and R3.   
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Table 3. Pearson’s correlation for residuals of R1, R2 and R3 

 Res1 Res2 Res3
Res1 
Sig. (2-sided)
N 

1
-

95

0.670
0.000

95

0.649
0.000

95
Res2 
Sig. (2-sided)
N 

0.670
0.000

95

1
-

95

0.703
0.000

95
Res3 
Sig. (2-sided)
N 

0.649
0.000

95

0.703
0.000

95

1
-

95
 

As one can see positive correlation amongst these regression residuals is not very strong although significant. 
But as it will be shown further even with such equations we can substantially improve the accuracy of the 
forecast. We also provide in Table 4 Kolmogorov-Smirnov test for normality of the residuals in order to make 
sure, that we can use parametric interval estimators of forecast errors.        

 

Table 4. Kolmogorov-Smirnov test for normality 

 Res1 Res2 Res3 Res 
N 
MSE 
Kolmogorov-Smirnov statistics
Asymptotic sig. (2-sided)

95
0.53083

0.730
0.661

95
0.53548

0.467
0.981

95
0.64099

0.794
0.554

95 
0.50159 

0.452 
0.987 

 

From Table 4 we see, that residuals for regression  (Res) show even more normality than any of selected 
regressions separately (Res1, Res2, Res3). Thus, interval estimates will be also more reliable for regression  
what is another doubtless positive feature of the method. In Figure 2 we compare three regression residuals, 
which were already shown in Figure 1, with regression , computed according to proposed method.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. MSE dynamic for R1, R2, R3 and R 

 

It is easily seen, that  displays consistently smaller MSE throughout the data span of 70 observations than R1, 
R2 and R3. we also want to draw our reader’s attention to the fact that during calculation of the equations Res 
was by 5.5% smaller than the minimum of Res1, Res2 and Res3 (0.50159 for Res against 0.53083 for Res1) and 
already during first 30 out-of-sample values Res became smaller than the same minimum by 12.2% (0.58913 for 
Res against 0.67063 for Res4). Regression  will stay more preferable unless there are some drastic shifts in 
MSE proportions of selected regressions. We can see that situation in Figure 2 around 19th -22nd data frame 
where Res3 was much lower than Res1 and Res2 what reflected on negatively. Moving forward, in order to 
illustrate that the method allows us to get more accurate coefficients estimators we provide in Figure 3 MSE for 
regression (R4) built using OLS, and which includes all the predictors used in . We also provide the MSE for 
regression (R5), which includes all predictors, claimed for possible inclusion into the model in Section 1.  
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Figure 3. MSE dynamic for R4, R5 and R 

 

The reason why  is substantially better, than R4 and R5 is the following. Due to high multicollinearity there is a 
great risk of receiving wrong coefficients estimators, which actually don’t properly reflect true dependencies 
amongst data. Of course within the data frame for deriving an equation the more predictors we use, the more 
accurate the model is. But as soon as we start using it for real forecast it returns much greater errors than an 
equation with less number of predictors but better satisfaction of OLS requirements. And dynamics of MSE for 
R5 only proves this statement.    

5. Conclusion 

In the paper we try to make a small step on the way of improving existing methods of forecasting economic 
processes. We reckon that the main problem of all methods invented so far is inability to grasp larger number of 
predictors. Therefore a researcher may skip a lot of data which are significant and, thus, crucial for future 
predictions. Due to the peculiarity of economic systems, which is a dramatic lack of observations, it is quite a 
complicated task to derive a consistent forecasting method without enough statistical data. That is why we 
consider proposed method as extremely actual nowadays. Using it one can grasp more explanatory variables and 
calculate more consistent coefficients. It makes possible, for example, to include variables with high 
multicollinearity into a model and still get substantial coefficients, which would not be possible using just OLS. 
Additionally as it was mentioned before the method can be programmed and compute forecasts without any help 
from outside. The researcher’s task is just to specify which variables to include for conducting selection, type of 
model and way of data transformation. Empirical results illustrate that even if method requirements are not fully 
met it is still possible to reach significantly better regression equation. Taking into account mentioned above, 
proposed method can be applied in different econometric models and specifically for government needs. 
Speaking of the future plans concerning further development of forecasting methods we plan to work out the 
way to apply the enunciated method for non-linear models. We also plan to work out the method of integration of 
equations computed on different data frames as an extension of the present work and believe that this procedure 
will help eliminate the problem of data frame selection.   

Acknowledgements 

This paper was completed under a research which was funded by Plekhanov Russian University of Economics. 
So we express our gratitude to the board of the University and especially to the rector Viktor Grishin, Doctor of 
Economics. We also thank Aleksander Kislitsyn, Lyubov Panfil, Nikita Mullin for their contribution to the 
research and valuable remarks on the present paper.  

References 

Alhamzawi, R., & Yu, K. (2012). Variable selection in quantile regression via Gibbs sampling, Journal of 
Applied Statistics, 39(4), 799-813. http://dx.doi.org/10.1080/02664763.2011.620082 

Clark, T. E., & McCracken, M. W. (2009). Tests of equal predictive ability with real-time data (2009) Journal of 
Business and Economic Statistics, 27(4), 441-454. http://dx.doi.org/10.1198/jbes.2009.07204 

Giannone, D., De Mol, C., & Reichlin, L. (2008). Forecasting with a Large Number of Predictors: Is Bayesian 
Regression a Valid Alternative to Principal Components? Journal of Econometrics, 146(5829), 318-328. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 6; 2015 

353 
 

http://dx.doi.org/10.1016/j.jeconom.2008.08.011 

Giordani, P., & Villani, M. (2010). Forecasting Macroeconomic Time Series with Locally Adaptive Signal 
Extraction. International Journal of Forecasting, 26, 312-325. http://dx.doi.org/10.1016/j.ijforecast. 
2009.12.011 

Giordani, P., Kohn, R., & van Dijk, D. (2006). A unified approach to nonlinearity, structural change, and outliers. 
Journal of Econometrics, 137(1), 112-133. http://dx.doi.org/10.1016/j.jeconom.2006.03.013 

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 
106(494), 746-762. http://dx.doi.org/10.1198/jasa.2011.r10138 

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the 
American Statistical Association, 102(477), 359-378. http://dx.doi.org/10.1198/016214506000001437 

Jan, J. J., Groen, Richard, P., & Francesco, R. (2012). Real-Time Inflation Forecasting in a Changing World. 
Federal Reserve Bank of New York Staff Report no. 388. http://dx.doi.org/10.1080/07350015.2012.727718 

Jore, A. S., Mitchell, J., & Vahey, S. P. (2010). Combining Forecast Densities from VARs with Uncertain 
Instabilities. Journal of Applied Econometrics 25, 621-634. http://dx.doi.org/10.1002/jae.1162 

Jore, A. S., Mitchell, J., & Vahey, S. P. (2010). Combining forecast densities from VARs with uncertain 
instabilities.  Journal of Applied Econometrics, 25(4), 621-634. http://dx.doi.org/10.1002/jae.1162 

Justiniano, A., & Primiceri, G. E. (2008). The Time-Varying Volatility of Macroeconomic Fluctuations, 
American Economic Review, 98, 604-641. http://dx.doi.org/10.1257/aer.98.3.604 

Koop, G., & Potter, S. (2007). Estimation and forecasting in models with multiple breaks, Review of Economic 
Studies, 763-789. http://dx.doi.org/10.1111/j.1467-937X.2007.00436.x 

Orphanides, A., & van Norden, S. (2005). The Reliability of Inflation Forecasts Based on Output Gap Estimates 
in Real Time, Journal of Money, Credit and Banking, 37, 583-601. 
http://dx.doi.org/10.1353/mcb.2005.0033 

Pesaran, M. H., Pettenuzzo, D., & Timmermann, A. (2006). Forecasting Time Series Subject to Multiple 
Structural Breaks, Review of Economic Studies, 73(4), 1057-1084. 
http://dx.doi.org/10.1111/j.1467-937X.2006.00408.x 

Primiceri, G. (2005). Time Varying Structural Vector Autoregressions and Monetary Policy, Review of Economic 
Studies, 72, 821-852. http://dx.doi.org/10.1111/j.1467-937X.2005.00353.x 

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. Review of 
Economic Studies, 72(3), 821-852. http://dx.doi.org/10.1111/j.1467-937X.2005.00353.x 

Clark, T. E. (2011). Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility.  
Journal of Business and Economic Statistics, 29(3), 327-341. http://dx.doi.org/ 10.1198/jbes.2010.09248 

Sensier, M., Van Dijk, D. (2004). Testing for volatility changes in U.S. macroeconomic time series (2004) 
Review of Economics and Statistics, 86(3), 833-839. http://dx.doi.org/10.1162/0034653041811752 

Stock, J. H., & Watson, M. W. (2007). Why Has U.S. Inflation Become Harder to Forecast? Journal of Money, 
Credit, and Banking, 39, 3-34. http://dx.doi.org/10.1111/j.1538-4616.2007.00014.x 

Wright, J. H. (2009). Forecasting US inflation by bayesian model averaging. Journal of Forecasting, 28(2), 
131-144. http://dx.doi.org/10.1002/for.1088 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 

 

 


