
Modern Applied Science; Vol. 9, No. 5; 2015 
ISSN 1913-1844   E-ISSN 1913-1852 

Published by Canadian Center of Science and Education 

38 
 

Decomposition Analysis and Machine Learning in a 
Workflow-Forecast Approach to the Task Scheduling Problem for 

High-Loaded Distributed Systems 

Andrey Vladimirovich Gritsenko1, Nikita Georgievich Demurchev2, Vladimir Vyacheslavovich Kopytov2 & 
Andrey Olegovich Shulgin2 

1 Department of Information Technologies, North-Caucasus Federal University, Stavropol, Russian Federation 
2 Infocom-S, Stavropol, Russian Federation 

Correspondence: Andrey Vladimirovich Gritsenko, Department of Information Technologies, North-Caucasus 
Federal University, Stavropol, Russian Federation.  

 

Received: December 29, 2014         Accepted: January 3, 2015        Online Published: March 25, 2015 

doi:10.5539/mas.v9n5p38            URL: http://dx.doi.org/10.5539/mas.v9n5p38 

 

Abstract  
The aim of this paper is to provide a description of machine learning based scheduling approach for high-loaded 
distributed systems that have patterns of tasks/queries that occur recurrently in workflow. The core of this 
approach is to predict the future workflow of the system depending on previous tasks/queries using supervised 
learning. First of all, the workflow is analyzed using hierarchical clustering to reveal sets of tasks/queries. 
Revealed sets of tasks/queries then undergo restructuring to represent patterns of recurrent tasks/queries. Later 
these patterns become the object of the forecasting process performed using neural network. Information on 
predicted tasks/queries is used by the resource management system (RMS) to perform efficient schedule. To 
estimate the performance of the described method it was at first realized as a module of the simulation tool Alea 
that models the work of high-performance distributed systems and then compared with other state-of-the-art 
scheduling algorithms. The simulation was produced for two datasets: in one of the experiments the proposed 
method showed best results, and in the other it was inferior to just a single method, though it was much better 
than commonly used standard scheduling algorithms.  

Keywords: task scheduling, machine learning, supervised learning, hierarchical clustering, workflow prediction, 
resource management systems 

1. Introduction  
The field of high-performance computing (HPC) is nowadays presented by a vast class of distributed computing 
systems. The main criterion to estimate the productivity of HPC systems has always traditionally been the time 
required to complete a full set of tasks, called makespan. It is obvious that values of such estimation criteria 
depend not on the productivity of the distributed computing system itself, but on the efficiency of task 
management systems as well. A task management system is a tool that schedules the execution of users’ tasks on 
the HPC system’s resources. There is a set of criteria besides makespan that is used to assess the efficiency of 
task management systems and scheduling algorithms as well.  

Considering that there a lot of types of distributed HPC systems for some of them other objectives rather than 
makespan can be the most significant. For example, for users of academic-purpose distributed computing 
systems the objective that presents time users wait for their tasks to begin to execute can be even more important 
than makespan, especially for a certain group of users – students, who are time-limited to utilize HPC system’s 
resources. The same requirements may be also imposed by users to other types of distributed systems and servers. 
For example, nowadays as a result of and along with the ubiquitous distribution of different kinds of 
smartphones, tablets and other mobile gadgets the percentage of high-loaded mobile systems increases as well 
among overall number of distributed systems and servers. It becomes obvious that the crucial parameter by 
which users assess the work of such systems is the timeliness of the execution of users’ tasks and queries, i.e. the 
task or query begins to execute as soon as it is submitted. 

There are two possible ways to reduce the amount of time a user waits before his task or query is completed, not 
considering the time of execution itself. The first one is ‘quantitative’ – to increase the amount of resources. Thus, 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

39 
 

whenever a user submits a task or a query there are always available resources to execute the task/query. 
Obviously, it is not an appropriate solution primarily because of the expensiveness of distributed systems’ and 
centers’ equipment. The second solution is to try to forecast the submission of a task/query so the resources 
required for its execution could be freed beforehand.  

There has been done some research in the area of forecasting the future state of the HPC system’s workload. In 
this area scientists have mainly focused on two lines of research:  

1) prediction of the time a user waits before his task begins to execute (Li, 2008; Smith et al., 2004; Yuan et al., 
2008); 

2) prediction of the completion time of local tasks in GRID computing systems (Akioka and Muraoka, 2004; 
Halimon and Smirnov, 2009; Li et al., 2004). 

Evidently, results on the first direction could be used directly to reduce the waiting time – time a user waits 
before his task or query begins to execute. While results on the second line of research may look appropriate for 
the problem of forecasting the workload of a distributed HPC system, apparently it is much easier to predict a 
workload for a single user then for a number of users. As it would be shown in Section 2.2 standard forecasting 
methods could not be applied for such a complex workload.  

Taking into account all of the above the following can be stated: the scientific topicality of the development of a 
method to forecast the future workload of a distributed HPC system and an algorithm to use this prediction in a 
schedule to increase the efficiency of this system is well founded. In terms of practice the topicality could be 
grounded as follows: the share of academic-purpose distributed computing systems reaches 17.4% amongst 
TOP500 supercomputer sites (15.6% in performance scale) that makes this group of distributed HPC systems a 
valuable object of research. 

2. Methodology 
In this section we would first describe the preliminary analysis of workloads of two distributed HPC systems. 
This analysis reveals the presence of long-term memory. In Section 2.2 we attempted to use several standard 
forecasting methods: autoregressive integrated moving average (ARIMA), group-method data handling (GMDH) 
and singular spectral analysis (SSA). Section 2.3 is devoted to the description of the decomposition process of 
the workload to reveal patterns of recurrent tasks, based on the hierarchical clustering method. In Section 2.4 we 
describe the implementation of a neural network to forecast for each of the revealed patterns when and whether a 
new task would be submitted.  

To approve the proposed forecasting method we used workloads of two distributed HPC systems. The first 
workload contains 17365 tasks submitted during 6 months to 14 computing nodes of the cluster system Zewura 
in the Czech National Grid Infrastructure MetaCentrum with overall amount of CPUs equivalent to 806 and 
performance equivalent to 14.7 TFlops/s (MetaCentrum, 2014). The second workload contains 202876 submitted 
tasks during 42 months to 4692 computing nodes of the 3rd most powerful academic-purpose HPC system in the 
world Lomonosov with overall amount of CPUs equivalent to 39920 and performance equivalent to 901.9 
Tflops/s (Lomonosov, 2014). Workloads are named Zewura and Lomonosov respectively by the names of their 
distributed HPC systems.  

2.1 Analysis of the Workloads 

The analysis of academic-purpose clusters’ workloads including Zewura described in (Klusacek and Rudova, 
2010) reveals a great amount of periodically submitted tasks with similar features: resource requirements, 
priority and duration (Figure 1). The subsequent inquiry of the Zewura workload made it possible to ascertain 
that patterns of recurrent tasks were submitted by a certain group of users – students. Though it was impossible 
to perform the similar examination of the Lomonosov workload due to its uniform ungrouped structure, we have 
made a hypothesis, that workloads of academic-purpose high-performance systems could be characterized as 
having such patterns of recurrent tasks. 

It becomes obvious that seriate task submissions allow to use predictive methods to forecast the future workflow 
of the cluster system. First of all, to perform any of the predictive algorithms a list of submitted tasks should be 
presented as time series. Time series contain the following information about tasks – submission time, priority 
and resource requirements: number of requested nodes and processor time. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

40 
 

 
Figure 1. Recurring patterns of the tasks submitted by the users of the Student user group observed in the Zewura 

workflow 

 

To obtain more reasons for using forecasting methods to predict the future workload for academic-purpose 
high-performance systems the Hurst exponent (Hurst et al., 1965) for both Zewura and Lomonosov workflow 
time series was computed. The Hurst exponent is used as a measure of long-term memory of time series. In other 
words it determines the rate at which autocorrelation function of time series decreases as the lag between pairs of 
values increases. The presence of long-term memory that corresponds to the value of Hurst exponent 

(0.5;1)H ∈  in turn makes the prognosis of future tasks highly reliable. The process of Hurst coefficient 
computation for both Zewura and Lomonosov workloads is described in (Tebueva at al., 2011). The value of the 
Hurst coefficient for the Zewura workflow is equivalent to 0.714731 and for the Lomonosov workload – 0.69814, 
thereby verifying the appropriateness of the implementation of prediction algorithms. 

2.2 The Comparative Analysis of Using Different Forecasting Methods 

Research described in (Gritsenko and Shulgin, 2011) is devoted to the appliance of ARIMA (Box et al., 1994) 
and GMDH (Madala and Ivakhenko, 1994) methods as well as SSA (Golyandina and Stepanov, 2005) 
forecasting algorithm in order to gain a proper forecast for the Zewura workload. Figure 2 shows a great 
inaccuracy of the results when using algorithms mentioned above. 

 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

41 
 

(a) 

 

(b) 

 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

42 
 

(c) 

Figure 2. Prediction inaccuracy of different forecasting algorithms: (a) ARIMA method – red line, (b) GMDH 
method – black line, (c) SSA metnod – magenta line. X axis (length) represents time in seconds x104, Y axis 

(higth) – task execution time in hours, and Z axis (depth) – the number of requested nodes. For more 
convenience the original data is displayed as blue line on every plot 

 

Observing plots from the Figure 2 it can be concluded that there is a contradiction. On the one hand, the analysis 
in (Tebueva et al., 2011) showed that both Zewura and Lomonosov workloads possess long-term memory and 
thus should be appropriate for a successful forecasting. On the other hand, the attempts to use different 
prediction methods failed as the results are absolutely insufficient. To solve the arisen contradiction we proposed 
to decompose time series to reveal essential seriated components.  

2.3 Forming Patterns of Recurrent Tasks 

As it was stated above, the tasks that are recurrently submitted by users have similar task features: submission 
time (with regard to the hour/day of the week/day of the month/etc.), execution time, resource requirements, 
priority. Considering this we have drawn the following conclusion: if recurrent tasks that belong to the same 
pattern have similar features, then represented as points in the multidimensional space they would be very close 
to each other. If we subject a workload of any academic-purpose distributed computing system to the clustering 
process, we would obviously get high-dense clusters that represent patterns of recurrent tasks. As we do not 
know beforehand the number of patterns of recurrent tasks we can not use standard clustering methods; instead 
we should implement agglomerative hierarchical clustering method.  

At the very beginning the agglomerative hierarchical clustering methods represents all the tasks in the workload 
space as separate clusters. Then the iterative process begins: at each step the nearest two clusters merge. To 
decide what clusters are the nearest a measure of dissimilarity is required. This measure could be considered as 
the combination of an appropriate metric (a measure of distance between pairs of points) and a linkage criterion. 
A linkage criterion specifies the dissimilarity of clusters as a function of the pairwise distances of points in the 
clusters. 

Among different options of metrics we have chosen Mahalanobis distance (McLachlan, 1992) as it considers not 
only the distance between the points but the shape of clusters as well:  

1( , ) ( ) ( )Td a b a b S a b−= − −         (1) 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

43 
 

In Equation 1 S represents a covariance matrix.  

To estimate the distance between two clusters we used Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA). According to this method the distance between any two clusters A and B is taken to be the average of 
all distances between pairs of objects x in A and y in B, that is, the mean distance between elements of each 
cluster: 

1
( , )

x A y B

d x y
A B ∋ ∋⋅           (2) 

Obviously, we are not interested to wait until UPGMA agglomerative hierarchical clustering method finishes it 
execution, as it stop when all of the initial data points are merged into a single cluster. On the contrary, our goal 
is to obtain high-dense clusters that represent patterns of recurrent tasks. To reach this goal we have added a 
stopping criterion to the original UPGMA method: if the value of the metric for a newly merged cluster exceeds 
more than two times the value of the metric for any of the merging clusters, then such clusters are not combined 
and excluded from the further consideration. The modified UPGMA stops when there are no clusters left to 
merge.  

We interpret the obtained clusters of data point as patterns of recurrent tasks by ordering them in ascending order 
of their submission time. We also compute for each pattern its period as the mean difference between submission 
times of two adjacent tasks.  

2.4 Forecasting Patterns of Recurrent Tasks 

When we get the patterns of recurrent tasks we can now perform the prediction for each pattern individually. 
Apparently, standard forecasting methods like ones mentioned in Section 2.2 are not suitable for this mission, as 
they answer the question “What will appear in the next instant of time?” We have proposed to prolong patterns of 
recurrent tasks in the future infinitely using its period and an ‘averaged task’. The ‘averaged task’ is a task whose 
features are computed as mean values of the corresponding features of the tasks that currently belong to the 
pattern. That allows us rephrasing the question. Now we can forecast the future state of workloads of 
academic-purpose distributed HPC systems by answering the following question “Will a certain task appear in a 
definite instant of time?” 

To answer this question we have proposed to implement a neural network as its standard output signal could be 
either 0 or 1 (Werbos, 1974). As the input signal we have used not only submitting parameters of tasks like 
priority, resource requirements, execution time and user group’s name, we have also added the position of the 
task in the pattern as well as the features that describe the pattern itself and: pattern’s period, pattern’s length so 
far (i.e. the amount of tasks that have already occurred in the workload). To prevent unnecessary executions of 
the neural network we have added an exclusive criterion: once for a certain pattern the number of false 
predictions exceeds 20% of the current pattern’s length, all the tasks of this pattern are excluded from the further 
consideration.  

There are several possible ways of acting when we get a prediction result. First of all, one can implement a 
binary decision-making process: if the output signal of a neural network is less than 0.5 then the task is ignored, 
otherwise the required for its execution resources are reserved. On the other hand, one can treat the output as the 
probability of the task’s appearance in the workload and act according to this probability. For example, if the 
output value is between 0.8 and 1 then it is highly probable that this task will be submitted by a user and thus the 
resources for this task reserved ‘firmly’ – this reservation could not be undone. If the output is between 0 and 0.4 
then it is highly probable that the task would not occur in the workload and it is ignored. If the output is between 
0.4 and 0.5 then a ‘soft’ reservation is made – the required resources are reserved until a task with a higher 
priority occurs in the workload, then the reservation is undone.  

In our experiments with the Zewura and Lomonosov workloads we have implemented the first mentioned option 
– binary decision-making process. Figure 3 depicts the accuracy of the results of this implementation of the 
proposed forecasting approach in comparison to the mentioned above forecasting methods making it possible to 
evaluate the precision of these methods by sight.  



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

44 
 

 
Figure 3. Diagram of the mean absolute deviation of the different forecasting methods’ results 

 

3. Experiments and Results 
As it can be concluded from the Section 2.4 our proposed method only affects those tasks that belong to any 
pattern of recurrent tasks. Accordingly, our proposed method DAP could not be used as a separate scheduling 
method, it could be implemented only as an additional software to other existing scheduling algorithms. In our 
experiments we used DAP method in the combination with a routine scheduling method – backfilling method.  

In the experiments we used the following architecture of the neural network as a result of the performed analysis: 
it has 5 hidden layers with 10 neurons each. Table 1 contains the results of this comparative analysis of different 
architectures: a – 1 hidden layer with 10 neurons; b – 5 hidden layers with 10 neurons each; c – 1 hidden layer 
wit 25 neurons; d – 10 hidden layers with 10 neurons each.  

 

Table 1. The efficiency of a neural network training 

 Objective function value Prediction accuracy (%) 
Architecture a b c d a b c d 
Zewura 2.48 1.69 2.24 1.52 70.4 95.04 84.88 96.13 
Lomonosov 2.49 1.09 1.97 1.33 58.08 92.13 80.8 91.4 

 

The prediction accuracy was computed using F1-metric: 

1 2
Precision Recall

F
Precision Recall

⋅= ⋅
+

        (3) 

In Equation 3, precision expresses the ratio between true positive predictions and the overall positive predictions. 
Recall expresses the ratio between true positive predictions and the overall positive occurrences.  

When training the neural network we used a standard objective function:  

( ) ( )( ) ( ) ( )( ) ( )( )11 2

1 1 1 1

1
log 1 log 1

2

l ls sm L
lk k k k
ji

k l i j

J y h x y h x
m m

λ +−

Θ Θ
= = = =

 Θ = − + − − + Θ 
 
   (4) 

In Equation 4, m – amount of the input elements, ky  – real output for the kth input element; ( )kh xΘ  – 

produced output for the kth input element; L – number of layers; ls  – number of neurons in the layer l, 

excluding biased neurons; ( )l
jiΘ  – mapping coefficient from the ith neuron of the lth layer to the jth neuron of the 

(l+1)th layer.  
There is a vast number of different objective functions to estimate the efficiency of a task management systems. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

45 
 

Amongst this number we have chosen 3 objective functions that allow to evaluate the efficiency of a task 
management system from different points of view:  

• Makespan 

Makespan is an essential objective function that is defined as the completion time of the last task in the workload. 
In This criterion is turned out to be unbiased as it does not depend on the execution order of tasks. This objective 
assesses the work of a task management system from the administrator’s point of view.  

• Computational resource utilization 

Instead of estimating the efficiency of a schedule calculating merely the percentage of used CPUs, it is more 
reasonably to compute the resource utilization using the Equation 5 that does not consider situations when there 
are not enough submitted jobs to use all of the available resources: 

( )min ;
active

available requested

CPU
Resource utilization

CPU CPU
=      (5) 

Computational resource utilization makes it possible to assess the efficiency of a schedule in respect to the 
economic aspect of the scheduling problem.  

• Slowdown 

Slowdown objective function is a dimensionless quantity that is calculated as shown in the Equation 6: 

Tasks

FinishTime SubmitTime
Slowdown

FinishTime StartTime

−=
−       (6) 

Slowdown involves both wait time (difference between start time and submission time) and response time 
(difference between finish time and submission time). Its advantage in comparison to these objectives is that 
slowdown considers processing time of each task, thus decreasing the influence of small tasks being in the queue 
for a long time. 

The detailed description of the multi-criteria evaluation process of task management systems is given in 
(Gritsenko, 2014). Table 2 contains the binary comparison matrix for the three mentioned objectives. Weights of 
these criteria correspond with the explanation given in the Section 1: the timeliness of the execution of users’ 
tasks and queries becomes the crucial parameter by which the efficiency of distributed high-loaded systems is 
estimated, and could be explained by means of the following reasons. 

• From the point of view of the users the slowdown objective is much more important than the resource 
usage as no one wants its task to be in the queue for a long time.  

• The aim of the distributed computing system is to complete all the tasks in the queue as possible in a short 
period of time therefore the makespan is as significant criterion as the slowdown, besides frequently these 
objective functions correlate in a way where decrease of the slowdown results in the decrease of the 
makespan. 

• On the other hand, taking into consideration high cost of the distributed systems’ equipment the value of the 
resource utilization objective increases drastically making its influence on the overall schedule efficiency 
rating more significant.  

•  

Table 2. Binary comparison matrix 

Criteria Makespan Slowdown Resource usage ∑ 
Makespan – 0.5 0 0.5 
Slowdown 0.5 – 1 1.5 
Resource usage 1 0 – 1 

 

To estimate the performance of the proposed approach for the task scheduling problem a grid simulation system 
Alea 3.1 (Rudova & Klusacek, 2010) was used. This software allows executing a various number of scheduling 
algorithms of both queue-based and schedule-based approaches. The main distinguish between these approaches 
is that queue-based algorithms perform dynamic scheduling when a schedule is constructed every time a new 
task is submitted, while algorithms of the schedule-based approach require information about all tasks in the 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

46 
 

workflow at the moment of scheduling, in other words perform a static scheduling. This feature of the 
schedule-based approach makes it impossible to use its algorithms in real distributed computing systems. 
Though schedule-based algorithms can be used as relevant estimators in simulators, since average values of the 
objective functions for schedule-based methods are often much better than those for queue-based methods. 

To perform an exhaustive and reliable comparative study the following algorithms were specified along with the 
proposed algorithm DAP: 

• Queue-based: first-come-first-served (FCFS), smallest-job-first (SmalJF), conservative backfilling (Cons 
BF), aggressive /easy backfilling, last-come-first-served (LCFS), shortest-job-first (SJF), first-fit, 
earliest-deadline-first (EDF), algorithms used in PBS-Pro (Nitzberg et al. 2004) resource management 
system; 

• Schedule-based: earliest-suitable-gap (ESG), best-gap, tabu-search.  

The results of the execution of different algorithms scheduling Zewura and Lomonosov workloads are presented 
in the tables 3, 4, 5 and 6. System usage and slowdown are dimentionless quantities and makespan is measured 
in seconds.  

 

Table 3. Absolute values of the objective functions for different scheduling algorithms. Zewura Workload 

Criteria 

Scheduling algorithms 

FCFS SmalJF 
Cons 

BF 
Easy BF LCFS SJF First Fit PBSPro BSG ESG DAP 

Best 

Gap 

Tabu 

Search 
EDF 

Makesp

an 

166308

98 

164100

22 

149771

65 

152244

72 

157549

07 

161599

79 

161097

05 

152143

16 

153656

88 

150744

43 

152238

93 

153723

90 

156988

37 

166308

98 

System 

usage 
77.016 85.044 90.989 87.931 82.744 86.088 79.82 88.3 86.653 92.642 92.284 92.749 83.738 77.016

Slow 

down 
10916.3 956.993 493.165 1111.56 1904.01 1184.29 6960.19 465.714 576.358 261.779 257.016 238.452 1933.40 10916.3

 

Table 4. Absolute values of the objective functions for different scheduling algorithms. Lomonosov workload 

Criteria 

Scheduling algorithms 

FCFS SmalJF 
Cons 

BF 
Easy BF LCFS SJF First Fit PBSPro BSG ESG DAP 

Best 

Gap 

Tabu 

Search 
EDF 

Makesp

an 

107100

566 

107108

258 

107098

023 

107097

817 

107099

830 

107101

707 

107100

548 

107099

792 

107100

516 

107098

164 

107098

060 

107098

124 

107100

516 

107100

566 

System 

usage 98.45 99.027 98.753 98.547 98.69 98.974 98.785 99.131 98.997 98.89 98.965 99.051 98.623 98.45 

Slow 

down 
612.998 69.3385 212.874 151.005 208.288 254.501 596.212 186.287 289.059 76.4019 88.2647 90.6587 309.628 612.998

 

The comparison process described in (Gritsenko, 2014) can be divided into the following steps: 

1) Compute max and min values of objectives: for every objective the biggest and the smallest values are 
determined on the set of specified algorithms.  

2) It is natural that one algorithm may be superior as compared to the other algorithm by one objective, and be 
inferior when compared by another objective. To simplify the evaluation process we compute relative 
estimations for objectives: for each algorithm a relative estimation is calculated as a ratio of the difference 
between algorithm’s objective value and the min value of this objective to the difference between max and 
min values of the same objective. This estimation shows the proximity of the evaluated algorithm to the 
best algorithm on a set of objectives. 

3) Global estimations: the next step is to compose a square matrix with the number of columns and rows 
equals to the number of compared algorithms. Each element of the matrix represents the ratio of the overall 
superiority of the row algorithm on the column algorithm to the overall superiority of the column algorithm 
on the row algorithm. 

4) Final estimations: to define which of the compared scheduling algorithms performs the most efficient 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

47 
 

schedule on a set of specified objective functions one should calculate a main eigen vector for the defined 
prefence matrix. An algorithm that relate to the biggest element of the main eigen vector is the desired 
algorithm. 

 

Table 5. Relative global estimations for most efficient algorithms. Zewura workload 

 
Scheduling algorithms 

Main eigen vector 
Cons BF DAP BestGap TabuSearch

Cons BF 1 0.0535 0.1468 0.2 0.038 

DAP 18.7039 1 13.9913 1.9021 0.9474 

BestGap 6.8126 0.0715 1 0.5029 0.1391 

TabuSearch 5 0.5258 1.9883 1 0.2856 

 

Table 6. Relative global estimations for most efficient algorithms. Lomonosov workload 

 
Scheduling algorithms 

Main eigen vector 
SmallestJF Easy BF PBS-pro DAP BestGap TabuSearch

SmallestJF 1 3.7388 2.5707 0.6727 0.7145 0.5195 0.1813 
Easy BF 0.2675 1 0.5471 0.0108 0.0077 0.0089 0.0143 
PBS-pro 0.3890 1.8278 1 0.2775 0.2121 0.1049 0.0585 
DAP 1.4865 92.9277 3.6042 1 1.1406 0.6587 0.4249 
BestGap 1.3997 130.6599 4.7149 0.8768 1 0.2293 0.4442 
TabuSearch 1.9249 111.3494 9.5369 1.5181 4.36066 1 0.7653 

 

3. Discussion 
As it can be observed from the result tables above the proposed algorithm described in this article offers a great 
performance compatible to the performance of the schedule-based methods and superior to the ones of the 
queue-based methods.  

Nevertheless, in order to implement the proposed decomposition analysis and machine learning based algorithm 
properly and to guarantee the superiority of the proposed algorithm, the distributed computing systems must 
meet some requirements. The main requirement consists of the following. The distributed high-load system must 
possess patterns of recurrent tasks or queries. Amongst the systems that definitely possess patterns of recurrent 
tasks are academic-purpose distributed high-performance computing systems, as well as distributed high-loaded 
mobile systems. Though in this work only experiments with the workloads of academic-purpose distributed 
computing systems have been executed and depicted in future works workload of other systems that are 
characterized by the presence of patterns of recurring tasks or queries.  

The list of minor restrictions placed on distributed HPC systems involves homogeneous architecture of these 
systems and non-preemptive job scheduling. Although, these restrictions could be easily get round. In modern 
cluster systems with heterogeneous architecture there are certain queue associated with certain type of 
computational resources. Consequently each heterogeneous system could be considered as a set of several 
homogeneous systems that at first glance allow to evade the restriction. On the other hand the strong 
heterogeneity is essential to grid systems as well as preemptive job scheduling that is crucial to these systems. 
Taking into account all of the above it could be stated that redemption of both homogeneous and non-preemptive 
restrictions would expand the area of application on distributed high-loaded systems with different principles of 
operation and architectures, including grid systems. 

There is also some future research to be done to make the proposed algorithm widely applicable for the task 
scheduling problem. The main research issue inherent to the proposed scheduling algorithm is covered in the 
learning paradigm of the implemented learning algorithms: both decomposition analysis based on the 
hierarchical clustering and prediction realized as neural network use batch learning. In other words, these 
algorithms have access to the entire dataset at once. As a result, in terms of batch learning paradigm it is 
impossible to reveal patterns of recurrent tasks that have not been presented in the initial training dataset. To 
overcome this problem the learning paradigm should be changed to the online learning, though this change in 
terms of distributed high-loaded systems may cause the increase of the computational complexity of the used 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

48 
 

algorithms. Therefore the additional research is required to find the trade-off between the computational 
complexity and the online learning advantages.  

Acknowledgments 
Research was done in the course of research scientific work under the name of: “The development of 
cross-platform mobile application engineering technology with the specified contours of integration with the 
purpose to increase functional and resource efficiency of corporate information systems” (unique identifier of 
applied scientific research is RFMEFI57614X0066) as part of the realization of federal special-purpose program 
“Research and development in priority areas of the elaboration of Russian scientific technology complex for 
2014-2020 years”.  

The Zewura workload log was graciously provided by the Czech National Grid Infrastructure Metacentrum. 

The Lomonosov workload was gained gathering information on submitted tasks via monitoring the official site 
that shows current state of the cluster system Lomonosov.  

Alea 3.1 software is the result of the research intent no.0021622419 (ministry of education, youth and sports of 
the Czech Republic) and the grant no. 201/07/0205 (grant agency of the Czech Republic). The owner of the 
result is Masaryk University, a public high school, ID: 00216224. 

References 
Akioka S., & Muraoka, Y. (2004). Extended forecast of CPU and network load on computational GRID. IEEE 

International Symposium on Cluster Computing and Grid, pp. 765-772. 
http://dx.doi.org/10.1109/CCGrid.2004.1336711 

Box, G., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control. Prentice-Hall. 

Golyandina, N., & Stepanov, D. (2005). SSA-based approaches to analysis and forecast of multidimensional 
time series. In proceedings of the 5th St.Petersburg workshop on simulation. 

Gritsenko, A. (2014). A comparison model of scheduling and resource distribution algorithms for large scale 
computing systems. In the world of scientific discoveries, 10(58), 80-96. ISSN: 2330-9288. 
http://dx.doi.org/10.12731/wsd-2014-10-6 

Gritsenko, A., & Shulgin, A. (2011). Applying of forecasting methods in job management and resource 
allocation algorithms in high performance systems issue investigation. In the World of Scientific Discoveries, 
8(20), 43-55.  

Halimon, V. I., & Smirnov, A. V. (2009). Optimization of distributed computational processes in corporate nets. 
Proceedings of XXII International Scientific Conference: Mathematical methods in technique and 
technologies.  

Hurst, H. E., Black, R. P., & Simaika, Y. M. (1965). Long-term storage: An experimental study. London. 

Klusacek, D., & Rudova, H. (2010). The importance of complete data sets for job scheduling simulations. Job 
Scheduling Strategies for Parallel Processing, pp. 132-153. http://dx.doi.org/10.1007/978-3-642-16505-4_8 

Li, H. (2008). Workload characterization, modeling, and prediction in grid computing. PhD thesis, ASCI 
Graduate School, University of Leiden. 

Li, H., Groep, D., Templon, J., & Wolters L. (2004). Predicting job start times on clusters. IEEE International 
Symposium on Cluster Computing and Grid, pp. 301-308.  

Lomonosov supercomputer online state. Retrieved August 5, 2014, from 
http://t60-2.parallel.ru/cgi-bin/cleo-viz.cgi 

Madala, H. R., & Ivakhnenko, A. G. (1994). Inductive learning algorithms for complex systems modeling. CRC 
press, Boca Raton. 

McLachlan, G. J. (1992). Discriminant analysis and statistical pattern recognition. Wiley Interscience. 
http://dx.doi.org/10.1002/0471725293 

Nitzberg, B., Schopf, J. M., & Jones, J. P. (2004). PBS-Pro: GRID computing and scheduling attributes, GRID 
resource management. ISBN 1-4020-7575-8. 

Rudova, H., & Klusacek, D. (2010). Alea 2 - job scheduling simulator. In proceedings of the 3rd international 
ICST conference on simulation tools and techniques. ISBN: 978-963-9799-87-5.  

Smith, W., Foster, I., & Taylor V. (2004). Predicting application run times with historical information. Journal of 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 5; 2015 

49 
 

Parallel and Distributed Computing, 64(9), 1007-1016. http://dx.doi.org/10.1016/j.jpdc.2004.06.008 

Tebueva, F., Gritsenko, A., & Rusakov D. (2011). The method of calculating classification indices of time series 
of evolutional processes with long-term correlations. Vestnik SGU, 75(4), 39-43. ISSN: 1998-6383. 

The national grid infrastructure Metacentrum. Retrieved September 15, 2014, from 
http://www.metacentrum.cz/en/ 

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the behavioral sciences. Phd 
thesis, Harvard University. 

Yuan, Y., Wu Y., Yang, G., & Zheng, W. (2008). Adaptive hydrid model for long-term load prediction in 
computational grid. IEEE International Symposium on Cluster Computing and Grid, pp. 340-347. 
http://dx.doi.org/10.1109/CCGRID.2008.60 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 


