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Abstract

The analysis of the observability of system states is very important in the design of an optimal filter estimation
algorithm. A relative attitude estimation algorithm is developed based on a stereo vision system and a gyroscope,
and the observability of this algorithm is studied. First, we build the error model of the relative attitude
determination system. Second, the observability of every state of the filter is studied. Third, by choosing
different variables as the states of the error model, the unobservable subspace of the system is confirmed.
Furthermore, the system structural decomposition reveals that this type of relative attitude determination system
can only determine the relative attitude between the deputy and the chief and that their gyro drift errors are
unobservable. In addition, the structural decomposition also tells us that when the feature points measured by the
stereo vision system are greater than two, increasing the number of feature points provides little benefit for
improving the observability of the gyro drift errors. Considering the incomplete observability of the original
system, the star sensor is added into the system to enable it to be completely observable. The final simulation
result indicates that after adding the star sensor, the system, which becomes completely observable, can estimate
the body attitude, the relative attitude and the gyro error while providing improved accuracy.

Keywords: observability analysis, stereo vision, relative attitude determination, gyro error
1. Introduction

To form a constellation with small satellites, the relative attitude among each of the satellites must be determined
independently. A stereo vision system is one of the vital pieces of equipment used to measure the relative
position and the relative attitude. In addition, after adding a gyroscope into the system, the angular velocities can
also be obtained. However, currently, increasing numbers of smaller and cheaper sensors are used in small
satellites, and the precision of the relative attitude is becoming increasingly lower. But the optimal filter
estimation algorithm can evaluate not only the attitude parameters of a small satellite but also the uncertain
parameters in the observations. In this way, we can use smaller and cheaper sensors to achieve higher relative
attitude determination accuracy.

Relative attitude determination based on stereo vision has attracted much attention and has been used in practice
recently (Shay and Pini, 2009; Robert et al., 2000; Zhang et al., 2008). In particular, the optimal filtering
algorithm is widely used to determine relative attitude (Kim et al., 2007; He et al., 2007). However, previous
research studies did not consider the observability of a relative attitude determination system with stereo vision
and gyros. Observability is an important factor in the estimation filter. Only observable states can be evaluated
correctly and precisely. Maessen and Gill (2012) presented an investigation of the relative state estimation and
observability for two formation flying satellites using two different relative navigation sensor sets. However, the
paper only discusses the observability of the relative position between two satellites and not the relative attitude.

A stereoscopic vision system can provide the relative states between the chief spacecraft and the deputy
spacecraft autonomously. Integrated with the gyro drift model, the filter can estimate spacecraft's attitude
parameters and gyro drift simultaneously. Howerver, because the measurement model of stereoscopic vision
system includes time-varying states, the observability analysis becomes rather difficult. Generally, to analyze the
observability of a time-varying system, the Gram matrix of the system must be calculated, and then the Gram
matrix must be analyzed to determine if it is nonsingular. However, the Gram matrix is obtained by numerical
computation, so the character of the system cannot be researched theoretically. In 1992, Meskin and Itzhack
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presented the theory of PWCS (piece-wise constant system) to solve the inertial navigation in-flight alignment
problem, and the theory was successfully implemented in many fields (Drora and Itzhack, 1992). However,
when applying the PWCS theory to the relative attitude determination system based on stereo vision system with
gyros, the observability of every state in the filter cannot be evaluated clearly.

The purpose of this paper is to study the observability of the relative attitude determination system based on
stereo vision. The organization of this paper proceeds as follows. First, the relative coordinate systems are
provided. Second, the state equation of the relative attitude errors and the measurement model of the
stereoscopic vision system are given. Based on the state equation and measurement model, by choosing different
variables as the states of the error model, the unobservable subspace of the system is confirmed. Furthermore,
the structural decomposition of the system reveals the relationship between the unobservable states. Under the
judgment that the system is incompletely observable, the star sensor is added into the system to enable it to be
completely observable. Finally, the simulation results and conclusions are presented.

2. Relative Attitude Error Model
2.1 Coordinate Definition

Determining the deputy's relative attitude involes solving the rotation matrix, which is the deputy's body frame
with respect to the chief's body frame. The following coordinate systems are used in this paper.

Orbital Frame: The origin O, is located at the centroid of the spacecraft. The O,Z  axis is in the nadir
direction; the O_Y, axis is in the negative direction of the orbit normal direction; the O, X  axis

completes the triad in the velocity vector direction for circular orbits. The deputy’s orbital frame is
expressedas O, X Y, .Z

oc ™ oc oc ?

and the chief’s orbital frame is expressed as O, XY, Z,, . In the subscript, the

“t”

letter “c” denotes the variables of the deputy or the chaser, the letter “t” denotes variables of the chief or the
target, and the letter “o” denotes the variables in the orbital frame. In this paper, the chief’s orbital frame
O, XY, Z, isthe reference frame.

Body Frame: The origin O, is located at the centroid of the spacecraft. The three axes are parallel to the
three principal axes of the body, and are fixed to the spacecraft. If the spacecraft's attitude is zero, then the
body frame coincides with the orbital frame. Generally, O,.X, is called the roll axis, O,Y, is called the
pitch axis, and O,Z, is called the yaw axis. Likewise, the deputy’s body frame is represented as
0,.X..Yi.Z,., and the chief's body frame is represented as O, X,.Y,,Z,, . In the subscript, the letter “b”
denotes variables in the body frame.

Earth-Centered Inertial (ECI) Frame: The origin O is located at the center of the earth. The OX axis is
in the vernal equinox direction. The OZ axis is the Earth's rotation axis, perpendicular to the equatorial
plane. The OY axis is in the equatorial plane and finishes the triad of unit vectors. In the subscript, the
letter “i” denotes variables in the ECI frame.

The relationship between each frame is depicted in Figure 1.

Deputy

Figure 1. Relationship between the coordinate systems
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2.2 Relative Attitude

Define the attitude quaternion ¢=[q,; ¢,1" =[q, 9, ¢; q,]1', where g, is the vector element, and
the scalar ¢, is called the scalar element. This quaternion is considered to denote the true attitude of the
spacecraft. However, in the real world, we can only measure this value by instruments, and we cannot
determine the true value. As a result, the hat “*” is used to denote the variable that is estimated through the
measured value. That is, ¢ is the estimated quaternion of ¢ . Consequently, there will be an error
quaternion 8g =[da 8g,]" between them. The error quaternion is defined as:

q=9®dq M
where «® represents the product of two quaternions.

Similarly, we dgﬁne the relative attitude quaternion Qe | the estimated value of e, and the error quaternion
between them <. Then, the relationship between them can be described as follows:

9o =90 ® Y, @)
Currently, the rate gyroscope is widely used in satellites. If we fix three rate gyroscopes in the spacecraft, then
their input axes are parallel to the three body axes. Consequently, a simple but realistic gyro model can be
described as (Farrenkopf, 1978):

(% (@) =0y, (t)+bcbi (t)+”c1 3
where @, (¢) denotes the output vector of the deputy's three gyros; @, (#) contains the true values of the
three angular velocities along the deputy's body axes; the vector b, (¢) is the drift-rate bias of the deputy's
three gyros; n, is its drift-rate noise, which is assumed to be a Gaussian white-noise process that obeys
N(0,0.,),(i=x, y, z).The gyro drift-rate bias b, (¢) is driven by another Gaussian white-noise, that is

gci
b, ()=n, 4)
The three elements of n,, obey N(0,0..),(i=x, y, z).
In Eq. 3), @, (¢) and b, (¢) are all the values we must determine, but actually, we can only determine
@, (1) and b, (¢), which are the estimated values of @, (r) and b, (¢). Then, we can define Aw,,, (¢)
and Ab,,(t), as the errors of @, (t) and b, (t). The relationship between these auantities can be
described as follows:
w(‘bi = ‘bchi + chbi (5)
bcbi = 5cbi + Abcbi (6)
Considering 8¢, =[da, &q,.,]",under the small angle assumption, da,, is nearly zero, 8¢, is nearly

1. We can directly use the result of Kim ez al. (2007), regarding the dynamics of da_, , which is described
as follows:

ct

x8a, —0.5Ab,,, +0.5A4(4,,)Ab,, —0.5n,, +0.5A4(4,,)n,, (7)

First, assuming that the deputy's and chief's drift-rate bias errors are all known variables, when only
choosing da, as a state variable, the state equation can be modeled as follows:

da,, =-o

cbi

Abthi
. A A T A T Abcbi
s, =&, xba, +054G.)" -0.51,, 054(G.,)" -0.51,, ) ®)
t1
ncl
Rewriting Eq. (8) with matrix symbols,
da,, =F\da,, +Gn, )

Actually, errors exist in every sensor, so we cannot determine the gyro's drift precisely. Thus, the deputy's and
the chief's drift-rate bias errors should be estimated. Choosing da_,, Ab,,(#) and Ab,,(¢) as state variables,
the state equation can be modeled as follows:

ct >
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R R R n
Sa, | [~lo, <] 054(q,) -051,,]8a,] [054(4,) —05I,, 0., 0., n”
Ablb[ = 03><3 03><3 03><3 Abrb[ + 03><3 03><3 I3><3 03><3 nd ( 1 O)
Abcbi 03><3 03><3 03><3 Abcbi 03><3 03><3 03><3 13><3 n 2
c2
Rewriting Eq. (10) with matrix symbols,
AX = FAX +Gn (11)

2.3 Stereo Vision Measurement Equation

The stereo vision system provides the relative states between the chief and the deputy through the following
three stages. First, obtain an image of the chief spacecraft, and then identify and match the pre-defined feature
points in the image. Second, according to the parameters between the stereo vision system and the deputy,
calculate the coordinate values of the feature points in the deputy's body frame. Finally, based on this
information, the relative states can be estimated.

Under the assumption that the former two stages are accomplished by a stereo vision system, this paper only
considers the situation in which the coordinate values of the feature points are given by the stereo vision system.
Suppose Z,(¢,) is the L -th feature point coordinate value in the deputy's body frame at the time step ¢, .
R, is the corresponding points' coordinate values in the chief body frame; this value can be obtained by
analyzing the chief's shape before-hand. A(q,,(¢,)) represents the attitude rotation matrix from the chief's body
frame to the deputy's body frame at the time step ¢,. p=[x y z]' is the position of the deputy in the
chief's orbital frame. The relationship between the feature points' coordinates values in the deputy's body frame
and the relative states can be modeled as,

Z, (1) = A(q., (t,))R, —p(t,)] (12)
If we want to solve the relative position p and the relative attitude ¢ (¢,) from this equation, at least six
equations are required. Namely, at least two feature points must be measured. Here, assuming L (L =2)
feature points is measured, and the coordinate values in the deputy body frame is defined as Z,(¢,),

Z,(t,), =+, Z,(t,). The corresponding points' coordinate values in the chief's body frame are known
beforechand to be R,, R,, *=*, R,. For VI, me N, let [ #* m, the vector pair Z, (t,), Z,(t,) and
R, , R, are related by the following equations,
Z,(t,)=Alq, )R, —p,)] (13)
Z,(t,)=Aq., )R, —pt,)] (14)
Subtracting the above two equations, we have
Z,(t)-Z,/(t,)=Aq, )[R, —R,] (15)

Substituting the vector (Z,,(¢,)~Z,(t,)) and (R, —R,) into M ,(¢,) and §,, where j=I,..., N,and
then the relative attitude measurement equation is modeled as,

M (t,)=Aq,,(,))S, (16)
Considering the factor that errors exist in every sensor, suppose #n,, (¢,) is the measurement noise of the

stereo vision system and the three elements of n,, (t,) obey N(0,0;). Then, the measurement model of
stereo vision system can be described as,

Mj(tk)=A(qct(tk))Sj thg (t) (17)
Rewriting the above equation with simple matrix symbols, its discrete form is as follows,
Zy =h(q ) +ng, (18)

This equation is a nonlinear equation for AX and it must be linearized. Based on the theory of the Kalman
filter, the partial derivative of h(AX,) withrespectto AX can be computed as follows,

Z[A(‘;cr,k )Slx] 03><6
H, = : : (19)
AAG. 1 )S X1 Os

With the state equation and the measurement model, the relative states can be estimated using the filter
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algorithm.
3. Observability Analysis
3.1 Observability of the Relative Attitude

Considering a linear stochastic system that is composed of state equation (8) and measurement model (17), state
matrix F, can be supposed as a constant matrix because the deputy rotates around the earth at a constant
angular velocity. This linear system is same as the one in Li ez al. (1996). Farrenkopf (1978) concluded that if a
few star (at least two) measurements around an orbit are available, then the system is completely observable.
Based on this result, the three-order system expressed by Eq. (8) and Eq. (17) is completely observable. Thus,
the relative attitude can be estimated by the stereo vision system without considering the sensor’s error.

3.2 Observability of the Gyro Drift

Considering the fact that errors exist in every sensor, the actual filter uses a linear stochastic system expressed by
Eq. (10) and Eq. (17). Make the following assumption,

Vl,k = [Vn Vi Vl}]T :2A(écr,k)sl

: (20)
VN,k = [VNl Va2 Vs ]T = ZA(éct,k )8y
Based on assumption of Eq. (20), the measurement matrix can be rewritten as,
VXl O
H, =| : : 21
[VL,kX] 056
Considering the nth power of F in Eq. (11), where n>1.
F, Fi F}
F'=105; 0,5 0y (22)
03><3 03><3 03><3
where,
Fi=D" [‘?)vbi X]n JFf =(=1)" 0'5[6%171' X]n_l (23)

Fly =(-1)""0.3[é,, x]"" 44.,)

Considering the state-space model, which is composed of F and H , the observability matrix can be
computed as,

o=lo; - o] (24)

where,

VXl 0y 0y
0= i i i (25)
VXl 0Ops 0Oy

VuXIFT VXIFS [V XIE;
0, = : : : (26)

[VL,kX]F‘l’; [VL,kX]FIZ [VL,kX]I?lg

From Eq. (23), we can see F,, right multiplied by A4(q,) is F,,, and as an attitude matrix, A(g,) is a
nonsingular matrix. This means F,; can be changed into F,, by a finite number of elementary column
operations, so a column of F); and a column of F,, are linearly correlated. Additionally, vectors V,,, ..

*
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V.. are linearly independent, so the rank of the observability matrix @ is not greater than 6. The dimension
of the state equation is 9, i.e., the system is incomplete observable. Compared with the linear system expressed
by Eq. (8) and Eq. (17), this system only adds the states of the deputy's and the chief's drift-rate bias errors; i.e.,
these errors consist of unobservable states. We will analyze the unobservable states by system structural
decomposition.

3.3 Unobservable States Analysis

Choose the 1st, 2nd, 4th, 13th, 14th and 16th rows from the observability matrix @, and choose another
three row vectors that are linearly independent to the former six row vectors. Then, all nine of the row
vectors form the transformation matrix P .

P=[P1T Pl P P P P P P PoT]T 27
where, P, P,, P,, P,, P,, P, are the lst, 2nd, 4th, 13th, 14th and 16th rows of the observability
matrix @, respectively, and the remaining P,, P, and P, form the matrix as follows,

P7
1)8 = [03><6 13><3] (28)
P9

Performing the system structural decomposition by the linearly nonsingular transformation AY = PAX , we
have,

AY = PFP'AY + PGn=F,_AY +G ,n (29)
Z,=H,P'AY+ny, =H, AY +n,, (30)
where, F_, G, and H,; are computed as follows,

03><3 I3><3 i 03><3 G
F;=|0y; Fy 0y, G;= {“U':| (31

———————— +-=2 G;

03><3 03><3 : 03><3

H ;= [Hko : 03L><3] (32)

The non-zero elements in the above equation can be computed by symbolic computation software, so we do
not show them in details here. From the newly transformed linear system, the last three states of AY are
clearly unobservable and the relationship between AY and AX is given by Eq. (33)~ Eq. (35).

Ay, 0 —v; w
Ay, |=| i3 0 -v Pa, (33)
Ay, 0 —vy vy

Ay,
Ayg |=Ab,, (34)
Ay,
Ay, Py Py Pa Pas Pss DPas | 0 vy -vy
Ays |=|Psi Pss Psy 8@, +| Psy DPss Ps Abtbi+5 —vis 0 vy |Aby, (3%)
Ay Psi Pe Pe Pes Pes  Pes 0 vy —vy

From the above equations, we can obtain the following two results:

(1) Ab,, and Ab, are unobservable states, and da, can be computed from [Ay, Ay, Ay,]", so
da, are observable states.

(2) When L2>2, the observability of this system has no relationship with the number of feature points
measured by the stereo vision system.
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According to the above results, the drift-rate bias errors Ab,, and Ab,, cannot be evaluated by the
stereo vision system alone. One way to improve the observability of the original linear system is to add
external sensors that measure deputy’s attitude, and then the drift-rate bias errors Ab,, and Ab,, can be
estimated at the same time. This method will be described in detail in the following section.

4. Modified Relative Attitude Filter
4.1 Deputy s Attitude

Directly using the results of Lefferts et al. (1982), choose the deputy’s drift-rate bias errors Ab,, and
dq,, as state variables, where dq,, is the first three elements of 3¢, , which is the deputy’s attitude error
quaternion. Then, the state equation, which is used in the attitude determination filter, is described as

follows:
[ 84,5 } _ [_ [é)cbo X] —-0.51, }{ 04, }_'_ |:_0'513><3 055 :||:nc] } (36)
Ab,, 05 0. Ab,,, 055 I n,
Here, we adopt a star sensor as the deputy’s attitude measurement sensor. At the time step ¢, , suppose the
sensor coordinate system is parallel to the body frame, then the measurement model of the star sensor is

Zj(tk):A(qc(tk NA, (1, )Lj +n3j(tk) (37)
where, Z(z,) is the jth measurement vector of the star sensor in the deputy’s body frame. A(q.(,))
represents the attitude rotation matrix from the deputy’s orbital frame to the deputy’s body frame at time
step t,. A,(t,) isthe attitude rotation matrix from the ECI frame to the orbital frame at the time step ¢, .
L, is the jth starlight vector described in the ECI frame, which is already known in the ephemeris.
ng(t,) represents measurement noise, and the three elements of n(#,) obey N(0, o).

4.2 Attitude Fusion Filter

Adding &q,; to the state equation (10), we can redefine the state vector as AX, =
[0a, Ab,, Ab, 3q,,]",and then form the fusion filter,

AXI‘E = F}/e AXVE + Gl’en (3 8)

The undefined variables are given as follows,

- [é)c‘bi ><] O'SA(é(rt ) - O'SI3><3 03><3

F, = 0y, 0y, 0, 0s (39)
0y, 0y, 0, 3x3
03><3 03><3 -0.51 X3 T [é)cbo X]
054(q.,) —05Iy; 0y 0y
_ 0, 0., I, 0, (40)
" 055 055 0y Iy
03><3 -0.51 3x3 03><3 03><3

Suppose that the stereo vision system identifies the chief’s three vertices, R,=[-0.50.50.5]", R,=[-0.5
0.5-0.5]1", R,=[-0.5-0.50.5]". Meanwhile, suppose that the star sensor identifies two stars. Then, Eq.
(17) and Eq. (37) are combinde to form the measurement model,

A(q,,())S, ng (1)
VA — A(qct (t/c ))SZ + nRZ (tk) (41)
PO A ) A, @)L || g ()

A(q (1 NA, (1)L, n,(t,)

371



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 6; 2015

Rewriting the above equation with simple matrix symbols, its discrete form is as follows,

Zps =hes(@es>bei) T (42)
The partial derivative of &, (AX,,) withrespectto AX, canbe computed as follows,

re

[A(G.. )8 X] Os 0.
A(q,,,.)S,X] 0, 0,
H,, =2 [4(q..)8,X] 0y A 3x3 (43)
' 0y, 0 [A(‘Ic,k )Aoi,kLl X]
0. 0y [Aq.,)4,,L,X]

Considering the linear system expressed by Eq. (38) and Eq. (42), due to the addition of star sensor, the
rank of measurement matrix H g, can reach 6. Then, we can prove that if the measurement vectors are
linearly independent vectors, the modified system will be a completely observable system.

5. Modified Relative Attitude Filter

According to the preceding analysis, the drift-rate bias errors cannot be estimated by the stereo vision
system alone. In addition, after adding the star sensor, the filter can estimate the deputy’s attitude, relative
attitude and gyro error simultaneously. To validate this result, filters with a star sensor and without a star
sensor are all simulated under same parameters at the same time. The parameters used in the simulation are
shown in the following table.

Table 1. Simulation parameters

Gyros Sensors Others
Standard deviation of the drift-rate noise o,: Star sensor o, : 50 Orbit angular velocity @, :
0.05 °/h arcsec 107 rad/s
Standard deviation of the drift-rate bias driven Stereo vision system Samplingtime 7:1s
noise o,,:0.03 °h 0,:0.05m
Drift-rate bias »: 150 °h (Deputy), 100 °/h

(Chief)

A A

The initial condition is shown as follows: AX,,=0,s,, Ab,,=Ab,,=0,,, §.0=4.,=[0 00 117, P,=

diag[10™* I, 0.005° I,, 0.005° I,, 107" I, ,]. Under the same measurement data, the estimation results of

the chief’s and the deputy’s gyro drift-rate bias are shown in the following figures.

bx (deg/hr)

by (deg/hr)

O S NN NN SN NN S S S N S
0 50 100 150 200 250 300 350 400 450 500

bz (deg/hr)

ool I I I ] 1 i i I 1 j
0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Figure 2. Gyro rate bias estimation of the deputy and of the chief by the stereo vision system alone
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L e o R L R R A R B R R 8 L B e i 0y

b (deg/hr)

--{ = Deputy |.| Chief ].

[Py AN S S TR SN S TS S N N

0 50 100 150 200 250 300 350 400 450 500

A0 [ mm =g s g E s n e epo sy
200 5

by (deg/hr)

I ] I i ] I i | j
50 100 150 200 250 300 350 400 450 500

bz (dealhr)

R S R S R S S N A
50 100 180 200 250 300 350 400 450 500
Time (sec)

Figure 3. Gyro rate bias estimation of the deputy and of the chief after adding the star sensor

From figure 2, we can see that the gyro bias of the chief and the deputy are not correctly estimated by the stereo
vision system alone, although they converge to certain values. This figure validates the result that Ab,, and
Ab,, are unobservable states using a numerical approach. In addition, figure 3 shows that gyro bias values of
the chief and of the deputy converge to 100°h and 150°h, respectively. These values are the same as the ones
predefined in Table 1. Due to the addition of the star sensor in the deputy, figure 3 also shows that the gyro bias
values of the chief and of the deputy are not converged in the meantime. This result shows that the gyro drift-rate
bias errors are corrected by the star sensor, and the modified system is a completely observable system.

6. Conclusions

This paper analyses the gyro drift observability of the relative attitude determination filter based on the stereo
vision system. By choosing different variables as states of the error model, we conclude that the gyro drift-rate
bias errors are unobservable states. Further analysis of the system structural decomposition reveals that
increasing the number of feature points does little to improve the observability of the gyro drift error when the
feature points measured by the stereo vision system are greater than two. Based on the above results, a star
sensor is added in the original system to form a modified system. The simulation results indicated that the
modified system becomes completely observable. The analysis presented here represents a beneficial reference
for designing a stable relative attitude filter.
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