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Abstract 
This paper, based on the content of the axioms for the randomized algorithm, considers the collection of using 
correct algorithms at synthesis for solving the problem of probabilistic hidden Markov model. Application of this 
model allows forming algorithm with its flexibility according to a substantial situation for ensuring structural and 
functional stability of the program realizing this algorithm. We found that randomization of the algorithm, 
increasing its flexibility and efficiency, does not improve its risk compared with the corresponding deterministic 
algorithm. The synthesis of the algorithm based on hidden Markov model implies that the available observed 
data is used to determine hidden parameters of the most likely sequence of states, determining the synthesized 
algorithm. At the first strategy step, the "back and forth" algorithm is used to evaluate how well the model 
matches with the input data of the synthesized algorithm. At the second stage, the given hidden Markov model 
with the space of hidden states, initial probabilities of presence in state i and probabilities of transition from state 
i to state j, and basing on the observed states and using the Viterbi algorithm, the Viterbi path is found. At the 
third strategy stage, the hidden Markov models are corrected by optimizing the parameters of the model using 
the Baum-Welch algorithm. 
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1. Introduction 
At the basis of any purposeful activity, there are decision-making procedures of the problem as a sequence of actions 
(algorithms) that convert raw data to achieve the goal (the desired result of solving the problem) at the lowest cost. The 
problem can be solved by different algorithms, which have their own advantages and disadvantages at its decision. At 
that, the synthesis of solutions includes the construction of a qualitative model of the problem, with subsequent writing 
it in mathematical form, construction of the objective function variables and study of the effect of variables on the 
objective function. 

When making decisions under the conditions of certainty, the criteria approach is used; in which each alternative 
is evaluated using criteria. However, the multi-factorial impact on variables of the objective function of the 
algorithm for the environmental conditions and controlling actions restricts the use of this approach because of a 
rare situation of complete certainty of the consequences of choice, and because in practice, several different 
criteria are often used and rarely one alternative is the best for each of them. 

1.1 Literature Review 

To overcome this limitation, currently stochastic algorithms are widely used (Fedosova, A. V. & Zavriev, S. K., 
1988; Wardi, Y. 1990; Lukshin, A. V., & Smirnov, S. N., 1988; Simonov, N. A. 1995) and their varieties - 
probabilistic and heuristic algorithms, which are characterized by the ability to control their flexibility and 
efficiency that defines the use of the algorithm in the formation of a probabilistic model. At that, the randomized 
algorithm sets the strategy for solving the problem in several ways or methods resulting in the probability of 
achieving the result (Kazharov, A. A., & Kureichik, V. M., 2010; Levanova, T. V., 2004), and for heuristic 
algorithms the achieving of the end result is not clearly predetermined, as well as the entire sequence of actions 
is not defined, and all the actions of the performer are not revealed. The example of heuristic search algorithms 
used for solving optimization problems and modeling by random selection, combination, and variation of the 
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desired parameters using the mechanisms resembling biological evolution are genetic algorithms (Kureichik et 
al., 2006) 

The purpose of this paper is to investigate the collection of using of a probabilistic model of the algorithm at 
syntheses of correct algorithms. That model determines the ability to control the flexibility of the algorithm to 
provide structural and functional stability program implementing this algorithm, during, for example, hacker at 
it. 

2. Methodology 
2.1 General Analysis of the Decision Making Process 

In accordance with (Rudakov K. V.1 1987; Rudakov K. V.2 1987; Rudakov K. V.3 1987; Rudakov K. V. 1988) let us 
define the problem of synthesizing correct algorithm as the process of converting primary (original) information 
Jin={X(Si)|Si∈U} at some collection U={Si}, which elements are in the form of objects X(Si) and are described for 
their observations through Iin, so Jin={Iin}. Depending on the application, Iin can be a number or a non-numerical 
mathematical object (a symbol of the abstract alphabet, a vector, a sequence of characters, a function of a single 
variable (process) or a function of two variables (an image), and a function of a more complex domain). 

The problem is solved using its model M defining the collection of solution algorithms AМ⊆{a|a: Jin ⎯→⎯М Jout}, 

i.e. using the collection of algorithms АМ, the algorithm a∈AМ implements mapping from the space of initial 

information Jin to the space of final information Jout. As a result, the "black box" turns "white", which is 

characterised by the structural information of the problem Is, which is mapping completely and correctly the 

essence of the problem Jin. Structural information of the problem Is allocated at the subcollection of the allowable 

mappings, model M[Is], and defining the correct solution to the problem Jout={Is}. Algorithm a, implementing 

admissible mapping, which is determined by structural information Is, is the correct solution to the problem. 
The collection of stochastic algorithms contains not only the rules in the class of strict solutions (deductive approach), 
abductive approach (inverse deduction) is determined as well, which is used to determine the most probable initial 
predication of the conclusions by the inverse transformation and inductive to identify the most probable regularities 
arising from comparison of the initial data and the known results. At that, making this choice can be realized in various 
options: 

• Collection of algorithms can be discrete or continuous. 

• Selection mode can be one-time or iterative. 

• Evaluation of alternatives shall be made according to the criteria of different types. 

• The consequences of each alternative choice may be known (conditions of certainty), not known for sure, but 
the probability of effects can be estimated (conditions of statistical uncertainty), are unknown, and the 
probability of effects cannot be assessed (conditions of uncertainty). 

2.2 The General Analysis of the Bayesian Approach to Problem Solving 

2.2.1 The Choice of Criteria for Evaluating the Quality of the Solution for the Problem 

Bayesian approach is widely used at present time for solving a variety of parametric approach (Harin, A. Yu., 
2013; Orlov, A. I., 2004), based on the knowledge of the distribution density of the input variables of the 
problem, for which the correct algorithm for this problem can be written in explicit analytical form using 
formalised structural information of algorithm Is. 

Bayesian problems and the basic properties of Bayesian algorithms are defined by mathematical properties of 
collections of input initial information Jin, states X and solutions Dout∈Iout, which determine the efficiency of the 
algorithms. The algorithm is defined at a finite collection of the observed parameters y∈Y and at finite collection 
of hidden states of the algorithm x∈X, in addition, it shall be consistent with the input data Din∈Jin. At the 
collection Y×X of all possible pairs of observations y∈Y and states x∈X, the distribution of joint probability PYX(y, 
x): Y×X→R is set. 

To introduce the problem solution quality criteria let us define for the collection x∈X and possible solutions 
dout∈Dout the loss function W(x, dout): X×Dout→R. For algorithm a: Y→Dout, which assigns to each observation 
y∈Y a solution a(y)∈Dout, shall we define the risk R(a) as a mathematical expectation of the loss function for the 
algorithm a. At that, the Bayesian problem of statistical solutions is in the fact that for the set collections Y, X, 
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Dout, set by the algorithm a: Y→Dout, which minimises the Bayesian risk 

 R(a)= ( , ) ( , ( ))YX
y Y x X

P y x W x a y
∈ ∈
 .                      (1) 

The results of Bayesian algorithm a* functioning is the solution of the Bayesian problem with the minimal risk 
R(a). At that, the collections of states X and solutions Dout have different forms. Depending on the restrictions on 
the mathematical form from the elements of the collection of observations Y, states X and solutions Dout, the 
formulation of the Bayesian problem is specified. 

2.2.2 Generalized Bayesian Formulation of Problems Solving 

Bayesian formulation of the problem solving with model M defines the expansion of the collection of algorithms 
AM in a way that it included not only algorithms of the form a: Y→Dout, but all possible distributions of 
collections Ps(dout|y), i.e. in stochastic algorithms, each value y randomly gets a suitable solution dout in 
accordance with the probabilities Ps(dout|y). The search for the best element is performed in the data of the 
stochastic algorithms, in which element at a fixed value of x the same deterministic solution dout=a(y), is taken 
which is in contradiction with the random nature of the state in which the algorithm is present. 

For Bayesian formulation for solving the problem on finite collections shall we define Y, X, Dout with the 
distribution of probabilities PYX: Y×X→R and a loss function W: X×Dout→R, the stochastic algorithm as: 
Dout×Y→R, which risk is 

Rs= ( , ) ( ) ( , )
out out

YX s out out
y Y x X d D

P y x P d y W x d
∈ ∈ ∈
  .                (2) 

Theorem: For any stochastic algorithm, there is a deterministic algorithm a: Y→Dout, which risk 

 Rdet= ( , ) ( , ( ))YX
y Y x X

P y k W x a y
∈ ∈
                        (3) 

is not more than Rs, i. e. the Bayesian problem can be reduced to finding a deterministic algorithm  a: Y→Dout. 

Proof: Let us rewrite equation (2) in another form, 

Rs= ( ) ( , ) ( , )
out out

s out YX out
y Y d D x X

P d y P y x W x d
∈ ∈ ∈
   .                 (4) 

Equality ( )
out out

s out
d D

P d y
∈
 =1 holds for any y∈Y, and the inequality )( ydP outs ≥0 holds for any dout∈Dout and y∈Y, thus 

the following equation is fair: 

 Rs≥ min ( , ) ( , )
out out

YX outd D
y Y x X

P y x W x d
∈∈ ∈

  .                   (5) 

Let a(y) serve as a designation for any value of dout, for which 

( , ) ( , ( )) min ( , ) ( , )
out out

YX YX outd D
x X x X

P y x W x a y P y x W x d
∈∈ ∈

=  .          (6) 

This algorithm a: Y→Dout is deterministic which is not worse than the stochastic as 

 ( , ) ( , ( ))s YX
y Y x X

R P y x W x a y
∈ ∈

≥ ,                           (7) 

i.e. for a determined algorithm a the risk Rdet is≤Rs. 

3. Results 
3.1 Bayesian Algorithm Problem Solving Model 

Conceptual model of the deterministic algorithm is a sequence of machine instructions (operators) vi, defined at the 
collection of the machine instructions V={vi}, i= mkn,1 , where nmk is the number of machine instructions contained in 
the sample class of algorithms, which are understood as a system of instructions of the processors class in use. For the 
stochastic algorithm model, variables are defined by the following meaningful axioms: 

 observable (hidden) events are represented as a sequence, ordered by time (Markov property, ensuring 
convergence of the strategy), thus t-th hidden variable st at known (t–1)-th varibale st–1 is independent from 
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all previous (t–1) variable that is the transition function. 

 P(stst–1, st–1,..., s1, o1)=P(stst–1),                     (8) 

and t-th known observation ot depends only on t-th state. 

 P(otot, ot–1,…, o1)=P(otot),                        (9) 

that is not time dependent. 

• the two sequences S=s1 s2... sT and O=o1o2...oT shall be aligned, i.e. each observed event ot shall correspond 
to one hidden event st, i.e. the value of the observed variable y(t) depends only on the value of hidden 
variable x(t) (both at the point of time t). 

• the calculation of the most likely hidden sequence before time t depends only on the observed event at time t, 
and the most likely sequence until t-1. 

These axioms (8, 9) determine the use as a model of the algorithm of Hidden Markov Model (HMM) (Figure 1) 
(Rabiner L. R., 1989; Mottl V. V. & Muchnik I. B., 1999) 

 Θ=(X, Y, P, Ps, П).                                     (10) 

 

 

 

 

 

 

 

 

 

Figure 1. Transition diagram to HMM: x−hidden states; y− observed results; Pij− transitions probabilities; Pi− 
probability of the result. 

 

In this model, 1) The collection of hidden states of model X={xi}, i=1,n , n–is the number of states of model, is 
used to define the hidden state of model st∈S at the point of time t. 

2) At the collection of the observed values Y={yi}, i=1,m , m–the number of various symbols of the observation 
by the model can deliver the sequence of the observed values represented in the form of O=o1o2…oT, where ot– 
is the symbol of the discrete alphabet V={vi}, consisting of machine instructions identifiers vi, T – is the number 
of symbols in the observed sequence. 

3) The distribution the probability for the state transition (transition probability matrix) P=||Pij||, where 
Pij=P[st+1=xjst=xi], 1≤j, i≤n – is the probability of the transition from the state st=xi at the point of time t to the 
state st+1=xj at the next point of time t+1. 

4) Distribution of probability for appearing observation symbols in state j, Ps=||Pj(k)||, where Pj(k)=P[vkst=xj], 
1≤j≤n, 1≤k≤m. 

5) Initial distribution of collections of state П={πi}, πi=P[s1=xi], where 1,i n= . 

In short form HMM has the form Θ=(P, Ps, П) and represents a doubly stochastic process consisting of a pair of 
random variables {o1,…, ot, s1,…, st}, where ot– is known discrete observations describing the appearance of the 
observation symbols (machine instructions) st–are "hidden" discrete values, determining changes in the state of 
the model, but it is not known how many and what state connection there are between them (unknown 
parameters of the model). 

3.2 The Strategy of Solving Algorithm Synthesis 

The accepted model of the algorithm determines the iterative strategy of algorithms synthesis, which is reduced 
to the transformation of the original model Θ=(P, Ps, П), leading to the goal in the form of an optimal model of 
correct algorithm ( , ,П)

s
Θ = P P , by iterative recalculation of the model parameters ( , ,П)

s
Θ = P P  until 

convergence. 
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Statement of the problem. The observed value y(t) is lnown in the form of sequence YT=y0, y1,…, yТ–1 of length Т, 
produced by the sequence O=o1o2…oT. The probability to observe y(t) is equal to P(YT)= ( ) ( )T T T

X

P Y X P X , 
where sum is defined over all possible hidden variables x(t) in the form of sequence of hidden nodes XT=x0, x1,…, 
xТ–1. According to the available data y(t), it is required to determine the hidden parameters of the most likely 
sequence of states of the Markov chain S=si1…siT. 

The solution of the formulated problem can be achieved in three stages, each of which implements by a known 
algorithm. 

First stage: T steps in model Θ=(P, Ps, П) give the sequence of observations O1,T=o1,…,oT, while at the point in 
time t for the state s: Xi=i probability P(O1,t–1|Xt=s) of the fact that during the transitions there was formed the 
sequence of observations O1,t–1, and P(Ot,T|Xt=s) – is the probability that the sequence of observations Ot,T is 
observed after that state. 

There is the search for the probability P(Xt=s|O)=P(Xt=s|O1,t–1∩Ot,T) of the fact that at the point of time t the 
chain will be in the state s. 

1. For the random state s at ramdom step t, the probability P(O1,t|Xt=si) that the fact the the sequence O1,t was 
produced on its way for the following t can be made recursively: 

P(O1,t|Xt=si)= 1, 1( )t t t
j S

P O X s X j−
∈

= ∩ = =  

 = 1, 1 1 1( ) ( ) ( )t t t t t t t
j S

P O X j P X s X j P O o X s− − −
∈

= = = = = .               (11) 

The probability to get into the state s at the t-th step, taking into account that the event ot will happen after the 
transition will be equal to be in the state j at the t-th step multiplied by the probability to transit from the state j to 
s, having performed the event ot for all j∈S. 

2. The probability that after a random state s there will be produced a sequence Ot+1,T is defined recursively: 

 P(Ot,T|Xt=s)= 1, 1 1 1( ) ( ) ( )t T t t t t t
j S

P O X j P X j X s P o X s+ + + +
∈

= = = = .          (12) 

3. To find the probability that the chain of events will be made, P(O), there shall be got the sum of the product 

for the two probabilities for all states at a random step t: 

 P(O)=
s S

P
∈
 (O1,t|Xt=s)P(Ot,T|Xt=s),                      (13) 

as the future of the Markov chain does not depen on the past and the probability of observation of the event Ot 
does not depend on the past observations of the event O1,t-1, then the probability that at the point in time of time t 
the cahin will be in the state s: 

 P(Xt=s|O)=P(Xt=s|O1,t–1∩Ot,T)= 1, 1 ,( ) ( )

( )
i t t i t TP X s O P X s O

P O
− == =

.              (14) 

This problem is solved by the "back and forth" algorithm (Binder et al., 1997; Lawrence, R., & Rabiner, A., 1989; 
Lawrence et al., 1986), which allows to find in the hidden Markov model the probability of getting into the state 
s at the t-th step at the sequence of observations O and (hidden) sequence of states X. 

Second stage: For the given HMM with the space of states S={s1, s2,..., sK}, the initial probabilities i of being in the 
state i and probabilities Pi,j of transition from the state i to the state j, according to the observed y1,..., yT and the 
majority of the initial information Jin are used to find the most plausible sequence of the states for the hidden nodes 
S=s1...sT (the Viterbi path) which describes the given model better. Then the most likely sequence of states x1,..., xT 
is defined by the recursive relations: 

 V1,k=P(y1k)πk,    Vt,k=P(ytk) , 1,max( )x k t x
x S

P V −∈
,               (15) 

where Vt,k – is the probability of the most likely sequence of states responsible for appearing of the first t of the 
observed symbols ending in the state k. Viterbi path is searched based on the states x, satisfying the equation (15), 
i.e., 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

130 
 

 xT= ,arg max( )T x
x S

V
∈

                               (16) 

 xt–1=
,arg( ), если 1,

,  если  1.
t kV t

k t

>


=
                           (17) 

The solution of this problem uses the Viterby algorhithm (Andrew Viterbi), allowing to obtain the most likely 
sequence of hidden states (Viterbi path) of the Hidden Markov model on the basis of a sequence of observations 
(Forney, G. D. Jr., 2005; Forney, G. D. Jr., 1973; Viterbi A. D., & Omura, J. K., 1982; Zolotariov, V. V., & 
Ovechkin, G. V., 2004; Morelos-Zaragoza, R., 2006.). 

Third stage: The given output sequence of observations O is used to define unknown parameters of HMM Θ, 
maximising the collection of observations O 

 Θ*= max( ( ))P O
Θ

Θ .                              (18) 

At that, the number of point in times r, where the observations are made, is set beforehand and comprises of the 
following steps: 

1) definitions of all the model's states sequence Si={si1,…, sir}, i=1,…, r of the problem-solving system at the 
specified point in times; 

2) evaluation of probabilities P(Si) for appearing of each sequence Si, i=1,…, r, identified at the previous step, by 
calculating the probabilities of transitions between the works of the model state within the range of the established 
control points in time, namely: 

 P(Si)=
1

, , , 1
1

r

s i t t
t

P
−

+
=

∏ ,                              (19) 

where Ps,i,t,t+1–is the collection of transition from the state sit, in which the system was at the point in time t, into 
the state si,t+1, occupied at the point in time t+1; 

3) collection of appearing of the observed sequence X={x1,…, xr} for states sequence Si, i=1,…, r 

 Pix=P(Si) , ,
1

r

x i j
j

P
=

∏ ,                               (20) 

where Px,i,j is the collection of getting the observed characteristic xj at state sij; 
4) the choice of the most likely state sequence Smax∈{Si}i=1,...,r, of the corresponding biggest collection.  

 {P}x,max= max
i

Pix i =1,...,r.                             (21) 

This strategy step is fully implemented by the Baum – Welch algorithm(Lawrence, R., & Rabiner, A., 1989; 
Baum, L. E., 1972). 

4. Discussion and Conclusions 
The conducted analysis of the probabilistic approach to the synthesis algorithm for solving the problem allows 
formulation of the following conclusions: 

1. Meaningful axioms for the model of randomized algorithms allow for the collection of using them as a model 
of the algorithm of Hidden Markov Model, HMM, which is applicable not only to the original types of 
algorithms, but also to the correction algorithms, as well as for synthesized compositions. 

2. Using a probabilistic model of the algorithm, it is possible to control the relationship between the algorithm 
variables by setting the flexibility of the algorithm to achieve the desired structural and functional stability of the 
software implementing the algorithm. 

3. Randomization of the algorithm, increasing its flexibility and efficiency, does not improve its risk compared 
with the corresponding deterministic algorithm. 

4. The problem of synthesis of algorithm based on HMM is that the available observed data is used to determine 
the hidden parameters of the most likely sequence of states. 

5. At the first strategy stage for the given model parameters Θ=(P, Ps, П) and sequence of hidden S and relevant 
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observable states О, the probability of occurrence of these sequences is determined. Thus on the first step, the 
model Θ and collection of initial data Din get the determination of πi=P(DinΘ) and the evaluation of how well 
the Θ model is agreed to the initial data. This problem in such a formulation is solved using the "back and forth" 
algorithm which allows finding in HMM the collection of getting into state si at t-th step at the sequence of 
observation O and (hidden) sequence of states S. 

6. At the second stage, at the given hodden Markov model Θ with the space of hidden states S={s1, s2,..., sK}, 
initial collections πi presence in state i and collections Pi,j of transition from the state i to the state j, and basing 
on the observed states, o1,..., oT the Viterbi path can be found SV=s1...sT, which described this model in the fullest 
way. It is natural to use the Viterbi algorithm for this purpose. 

7. The third stage of the strategy implies correcting the hidden Markov models by optimizing the model 
parameters Θ=(P, Ps, П) in a way to maximise P(OΘ) at the observed data O. This strategy step is fully 
implemented by the Baum – Welch algorithm. 

The collection of using the synthesis algorithm, grounded in the article, for solving the HMM problem 
determines the further research of control by flexibility of the synthesized algorithm to provide structural and 
functional stability of the software implementing this algorithm. 
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