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Abstract 
The analysis of the observability of system states is very important in the design of an optimal filter estimation 
algorithm. A relative attitude estimation algorithm is developed based on a stereo vision system and a gyroscope, 
and the observability of this algorithm is studied. First, we build the error model of the relative attitude 
determination system. Second, the observability of every state of the filter is studied. Third, by choosing 
different variables as the states of the error model, the unobservable subspace of the system is confirmed. 
Furthermore, the system structural decomposition reveals that this type of relative attitude determination system 
can only determine the relative attitude between the deputy and the chief and that their gyro drift errors are 
unobservable. In addition, the structural decomposition also tells us that when the feature points measured by the 
stereo vision system are greater than two, increasing the number of feature points provides little benefit for 
improving the observability of the gyro drift errors. Considering the incomplete observability of the original 
system, the star sensor is added into the system to enable it to be completely observable. The final simulation 
result indicates that after adding the star sensor, the system, which becomes completely observable, can estimate 
the body attitude, the relative attitude and the gyro error while providing improved accuracy. 

Keywords: observability analysis, stereo vision, relative attitude determination, gyro error 

1. Introduction 
To form a constellation with small satellites, the relative attitude among each of the satellites must be determined 
independently. A stereo vision system is one of the vital pieces of equipment used to measure the relative 
position and the relative attitude. In addition, after adding a gyroscope into the system, the angular velocities can 
also be obtained. However, currently, increasing numbers of smaller and cheaper sensors are used in small 
satellites, and the precision of the relative attitude is becoming increasingly lower. But the optimal filter 
estimation algorithm can evaluate not only the attitude parameters of a small satellite but also the uncertain 
parameters in the observations. In this way, we can use smaller and cheaper sensors to achieve higher relative 
attitude determination accuracy. 

Relative attitude determination based on stereo vision has attracted much attention and has been used in practice 
recently (Shay and Pini, 2009; Robert et al., 2000; Zhang et al., 2008). In particular, the optimal filtering 
algorithm is widely used to determine relative attitude (Kim et al., 2007; He et al., 2007). However, previous 
research studies did not consider the observability of a relative attitude determination system with stereo vision 
and gyros. Observability is an important factor in the estimation filter. Only observable states can be evaluated 
correctly and precisely. Maessen and Gill (2012) presented an investigation of the relative state estimation and 
observability for two formation flying satellites using two different relative navigation sensor sets. However, the 
paper only discusses the observability of the relative position between two satellites and not the relative attitude. 

A stereoscopic vision system can provide the relative states between the chief spacecraft and the deputy 
spacecraft autonomously. Integrated with the gyro drift model, the filter can estimate spacecraft's attitude 
parameters and gyro drift simultaneously. Howerver, because the measurement model of stereoscopic vision 
system includes time-varying states, the observability analysis becomes rather difficult. Generally, to analyze the 
observability of a time-varying system, the Gram matrix of the system must be calculated, and then the Gram 
matrix must be analyzed to determine if it is nonsingular. However, the Gram matrix is obtained by numerical 
computation, so the character of the system cannot be researched theoretically. In 1992, Meskin and Itzhack 
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presented the theory of PWCS (piece-wise constant system) to solve the inertial navigation in-flight alignment 
problem, and the theory was successfully implemented in many fields (Drora and Itzhack, 1992). However, 
when applying the PWCS theory to the relative attitude determination system based on stereo vision system with 
gyros, the observability of every state in the filter cannot be evaluated clearly. 

The purpose of this paper is to study the observability of the relative attitude determination system based on 
stereo vision. The organization of this paper proceeds as follows. First, the relative coordinate systems are 
provided. Second, the state equation of the relative attitude errors and the measurement model of the 
stereoscopic vision system are given. Based on the state equation and measurement model, by choosing different 
variables as the states of the error model, the unobservable subspace of the system is confirmed. Furthermore, 
the structural decomposition of the system reveals the relationship between the unobservable states. Under the 
judgment that the system is incompletely observable, the star sensor is added into the system to enable it to be 
completely observable. Finally, the simulation results and conclusions are presented. 

2. Relative Attitude Error Model 
2.1 Coordinate Definition 
Determining the deputy's relative attitude involes solving the rotation matrix, which is the deputy's body frame 
with respect to the chief's body frame. The following coordinate systems are used in this paper. 

Orbital Frame: The origin oO is located at the centroid of the spacecraft. The oo ZO  axis is in the nadir 

direction; the ooYO  axis is in the negative direction of the orbit normal direction; the oo XO  axis 

completes the triad in the velocity vector direction for circular orbits. The deputy’s orbital frame is 
expressed as ococococ ZYXO , and the chief’s orbital frame is expressed as otototot ZYXO . In the subscript, the 

letter “c” denotes the variables of the deputy or the chaser, the letter “t” denotes variables of the chief or the 

target, and the letter “o” denotes the variables in the orbital frame. In this paper, the chief’s orbital frame 

otototot ZYXO  is the reference frame. 

Body Frame: The origin bO  is located at the centroid of the spacecraft. The three axes are parallel to the 

three principal axes of the body, and are fixed to the spacecraft. If the spacecraft's attitude is zero, then the 
body frame coincides with the orbital frame. Generally, bb XO  is called the roll axis, bbYO  is called the 

pitch axis, and bb ZO  is called the yaw axis. Likewise, the deputy’s body frame is represented as 

bcbcbcbc ZYXO , and the chief's body frame is represented as btbtbtbt ZYXO . In the subscript, the letter “b” 

denotes variables in the body frame. 
Earth-Centered Inertial (ECI) Frame: The origin O  is located at the center of the earth. The OX  axis is 
in the vernal equinox direction. The OZ  axis is the Earth's rotation axis, perpendicular to the equatorial 
plane. The OY  axis is in the equatorial plane and finishes the triad of unit vectors. In the subscript, the 
letter “i” denotes variables in the ECI frame. 

The relationship between each frame is depicted in Figure 1. 
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Figure 1. Relationship between the coordinate systems 
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2.2 Relative Attitude 
Define the attitude quaternion q =[ 13q  4q ] T =[ 1q  2q  3q  4q ] T , where 13q  is the vector element, and 
the scalar 4q  is called the scalar element. This quaternion is considered to denote the true attitude of the 
spacecraft. However, in the real world, we can only measure this value by instruments, and we cannot 
determine the true value. As a result, the hat “^” is used to denote the variable that is estimated through the 
measured value. That is, q̂  is the estimated quaternion of q . Consequently, there will be an error 
quaternion qδ =[ αδ  4δq ] T  between them. The error quaternion is defined as: 

 qqq δˆ ⊗=                                     (1) 

where “ ⊗ ” represents the product of two quaternions. 

Similarly, we define the relative attitude quaternion ctq , the estimated value of ctq̂ , and the error quaternion 
between them ctqδ . Then, the relationship between them can be described as follows: 

 ctctct qqq δˆ ⊗=                                     (2) 

Currently, the rate gyroscope is widely used in satellites. If we fix three rate gyroscopes in the spacecraft, then 
their input axes are parallel to the three body axes. Consequently, a simple but realistic gyro model can be 
described as (Farrenkopf, 1978): 

 1)()()( ccbicbigc ttt nbωω ++=                              (3) 

where )(tgcω  denotes the output vector of the deputy's three gyros; )(tcbiω  contains the true values of the 
three angular velocities along the deputy's body axes; the vector )(tcbib  is the drift-rate bias of the deputy's 
three gyros; 1cn  is its drift-rate noise, which is assumed to be a Gaussian white-noise process that obeys 

),0( 2
gciN σ , ( i = x , y , z ). The gyro drift-rate bias )(tcbib  is driven by another Gaussian white-noise, that is 

 2)( ccbi t nb =                                      (4) 

The three elements of 2cn  obey ),0( 2
bciN σ , ( i = x , y , z ). 

In Eq. (3), )(tcbiω  and )(tcbib  are all the values we must determine, but actually, we can only determine 
)(ˆ tcbiω  and )(ˆ tcbib , which are the estimated values of )(tcbiω  and )(tcbib . Then, we can define )(Δ tcbiω  

and )(Δ tcbib , as the errors of )(tcbiω  and )(tcbib . The relationship between these auantities can be 
described as follows: 

 cbicbicbi ωωω Δ+= ˆ                                    (5) 

 cbicbicbi bbb Δ+= ˆ                                    (6) 

Considering ctqδ =[ ctαδ  4δ ctq ] T , under the small angle assumption, ctαδ  is nearly zero, 4δ ctq  is nearly 
1. We can directly use the result of Kim et al. (2007), regarding the dynamics of ctαδ , which is described 
as follows: 

 11 )ˆ(5.05.0)ˆ(5.05.0δˆδ tctctbictcbictcbict nqAnbqAbαωα +−Δ+Δ−×−=               (7) 

First, assuming that the deputy's and chief's drift-rate bias errors are all known variables, when only 
choosing  ctαδ  as a state variable, the state equation can be modeled as follows: 
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Rewriting Eq. (8) with matrix symbols, 

 bctct nGαFα 11δδ +=                                (9) 

Actually, errors exist in every sensor, so we cannot determine the gyro's drift precisely. Thus, the deputy's and 
the chief's drift-rate bias errors should be estimated. Choosing ctαδ , )(Δ tcbib  and )(Δ ttbib  as state variables, 
the state equation can be modeled as follows: 
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Rewriting Eq. (10) with matrix symbols, 

 GnXFX += ΔΔ                                   (11) 

2.3 Stereo Vision Measurement Equation 

The stereo vision system provides the relative states between the chief and the deputy through the following 
three stages. First, obtain an image of the chief spacecraft, and then identify and match the pre-defined feature 
points in the image. Second, according to the parameters between the stereo vision system and the deputy, 
calculate the coordinate values of the feature points in the deputy's body frame. Finally, based on this 
information, the relative states can be estimated. 

Under the assumption that the former two stages are accomplished by a stereo vision system, this paper only 
considers the situation in which the coordinate values of the feature points are given by the stereo vision system. 
Suppose )( kL tZ  is the L -th feature point coordinate value in the deputy's body frame at the time step kt . 

LR  is the corresponding points' coordinate values in the chief body frame; this value can be obtained by 
analyzing the chief's shape before-hand. ))(( kct tqA  represents the attitude rotation matrix from the chief's body 
frame to the deputy's body frame at the time step kt . ρ =[ x  y  z ] T  is the position of the deputy in the 
chief's orbital frame. The relationship between the feature points' coordinates values in the deputy's body frame 
and the relative states can be modeled as, 

 )]())[(()( kLkctkL ttt ρRqAZ −=                         (12) 

If we want to solve the relative position ρ  and the relative attitude )( kct tq  from this equation, at least six 
equations are required. Namely, at least two feature points must be measured. Here, assuming L  ( L ≥2) 
feature points is measured, and the coordinate values in the deputy body frame is defined as )(1 ktZ , 

)(2 ktZ , …, )( kL tZ . The corresponding points' coordinate values in the chief's body frame are known 
beforehand to be 1R , 2R , …, LR . For ∀ l , m ∈ N , let l ≠ m , the vector pair )( km tZ , )( kl tZ  and 

mR , lR are related by the following equations, 

 )]())[(()( kmkctkm ttt ρRqAZ −=                             (13) 

 )]())[(()( klkctkl ttt ρRqAZ −=                             (14) 

Subtracting the above two equations, we have 

 ]))[(()()( lmkctklkm ttt RRqAZZ −=−                            (15) 

Substituting the vector ( )( km tZ − )( kl tZ ) and ( mR − lR ) into )( kj tM  and lS , where j =1, …, N , and 
then the relative attitude measurement equation is modeled as, 

 jkctkj tt SqAM ))(()( =                                   (16) 

Considering the factor that errors exist in every sensor, suppose )( kRL tn  is the measurement noise of the 
stereo vision system and the three elements of )( kRL tn  obey ),0( 2

RN σ . Then, the measurement model of 
stereo vision system can be described as, 

 )())(()( kRLjkctkj ttt nSqAM +=                               (17) 

Rewriting the above equation with simple matrix symbols, its discrete form is as follows, 

 RLkkctMk nqhZ += )( ,                                  (18) 

This equation is a nonlinear equation for XΔ  and it must be linearized. Based on the theory of the Kalman 
filter, the partial derivative of )Δ( kXh  with respect to XΔ  can be computed as follows, 
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With the state equation and the measurement model, the relative states can be estimated using the filter 
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algorithm. 

3. Observability Analysis 
3.1 Observability of the Relative Attitude 

Considering a linear stochastic system that is composed of state equation (8) and measurement model (17), state 
matrix 1F  can be supposed as a constant matrix because the deputy rotates around the earth at a constant 
angular velocity. This linear system is same as the one in Li et al. (1996). Farrenkopf (1978) concluded that if a 
few star (at least two) measurements around an orbit are available, then the system is completely observable. 
Based on this result, the three-order system expressed by Eq. (8) and Eq. (17) is completely observable. Thus, 
the relative attitude can be estimated by the stereo vision system without considering the sensor’s error. 

3.2 Observability of the Gyro Drift 

Considering the fact that errors exist in every sensor, the actual filter uses a linear stochastic system expressed by 
Eq. (10) and Eq. (17). Make the following assumption, 
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Based on assumption of Eq. (20), the measurement matrix can be rewritten as, 
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Considering the n th power of F  in Eq. (11), where n ≥1. 
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where, 
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Considering the state-space model, which is composed of F  and H , the observability matrix can be 
computed as, 

 [ ]TTT
1 ana QQQ =                        (24) 

where, 
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From Eq. (23), we can see 13F  right multiplied by )ˆ( ctqA  is 12F , and as an attitude matrix, )ˆ( ctqA  is a 
nonsingular matrix. This means 13F  can be changed into 12F  by a finite number of elementary column 
operations, so a column of 13F  and a column of 12F  are linearly correlated. Additionally, vectors k,1V , …, 
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kL,V  are linearly independent, so the rank of the observability matrix Q  is not greater than 6. The dimension 
of the state equation is 9, i.e., the system is incomplete observable. Compared with the linear system expressed 
by Eq. (8) and Eq. (17), this system only adds the states of the deputy's and the chief's drift-rate bias errors; i.e., 
these errors consist of unobservable states. We will analyze the unobservable states by system structural 
decomposition. 

3.3 Unobservable States Analysis 

Choose the 1st, 2nd, 4th, 13th, 14th and 16th rows from the observability matrix Q , and choose another 
three row vectors that are linearly independent to the former six row vectors. Then, all nine of the row 
vectors form the transformation matrix P . 
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where, 1P , 2P , 3P , 4P , 5P , 6P  are the 1st, 2nd, 4th, 13th, 14th and 16th rows of the observability 
matrix Q , respectively, and the remaining 7P , 8P  and 9P  form the matrix as follows, 
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Performing the system structural decomposition by the linearly nonsingular transformation XPY ΔΔ = , we 
have, 

 nGYFPGnYPFPY oooo +=+= − ΔΔΔ 1                            (29) 

 RLkokoRLkkk nYHnYPHZ +=+= − ΔΔ1                           (30) 

where, ooF , ooG  and okoH  are computed as follows, 
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The non-zero elements in the above equation can be computed by symbolic computation software, so we do 
not show them in details here. From the newly transformed linear system, the last three states of YΔ  are 
clearly unobservable and the relationship between YΔ  and XΔ  is given by Eq. (33)~ Eq. (35). 
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From the above equations, we can obtain the following two results: 

(1) cbibΔ  and tbibΔ  are unobservable states, and ctαδ can be computed from T
321 ][ yyy ΔΔΔ , so 

ctαδ  are observable states. 

(2) When L ≥2, the observability of this system has no relationship with the number of feature points 
measured by the stereo vision system. 
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According to the above results, the drift-rate bias errors cbibΔ  and tbibΔ  cannot be evaluated by the 
stereo vision system alone. One way to improve the observability of the original linear system is to add 
external sensors that measure deputy’s attitude, and then the drift-rate bias errors cbibΔ  and tbibΔ  can be 
estimated at the same time. This method will be described in detail in the following section. 

 

 

4. Modified Relative Attitude Filter 
4.1 Deputy’s Attitude 

Directly using the results of Lefferts et al. (1982), choose the deputy’s drift-rate bias errors cbibΔ  and 
13δq  as state variables, where 13δq  is the first three elements of cqδ , which is the deputy’s attitude error 

quaternion. Then, the state equation, which is used in the attitude determination filter, is described as 
follows: 
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Here, we adopt a star sensor as the deputy’s attitude measurement sensor. At the time step kt , suppose the 
sensor coordinate system is parallel to the body frame, then the measurement model of the star sensor is 

 )()())(()( ksjjkoikckj tttt nLAqAZ +=                       (37) 

where, )( kj tZ  is the j th measurement vector of the star sensor in the deputy’s body frame. ))(( kc tqA  
represents the attitude rotation matrix from the deputy’s orbital frame to the deputy’s body frame at time 
step kt . )( koi tA  is the attitude rotation matrix from the ECI frame to the orbital frame at the time step kt . 

jL  is the j th starlight vector described in the ECI frame, which is already known in the ephemeris. 
)( ksj tn  represents measurement noise, and the three elements of )( ksj tn  obey ),0( 2

SN σ . 

4.2 Attitude Fusion Filter 

Adding 13δq  to the state equation (10), we can redefine the state vector as reXΔ = 
T

13 ]δΔΔδ[ qbbα cbitbict , and then form the fusion filter, 

 nGXFX rererere += ΔΔ                               (38) 

The undefined variables are given as follows, 
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Suppose that the stereo vision system identifies the chief’s three vertices, 1R =[−0.5 0.5 0.5] T , 2R =[−0.5 
0.5 −0.5] T , 3R =[−0.5 −0.5 0.5] T . Meanwhile, suppose that the star sensor identifies two stars. Then, Eq. 
(17) and Eq. (37) are combinde to form the measurement model, 
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Rewriting the above equation with simple matrix symbols, its discrete form is as follows, 

 RkskctkcRSRSk nqqhZ += ),( ,,                          (42) 

The partial derivative of )(Δ reRS Xh  with respect to reXΔ  can be computed as follows, 
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Considering the linear system expressed by Eq. (38) and Eq. (42), due to the addition of star sensor, the 
rank of measurement matrix kRS ,H  can reach 6. Then, we can prove that if the measurement vectors are 
linearly independent vectors, the modified system will be a completely observable system. 

5. Modified Relative Attitude Filter 
According to the preceding analysis, the drift-rate bias errors cannot be estimated by the stereo vision 
system alone. In addition, after adding the star sensor, the filter can estimate the deputy’s attitude, relative 
attitude and gyro error simultaneously. To validate this result, filters with a star sensor and without a star 
sensor are all simulated under same parameters at the same time. The parameters used in the simulation are 
shown in the following table. 

 

Table 1. Simulation parameters 

Gyros Sensors Others 
Standard deviation of the drift-rate noise giσ : 
0.05 º/h  

Star sensor sσ : 50 
arcsec 

Orbit angular velocity oω : 
10 3−  rad/s 

Standard deviation of the drift-rate bias driven 
noise biσ : 0.03 º/h  

Stereo vision system 
Rσ : 0.05 m 

Sampling time  T : 1 s 

Drift-rate bias b : 150 º/h (Deputy), 100 º/h 
(Chief)  

  

 

The initial condition is shown as follows: 0
ˆΔ reX = 315×0 , 0

ˆΔ cbib = 0
ˆΔ tbib = 13×0 , 0

ˆ
cq = 0

ˆ
ctq =[0 0 0 1] T , 0P = 

diag[10 4−
33×I  0.005 2

33×I  0.005 2
33×I  10 4−

33×I ]. Under the same measurement data, the estimation results of 

the chief’s and the deputy’s gyro drift-rate bias are shown in the following figures. 

 

 
Figure 2. Gyro rate bias estimation of the deputy and of the chief by the stereo vision system alone 
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Figure 3. Gyro rate bias estimation of the deputy and of the chief after adding the star sensor 

From figure 2, we can see that the gyro bias of the chief and the deputy are not correctly estimated by the stereo 
vision system alone, although they converge to certain values. This figure validates the result that cbibΔ  and 

tbibΔ  are unobservable states using a numerical approach. In addition, figure 3 shows that gyro bias values of 
the chief and of the deputy converge to 100º/h and 150º/h, respectively. These values are the same as the ones 
predefined in Table 1. Due to the addition of the star sensor in the deputy, figure 3 also shows that the gyro bias 
values of the chief and of the deputy are not converged in the meantime. This result shows that the gyro drift-rate 
bias errors are corrected by the star sensor, and the modified system is a completely observable system. 

6. Conclusions 
This paper analyses the gyro drift observability of the relative attitude determination filter based on the stereo 
vision system. By choosing different variables as states of the error model, we conclude that the gyro drift-rate 
bias errors are unobservable states. Further analysis of the system structural decomposition reveals that 
increasing the number of feature points does little to improve the observability of the gyro drift error when the 
feature points measured by the stereo vision system are greater than two. Based on the above results, a star 
sensor is added in the original system to form a modified system. The simulation results indicated that the 
modified system becomes completely observable. The analysis presented here represents a beneficial reference 
for designing a stable relative attitude filter. 
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